1
|
Reyes-Alvarez E, Walker TJ, Mulligan LM. Evaluating Cell Membrane Localization and Intracellular Transport of Proteins by Biotinylation. Methods Mol Biol 2022; 2508:197-209. [PMID: 35737242 DOI: 10.1007/978-1-0716-2376-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Protein translocation to the cell membrane and transport through intracellular compartments are dynamic processes frequently altered in cancer cells. Abnormal protein localization can affect key cell functions, including transduction of extracellular signals and organization of the cytoskeleton, significantly affecting oncogenicity and therapeutic responses. In this chapter, we describe a surface protein biotinylation method that allows the study of membrane localization and endosomal transport of membrane-associated proteins. Surface biotinylation can be used to evaluate baseline protein levels at the membrane, and other processes such as internalization, recycling, and degradation of proteins in response to different treatments or as a consequence of oncogenic mutations. Further, the combination of this technique with other strategies, such as treatments with transport inhibitors, allows investigation of specific steps of protein trafficking through the cell.
Collapse
Affiliation(s)
- Eduardo Reyes-Alvarez
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Timothy J Walker
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Lois M Mulligan
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
2
|
Puverel S, Kiris E, Singh S, Klarmann KD, Coppola V, Keller JR, Tessarollo L. RanBPM (RanBP9) regulates mouse c-Kit receptor level and is essential for normal development of bone marrow progenitor cells. Oncotarget 2018; 7:85109-85123. [PMID: 27835883 PMCID: PMC5341297 DOI: 10.18632/oncotarget.13198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/26/2016] [Indexed: 01/22/2023] Open
Abstract
c-Kit is a tyrosine kinase receptor important for gametogenesis, hematopoiesis, melanogenesis and mast cell biology. Dysregulation of c-Kit function is oncogenic and its expression in the stem cell niche of a number of tissues has underlined its relevance for regenerative medicine and hematopoietic stem cell biology. Yet, very little is known about the mechanisms that control c-Kit protein levels. Here we show that the RanBPM/RanBP9 scaffold protein binds to c-Kit and is necessary for normal c-Kit protein expression in the mouse testis and subset lineages of the hematopoietic system. RanBPM deletion causes a reduction in c-Kit protein but not its mRNA suggesting a posttranslational mechanism. This regulation is specific to the c-Kit receptor since RanBPM reduction does not affect other membrane proteins examined. Importantly, in both mouse hematopoietic system and testis, RanBPM deficiency causes defects consistent with c-Kit loss of expression suggesting that RanBPM is an important regulator of c-Kit function. The finding that this regulatory mechanism is also present in human cells expressing endogenous RanBPM and c-Kit suggests a potential new strategy to target oncogenic c-Kit in malignancies.
Collapse
Affiliation(s)
- Sandrine Puverel
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Erkan Kiris
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Satyendra Singh
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Kimberly D Klarmann
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA.,Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Vincenzo Coppola
- The Ohio State University, Department of Cancer, Biology and Genetics, Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Jonathan R Keller
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA.,Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| |
Collapse
|
3
|
Insights into ligand stimulation effects on gastro-intestinal stromal tumors signalling. Cell Signal 2017; 29:138-149. [DOI: 10.1016/j.cellsig.2016.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/14/2016] [Accepted: 10/18/2016] [Indexed: 01/24/2023]
|
4
|
Patrikidou A, Domont J, Chabaud S, Ray-Coquard I, Coindre JM, Bui-Nguyen B, Adenis A, Rios M, Bertucci F, Duffaud F, Chevreau C, Cupissol D, Pérol D, Emile JF, Blay JY, Le Cesne A. Long-term outcome of molecular subgroups of GIST patients treated with standard-dose imatinib in the BFR14 trial of the French Sarcoma Group. Eur J Cancer 2015; 52:173-80. [PMID: 26687836 DOI: 10.1016/j.ejca.2015.10.069] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND The added value of tumoural genomic profiles to conventional clinico-biological factors to predict progression-free survival (PFS) and overall survival (OS) was prospectively investigated in patients with advanced gastrointestinal stromal tumours (GIST) treated in the BFR14 study. METHODS Of the 434 included patients, mutational analysis was performed in 322 patients. Survival analysis was performed in patients with validated mutational status. RESULTS Mutational status was validated in 228 patients. We identified 196 patients with tumours harbouring 200 KIT alterations (exon 11: 173 patients, exon 9: 22 patients, exon 17: 3 patients, exon 13: 2 patients; 4 patients had double KIT mutations), 6 patients with PDGFRA mutations and 26 patients with wild-type (WT) GIST genotype. On a median follow-up of 73 months, median PFS/OS were 12.3/54.9 months for WT GIST, 12.6/55 months for KIT exon 9, and 39.4 months/not reached (69.1% at 5 years) for KIT exon 11. Tumour size, female gender, KIT exon 11 mutations and CD34 positivity were independent prognostic factors for a higher PFS. A higher OS was predicted by performance status (PS) <2, low neutrophil and normal lymphocyte counts, KIT exon 11 mutations, non-advanced tumour and female gender. KIT exon 11 mutations at codons 557-558 showed better tumour response (p=0.028) but shorter PFS (p=0.0176). CONCLUSIONS In GIST patients, presence of a KIT exon 11 mutation is an independent prognostic factor for PFS and OS, along with gender, PS, tumour size, lymphocyte and neutrophil counts. Subsets of exon 11 mutations are associated with significantly different response patterns and PFS.
