1
|
El Omari N, Khalid A, Makeen HA, Alhazmi HA, Albratty M, Mohan S, Tan CS, Ming LC, Chook JB, Bouyahya A. Stochasticity of anticancer mechanisms underlying clinical effectiveness of vorinostat. Heliyon 2024; 10:e33052. [PMID: 39021957 PMCID: PMC11253278 DOI: 10.1016/j.heliyon.2024.e33052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
The Food and Drug Administration (FDA) has approved vorinostat, also called Zolinza®, for its effectiveness in fighting cancer. This drug is a suberoyl-anilide hydroxamic acid belonging to the class of histone deacetylase inhibitors (HDACis). Its HDAC inhibitory potential allows it to accumulate acetylated histones. This, in turn, can restore normal gene expression in cancer cells and activate multiple signaling pathways. Experiments have proven that vorinostat induces histone acetylation and cytotoxicity in many cancer cell lines, increases the level of p21 cell cycle proteins, and enhances pro-apoptotic factors while decreasing anti-apoptotic factors. Additionally, it regulates the immune response by up-regulating programmed death-ligand 1 (PD-L1) and interferon gamma receptor 1 (IFN-γR1) expression, and can impact proteasome and/or aggresome degradation, endoplasmic reticulum function, cell cycle arrest, apoptosis, tumor microenvironment remodeling, and angiogenesis inhibition. In this study, we sought to elucidate the precise molecular mechanism by which Vorinostat inhibits HDACs. A deeper understanding of these mechanisms could improve our understanding of cancer cell abnormalities and provide new therapeutic possibilities for cancer treatment.
Collapse
Affiliation(s)
- Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Saudi Arabia
- Medicinal and Aromatic Plants Research Institute, National Center for Research, P.O. Box: 2424, Khartoum, 11111, Sudan
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A. Alhazmi
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Saudi Arabia
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Saudi Arabia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ching Siang Tan
- School of Pharmacy, KPJ Healthcare University, Nilai, Malaysia
| | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Jack Bee Chook
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| |
Collapse
|
2
|
Gurjar VK, Jain S, Vaidya A, Bansal K. Reinstating the expression and activation of caspase-8 and caspase-10 in cancer therapy. CASPASES AS MOLECULAR TARGETS FOR CANCER THERAPY 2024:131-182. [DOI: 10.1016/b978-0-443-15644-1.00007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Ivanisenko NV, Seyrek K, Hillert-Richter LK, König C, Espe J, Bose K, Lavrik IN. Regulation of extrinsic apoptotic signaling by c-FLIP: towards targeting cancer networks. Trends Cancer 2021; 8:190-209. [PMID: 34973957 DOI: 10.1016/j.trecan.2021.12.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
The extrinsic pathway is mediated by death receptors (DRs), including CD95 (APO-1/Fas) or TRAILR-1/2. Defects in apoptosis regulation lead to cancer and other malignancies. The master regulator of the DR networks is the cellular FLICE inhibitory protein (c-FLIP). In addition to its key role in apoptosis, c-FLIP may exert other cellular functions, including control of necroptosis, pyroptosis, nuclear factor κB (NF-κB) activation, and tumorigenesis. To gain further insight into the molecular mechanisms of c-FLIP action in cancer networks, we focus on the structure, isoforms, interactions, and post-translational modifications of c-FLIP. We also discuss various avenues to target c-FLIP in cancer cells for therapeutic benefit.
Collapse
Affiliation(s)
- Nikita V Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia; Artificial Intelligence Research Institute, Moscow, Russia
| | - Kamil Seyrek
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Laura K Hillert-Richter
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Corinna König
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Johannes Espe
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Kakoli Bose
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Inna N Lavrik
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia; Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany.