Collapse
Affiliation(s)
- Anna Patrikidou
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | - Julien Domont
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | - Sylvie Chabaud
- Biostatistics Department, Centre Léon Bérard, Lyon, France
| | | | | | - Binh Bui-Nguyen
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France
| | - Antoine Adenis
- Department of Medical Oncology, Centre Oscar Lambret, Lille, France
| | - Maria Rios
- Department of Medical Oncology, Centre Alexis Vautrin, Nancy, France
| | - François Bertucci
- Department of Medical Oncology, Institut Paoli Calmettes, Marseille, France
| | | | | | - Didier Cupissol
- Department of Medical Oncology, Institut du Cancer du Montpellier, Montpellier, France
| | - David Pérol
- Biostatistics Department, Centre Léon Bérard, Lyon, France
| | | | - Jean-Yves Blay
- CRCL INSERM U1052 & Université Claude Bernard Lyon 1 & Centre Léon Bérard, Lyon, France
| | - Axel Le Cesne
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France.
| |
Collapse
|
5
|
Lindblad O, Kazi JU, Rönnstrand L, Sun J. PI3 kinase is indispensable for oncogenic transformation by the V560D mutant of c-Kit in a kinase-independent manner. Cell Mol Life Sci 2015; 72:4399-407. [PMID: 26040420 PMCID: PMC11113438 DOI: 10.1007/s00018-015-1944-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/30/2015] [Accepted: 05/28/2015] [Indexed: 12/24/2022]
Abstract
Oncogenic mutants of c-Kit are often found in mastocytosis, gastrointestinal stromal tumors and acute myeloid leukemia. The activation mechanism of the most commonly occurring mutation, D816V in exon 17 of c-Kit, has been well-studied while other mutations remain fairly uncharacterized in this respect. In this study, we show that the constitutive activity of the exon 11 mutant V560D is weaker than the D816V mutant. Phosphorylation of downstream signaling proteins induced by the ligand for c-Kit, stem cell factor, was stronger in c-Kit/V560D expressing cells than in cells expressing c-kit/D816V. Although cells expressing c-Kit/V560D showed increased ligand-independent proliferation and survival compared to wild-type c-Kit-expressing cells, these biological effects were weaker than in c-Kit/D816V-expressing cells. In contrast to cells expressing wild-type c-Kit, cells expressing c-Kit/V560D were independent of Src family kinases for downstream signaling. However, the independence of Src family kinases was not due to a Src-like kinase activity that c-Kit/D816V displayed. Point mutations that selectively block the association of PI3 kinase with c-Kit/V560D inhibited ligand-independent activation of the receptor, while inhibition of the kinase activity of PI3 kinase with pharmacological inhibitors did not affect the kinase activity of the receptor. This suggests a lipid kinase-independent key role of PI3 kinase in c-Kit/V560D-mediated oncogenic signal transduction. Thus, PI3 kinase is an attractive therapeutic target in malignancies induced by c-Kit mutations independent of its lipid kinase activity.
Collapse
Affiliation(s)
- Oscar Lindblad
- Division of Translational Cancer Research and Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Medicon Village 404C3, Scheelevägen 8, 22363, Lund, Sweden
| | - Julhash U Kazi
- Division of Translational Cancer Research and Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Medicon Village 404C3, Scheelevägen 8, 22363, Lund, Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research and Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Medicon Village 404C3, Scheelevägen 8, 22363, Lund, Sweden
| | - Jianmin Sun
- Division of Translational Cancer Research and Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Medicon Village 404C3, Scheelevägen 8, 22363, Lund, Sweden.
| |
Collapse
|
6
|
Lourenço N, Hélias-Rodzewicz Z, Bachet JB, Brahimi-Adouane S, Jardin F, Tran van Nhieu J, Peschaud F, Martin E, Beauchet A, Chibon F, Emile JF. Copy-neutral loss of heterozygosity and chromosome gains and losses are frequent in gastrointestinal stromal tumors. Mol Cancer 2014; 13:246. [PMID: 25373456 PMCID: PMC4417285 DOI: 10.1186/1476-4598-13-246] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 10/23/2014] [Indexed: 12/11/2022] Open
Abstract
Background A KIT gain of function mutation is present in 70% of gastrointestinal stromal tumors (GISTs) and the wild-type (WT) allele is deleted in 5 to 15% of these cases. The WT KIT is probably deleted during GIST progression. We aimed to identify the mechanism of WT KIT loss and to determine whether other genes are involved or affected. Methods Whole-genome SNP array analyses were performed in 22 GISTs with KIT exon 11 mutations, including 11 with WT loss, to investigate the mechanisms of WT allele deletion. CGH arrays and FISH were performed in some cases. Common genetic events were identified by SNP data analysis. The 9p21.3 locus was studied by multiplex quantification of genomic DNA. Results Chromosome instability involving the whole chromosome/chromosome arm (whole C/CA) was detected in 21/22 cases. The GISTs segregated in two groups based on their chromosome number: polyGISTs had numerous whole C/CA gains (mean 23, range [9 to 43]/3.11 [1 to 5]), whereas biGISTs had fewer aberrations. Whole C/CA losses were also frequent and found in both groups. There were numerous copy-neutral losses of heterozygosity (cnLOH) of whole C/CA in both polyGIST (7/9) and biGIST (9/13) groups. cnLOH were frequent on 4q, 11p, 11q, 1p, 2q, 3p and 10, and never involved 12p, 12q, 20p, 20q or 19q. Other genetic alterations included segmental chromosome abnormalities, complete bi-allelic deletions (homozygous deletions) and, more rarely, amplifications. Nine of 11 GISTs with homozygous KIT exon 11 mutations had cnLOH of chromosome 4. Conclusion The cnLOH of whole C/CA is a frequent genetic alteration in GISTs and is closely associated with homozygous mutations of KIT and WT allele deletion. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-246) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nelson Lourenço
- EA4340, Versailles University, Boulogne-Billancourt, France. .,Digestive Oncology Unit, Saint Louis Hospital, APHP, Paris, France.
| | - Zofia Hélias-Rodzewicz
- EA4340, Versailles University, Boulogne-Billancourt, France. .,Department of Pathology, Ambroise Paré Hospital, APHP, 9 Avenue Charles de Gaulle, Boulogne-Billancourt, France.
| | - Jean-Baptiste Bachet
- EA4340, Versailles University, Boulogne-Billancourt, France. .,Digestive Oncology Unit, Pitié Salpétrière Hospital, APHP, Paris, France.
| | | | - Fabrice Jardin
- Centre Henri Becquerel, INSERM U918, Université de Rouen, Rouen, France.
| | | | - Frédérique Peschaud
- EA4340, Versailles University, Boulogne-Billancourt, France. .,Department of Surgery, Ambroise Paré Hospital, APHP, Boulogne-Billancourt, France.
| | | | - Alain Beauchet
- EA4340, Versailles University, Boulogne-Billancourt, France. .,Clinical Research Unit, Ambroise Paré Hospital, APHP, Boulogne-Billancourt, France.
| | | | - Jean-François Emile
- EA4340, Versailles University, Boulogne-Billancourt, France. .,Department of Pathology, Ambroise Paré Hospital, APHP, 9 Avenue Charles de Gaulle, Boulogne-Billancourt, France.