| |
Collapse
|
4
|
Psilopatis I, Pergaris A, Giaginis C, Theocharis S. Histone Deacetylase Inhibitors: A Promising Therapeutic Alternative for Endometrial Carcinoma. DISEASE MARKERS 2021; 2021:7850688. [PMID: 34804263 PMCID: PMC8604582 DOI: 10.1155/2021/7850688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/19/2021] [Accepted: 10/30/2021] [Indexed: 01/16/2023]
Abstract
Endometrial carcinoma is the most common malignant tumor of the female genital tract in the United States. Epigenetic alterations are implicated in endometrial cancer development and progression. Histone deacetylase inhibitors are a novel class of anticancer drugs that increase the level of histone acetylation in many cell types, thereby inducing cell cycle arrest, differentiation, and apoptotic cell death. This review is aimed at determining the role of histone acetylation and examining the therapeutic potential of histone deacetylase inhibitors in endometrial cancer. In order to identify relevant studies, a literature review was conducted using the MEDLINE and LIVIVO databases. The search terms histone deacetylase, histone deacetylase inhibitor, and endometrial cancer were employed, and we were able to identify fifty-two studies focused on endometrial carcinoma and published between 2001 and 2021. Deregulation of histone acetylation is involved in the tumorigenesis of both endometrial carcinoma histological types and accounts for high-grade, aggressive carcinomas with worse prognosis and decreased overall survival. Histone deacetylase inhibitors inhibit tumor growth, enhance the transcription of silenced physiologic genes, and induce cell cycle arrest and apoptosis in endometrial carcinoma cells both in vitro and in vivo. The combination of histone deacetylase inhibitors with traditional chemotherapeutic agents shows synergistic cytotoxic effects in endometrial carcinoma cells. Histone acetylation plays an important role in endometrial carcinoma development and progression. Histone deacetylase inhibitors show potent antitumor effects in various endometrial cancer cell lines as well as tumor xenograft models. Additional clinical trials are however needed to verify the clinical utility and safety of these promising therapeutic agents in the treatment of patients with endometrial cancer.
Collapse
Affiliation(s)
- Iason Psilopatis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
- Charité-University School of Medicine, Augustenburger Pl. 1, 13353 Berlin, Germany
| | - Alexandros Pergaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| | | | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| |
Collapse
|
5
|
Programmed cell death, redox imbalance, and cancer therapeutics. Apoptosis 2021; 26:385-414. [PMID: 34236569 DOI: 10.1007/s10495-021-01682-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 02/06/2023]
Abstract
Cancer cells are disordered by nature and thus featured by higher internal redox level than healthy cells. Redox imbalance could trigger programmed cell death if exceeded a certain threshold, rendering therapeutic strategies relying on redox control a possible cancer management solution. Yet, various programmed cell death events have been consecutively discovered, complicating our understandings on their associations with redox imbalance and clinical implications especially therapeutic design. Thus, it is imperative to understand differences and similarities among programmed cell death events regarding their associations with redox imbalance for improved control over these events in malignant cells as well as appropriate design on therapeutic approaches relying on redox control. This review addresses these issues and concludes by bringing affront cold atmospheric plasma as an emerging redox controller with translational potential in clinics.
Collapse
|
6
|
Gujral P, Mahajan V, Lissaman AC, Ponnampalam AP. Histone acetylation and the role of histone deacetylases in normal cyclic endometrium. Reprod Biol Endocrinol 2020; 18:84. [PMID: 32791974 PMCID: PMC7425564 DOI: 10.1186/s12958-020-00637-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/29/2020] [Indexed: 12/22/2022] Open
Abstract
Histone acetylation is a critical epigenetic modification that changes chromatin architecture and regulates gene expression by opening or closing the chromatin structure. It plays an essential role in cell cycle progression and differentiation. The human endometrium goes through cycles of regeneration, proliferation, differentiation, and degradation each month; each phase requiring strict epigenetic regulation for the proper functioning of the endometrium. Aberrant histone acetylation and alterations in levels of two acetylation modulators - histone acetylases (HATs) and histone deacetylases (HDACs) - have been associated with endometrial pathologies such as endometrial cancer, implantation failures, and endometriosis. Thus, histone acetylation is likely to have an essential role in the regulation of endometrial remodelling throughout the menstrual cycle.
Collapse
Affiliation(s)
- Palak Gujral
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Vishakha Mahajan
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Abbey C Lissaman
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Anna P Ponnampalam
- The Liggins Institute, The University of Auckland, Auckland, New Zealand.
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
7
|
Enhanced anticancer efficacy of histone deacetyl inhibitor, suberoylanilide hydroxamic acid, in combination with a phosphodiesterase inhibitor, pentoxifylline, in human cancer cell lines and in-vivo tumor xenografts. Anticancer Drugs 2017; 28:1002-1017. [DOI: 10.1097/cad.0000000000000544] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Yeramian A, Vea A, Benítez S, Ribera J, Domingo M, Santacana M, Martinez M, Maiques O, Valls J, Dolcet X, Vilella R, Cabiscol E, Matias-Guiu X, Marti RM. 2-phenylethynesulphonamide (PFT-μ) enhances the anticancer effect of the novel hsp90 inhibitor NVP-AUY922 in melanoma, by reducing GSH levels. Pigment Cell Melanoma Res 2017; 29:352-71. [PMID: 26988132 DOI: 10.1111/pcmr.12472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 03/03/2016] [Indexed: 11/29/2022]
Abstract
Heat shock proteins (HSPs), are molecular chaperones that assist the proper folding of nascent proteins. This study aims to evaluate the antitumour effects of the hsp90 inhibitor NVP-AUY922 in melanoma, both in vitro and in vivo. Our results show that NVP-AUY922 inhibits melanoma cell growth in vitro, with down regulation of multiple signalling pathways involved in melanoma progression such as NF-ĸB and MAPK/ERK. However, NVP-AUY922 was unable to limit tumour growth in vivo. Cotreatment of A375M xenografts with NVP-AUY922 and PFT-μ, a dual inhibitor of both hsp70 and autophagy, induced a synergistic increase of cell death in vitro, and delayed tumour formation in A375M xenografts. PFT-μ depleted cells from the reduced form of glutathione (GSH) and increased oxidative stress. The oxidative stress induced by PFT-μ further enhanced NVP-AUY922-induced cytotoxic effects. These data suggest a potential therapeutic role for NVP-AUY922 used in combination with PFT-μ, in melanoma.
Collapse
Affiliation(s)
- Andree Yeramian
- Pathology Group, Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova HUAV, IRBLleida, University of Lleida, Lleida, Spain
| | - Alvar Vea
- Department of Dermatology, Hospital Universitari Arnau de Vilanova, IRB-Lleida, University of Lleida, Lleida, Spain
| | - Sandra Benítez
- Pathology Group, Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova HUAV, IRBLleida, University of Lleida, Lleida, Spain
| | - Joan Ribera
- Developmental and Oncogenic Signalling Group, IRBLleida, Lleida, Spain
| | - Mónica Domingo
- Pathology Group, Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova HUAV, IRBLleida, University of Lleida, Lleida, Spain
| | - Maria Santacana
- Pathology Group, Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova HUAV, IRBLleida, University of Lleida, Lleida, Spain
| | - Montserrat Martinez
- Biostatistics Unit, Hospital Universitari Arnau de Vilanova, IRB-Lleida, University of Lleida, Lleida, Spain
| | - Oscar Maiques
- Pathology Group, Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova HUAV, IRBLleida, University of Lleida, Lleida, Spain
| | - Joan Valls
- Biostatistics Unit, Hospital Universitari Arnau de Vilanova, IRB-Lleida, University of Lleida, Lleida, Spain
| | - Xavier Dolcet
- Pathology Group, Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova HUAV, IRBLleida, University of Lleida, Lleida, Spain
| | - Ramón Vilella
- Department of Immunology, Hospital Clinic, Barcelona, Spain
| | - Elisa Cabiscol
- Departament de Ciencies Mediques basiques, IRBlleida, University of Lleida, Lleida, Spain
| | - Xavier Matias-Guiu
- Pathology Group, Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova HUAV, IRBLleida, University of Lleida, Lleida, Spain
| | - Rosa M Marti
- Department of Dermatology, Hospital Universitari Arnau de Vilanova, IRB-Lleida, University of Lleida, Lleida, Spain
| |
Collapse
|
9
|