| |
Collapse
|
7
|
Bachet JB, Tabone-Eglinger S, Dessaux S, Besse A, Brahimi-Adouane S, Emile JF, Blay JY, Alberti L. Gene expression patterns of hemizygous and heterozygous KIT mutations suggest distinct oncogenic pathways: a study in NIH3T3 cell lines and GIST samples. PLoS One 2013; 8:e61103. [PMID: 23593401 PMCID: PMC3625162 DOI: 10.1371/journal.pone.0061103] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 03/05/2013] [Indexed: 12/18/2022] Open
Abstract
Objective Most gain of function mutations of tyrosine kinase receptors in human tumours are hemizygous. Gastrointestinal stromal tumours (GIST) with homozygous mutations have a worse prognosis. We aimed to identify genes differentially regulated by hemizygous and heterozygous KIT mutations. Materials and Methods Expression of 94 genes and 384 miRNA was analysed with low density arrays in five NIH3T3 cell lines expressing the full-length human KIT cDNA wild-type (WT), hemizygous KIT mutation with del557-558 (D6) or del564-581 (D54) and heterozygous WT/D6 or WT/D54. Expression of 5 of these genes and 384 miRNA was then analysed in GISTs samples. Results Unsupervised and supervised hierarchical clustering of the mRNA and miRNA profiles showed that heterozygous mutants clustered with KIT WT expressing cells while hemizygous mutants were distinct. Among hemizygous cells, D6 and D54 expressing cells clustered separately. Most deregulated genes have been reported as potentially implicated in cancer and severals, as ANXA8 and FBN1, are highlighted by both, mRNA and miRNA analyses. MiRNA and mRNA analyses in GISTs samples confirmed that their expressions varied according to the mutation of the alleles. Interestingly, RGS16, a membrane protein of the regulator of G protein family, correlate with the subcellular localization of KIT mutants and might be responsible for regulation of the PI3K/AKT signalling pathway. Conclusion Patterns of mRNA and miRNA expression in cells and tumours depend on heterozygous/hemizygous status of KIT mutations, and deletion/presence of TYR568 & TYR570 residues. Thus each mutation of KIT may drive specific oncogenic pathways.
Collapse
Affiliation(s)
- Jean-Baptiste Bachet
- EA4340 'Epidémiologie et Oncogénèse des tumeurs digestives', Faculté de médecine PIFO, UVSQ, Guyancourt, France
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Brahimi-Adouane S, Bachet JB, Tabone-Eglinger S, Subra F, Capron C, Blay JY, Emile JF. Effects of endoplasmic reticulum stressors on maturation and signaling of hemizygous and heterozygous wild-type and mutant forms of KIT. Mol Oncol 2012; 7:323-33. [PMID: 23146721 DOI: 10.1016/j.molonc.2012.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/28/2012] [Accepted: 10/09/2012] [Indexed: 02/07/2023] Open
Abstract
Gain of function mutations of KIT are frequent in some human tumors, and are sensible to tyrosine kinase inhibitors. In most tumors, oncogenic mutations are heterozygous, however most in vitro data of KIT activation have been obtained with hemizygous mutation. This study aimed to investigate the maturation and activation of wild-type (WT) and mutant (M) forms of KIT in hemizygous and heterozygous conditions. WT and two types of exon 11 deletions M forms of human KIT were expressed in NIH3T3 cell lines. Membrane expression of KIT was quantified by flow cytometry. Quantification of glycosylated forms of KIT and phosphorylated forms of AKT and ERK were performed by western blot. Simultaneous activation of WT KIT and treatment with endoplasmic reticulum (ER) inhibitors, tunicamycin or brefeldin A induced a complete inhibition of membrane expression of the 145 kDa form of KIT. By contrast activation or ER inhibitors alone, only partly inhibited this form. ER inhibitors also inhibited KIT activation-dependent phosphorylation of AKT and ERK1/2. Brefeldin A induced a complete down regulation of the 145 kDa form in hemizygous M, and induced an intra-cellular accumulation of the 125 kDa form in WT but not in hemizygous M. Heterozygous cells had glycosylation and response to ER inhibitors patterns more similar to WT than to hemizygous M. Phosphorylated AKT was reduced in hemizygous cells in comparison to WT KIT cells and heterozygous cells, and in the presence of brefeldin A in all cell lines. Effects of ER inhibitors are significantly different in hemizygous and heterozygous mutants. Differences in intra-cellular trafficking of KIT forms result in differences in downstream signaling pathways, and activation of PI3K/AKT pathway appears to be tied to the presence of the mature 145 kDa form of KIT at the membrane surface.
Collapse
Affiliation(s)
- Sabrina Brahimi-Adouane
- EA4340 'Epidémiologie et Oncogénèse des tumeurs digestives', Faculté de médecine PIFO, UVSQ, 78280 Guyancourt, France
| | | | | | | | | | | | | |
Collapse
|