Manna PR, Molehin D, Ahmed AU. Dysregulation of Aromatase in Breast, Endometrial, and Ovarian Cancers: An Overview of Therapeutic Strategies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 144:487-537. [PMID: 27865465 DOI: 10.1016/bs.pmbts.2016.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aromatase is the rate-limiting enzyme in the biosynthesis of estrogens, which play crucial roles on a spectrum of developmental and physiological processes. The biological actions of estrogens are classically mediated by binding to two estrogen receptors (ERs), ERα and ERβ. Encoded by the cytochrome P450, family 19, subfamily A, polypeptide 1 (CYP19A1) gene, aromatase is expressed in a wide variety of tissues, as well as benign and malignant tumors, and is regulated in a pathway- and tissue-specific manner. Overexpression of aromatase, leading to elevated systemic levels of estrogen, is unequivocally linked to the pathogenesis and growth of a number malignancies, including breast, endometrium, and ovarian cancers. Aromatase inhibitors (AIs) are routinely used to treat estrogen-dependent breast cancers in postmenopausal women; however, their roles in endometrial and ovarian cancers remain obscure. While AI therapy is effective in hormone sensitive cancers, they diminish estrogen production throughout the body and, thus, generate undesirable side effects. Despite the effectiveness of AI therapy, resistance to endocrine therapy remains a major concern and is the leading cause of cancer death. Considerable advances, toward mitigating these issues, have evolved in conjunction with a number of histone deacetylase (HDAC) inhibitors for countering an assortment of diseases and cancers, including the aforesaid malignancies. HDACs are a family of enzymes that are frequently dysregulated in human tumors. This chapter will discuss the current understanding of aberrant regulation and expression of aromatase in breast, endometrial, and ovarian cancers, and potential therapeutic strategies for prevention and treatment of these life-threatening diseases.
Collapse
Affiliation(s)
- P R Manna
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, United States.
| | - D Molehin
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, United States
| | - A U Ahmed
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, United States
| |
Collapse
|
10
|
Mechanism of 2′,3′-dimethoxyflavanone-induced apoptosis in breast cancer stem cells: Role of ubiquitination of caspase-8 and LC3. Arch Biochem Biophys 2014; 562:92-102. [DOI: 10.1016/j.abb.2014.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/06/2014] [Indexed: 12/15/2022]
|
11
|
Role of local bioactivation of vitamin D by CYP27A1 and CYP2R1 in the control of cell growth in normal endometrium and endometrial carcinoma. J Transl Med 2014; 94:608-22. [PMID: 24732451 DOI: 10.1038/labinvest.2014.57] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 02/11/2014] [Accepted: 02/21/2014] [Indexed: 12/16/2022] Open
Abstract
Vitamin D (VD) deficiency has been suggested as a risk factor for cancer. One recognized mechanism is that the low-serum 25-hydroxyvitamin D (25(OH)D) of VD deficiency reduces intratumoral 25(OH)D conversion to 1α,25-dihydroxyvitamin D (1,25D, the hormonal form of VD), compromising 1,25D-VD receptor (VDR) antitumoral actions. Reduced tumoral VDR and increased CYP24A1, the enzyme that degrades 1,25D and 25(OH)D, further worsen cancer progression. Importantly, in cells expressing CYP27A1 and/or CYP2R1, which convert inert VD into 25(OH)D, low-serum VD may reduce intratumoral 25(OH)D synthesis thereby compromising VDR antitumoral actions because 25(OH)D can activate the VDR directly and enhance 1,25D-VDR action. Therefore, this study examined whether abnormal endometrial expression of CYP27A1 and/or CYP2R1 may impair VDR-antiproliferative properties in endometrial carcinoma (EC). Immunohistochemical analysis of tissue microarrays of normal human endometrium (NE; n=60) and EC (n=157) showed the expected lower VDR expression in EC (P=0.0002). Instead, CYP24A1 expression was lower in EC compared with NE, while CYP27A1 and CYP2R1 expressions were higher (P=0.0002; P=0.03). Furthermore, in NE and EC, CYP2R1 and CYP27A1 expression correlated directly with nuclear VDR levels, an indicator of ligand-induced VDR activation, and inversely with the proliferation marker Ki67. Accordingly, in the endometrioid carcinoma cell lines IK, RL95/2 and HEC1-A, which express VDR, CYP27A1, and CYP2R1, VD efficaciously reduced cell viability and colony number, with a time course that paralleled actual increases in both intracellular 25(OH)D and nuclear VDR levels. Thus, VD may protect from EC progression in part through increased intratumoral 25(OH)D production by CYP27A1 and CYP2R1 for autocrine/paracrine enhancement of 1,25D-VDR-antiproliferative actions.
Collapse
|
12
|
Bergadà L, Yeramian A, Sorolla A, Matias-Guiu X, Dolcet X. Antioxidants impair anti-tumoral effects of Vorinostat, but not anti-neoplastic effects of Vorinostat and caspase-8 downregulation. PLoS One 2014; 9:e92764. [PMID: 24651472 PMCID: PMC3961419 DOI: 10.1371/journal.pone.0092764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 02/26/2014] [Indexed: 11/18/2022] Open
Abstract
We have recently demonstrated that histone deacetylase inhibitor, Vorinostat, applied as a single therapy or in combination with caspase-8 downregulation exhibits high anti-tumoral activity on endometrial carcinoma cell lines. In the present study, we have assessed the signalling processes underlying anti-tumoral effects of Vorinostat. Increasing evidence suggests that reactive oxygen species are responsible for histone deacetylase inhibitor-induced cell killing. We have found that Vorinostat induces formation of reactive oxygen species and DNA damage. To investigate the role of oxidative stress as anti-neoplastic mechanism, we have evaluated the effects of different antioxidants (Bha, Nac and Tiron) on endometrial carcinoma cell line Ishikawa treated with Vorinostat. We show that Bha, Nac and Tiron markedly inhibited the cytotoxic effects of Vorinostat, increasing cell viability in vitro. We found that all three antioxidants did not inhibited accumulation of acetyl Histone H4, so that antioxidants did not inhibit Vorinostat activity. Finally, we have evaluated the effects of antioxidants on anti-tumoral activity of Vorinostat as monotherapy or in combination with caspase-8 downregulation in vivo. Interestingly, antioxidants blocked the reduction of tumour growth caused by Vorinostat, but they were unable to inhibit anti-tumoral activity of Vorinostat plus caspase-8 inhibition.
Collapse
Affiliation(s)
- Laura Bergadà
- Oncologic Pathology Group, Department de Ciències Mèdiques Bàsiques, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Andree Yeramian
- Oncologic Pathology Group, Department de Ciències Mèdiques Bàsiques, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Annabel Sorolla
- Oncologic Pathology Group, Department de Ciències Mèdiques Bàsiques, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Xavier Matias-Guiu
- Oncologic Pathology Group, Department de Ciències Mèdiques Bàsiques, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Xavier Dolcet
- Oncologic Pathology Group, Department de Ciències Mèdiques Bàsiques, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
- * E-mail:
| |
Collapse
|
13
|
Matias-Guiu X, Davidson B. Prognostic biomarkers in endometrial and ovarian carcinoma. Virchows Arch 2014; 464:315-31. [PMID: 24504546 DOI: 10.1007/s00428-013-1509-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/05/2013] [Accepted: 11/07/2013] [Indexed: 02/06/2023]
Abstract
This article reviews the main prognostic and predictive biomarkers of endometrial (EC) and ovarian carcinoma (OC). In EC, prognosis still relies on conventional pathological features such as histological type and grade, as well as myometrial or lymphovascular space invasion. Estrogen receptor, p53, Ki-67, and ploidy analysis are the most promising biomarkers among a long list of molecules that have been proposed. Also, a number of putative predictive biomarkers have been proposed in molecular targeted therapy. In OC, prognosis is predominantly dependent on disease stage at diagnosis and the extent of residual disease at primary operation. Diagnostic markers which aid in establishing histological type in OC are available. However, not a single universally accepted predictive or prognostic marker exists to date. Targeted therapy has been growingly focused at in recent years, in view of the frequent development of chemoresistance at recurrent disease. The present review emphasizes the crucial role of correct pathological classification and stringent selection criteria of the material studied as basis for any evaluation of biological markers. It further emphasizes the promise of targeted therapy in EC and OC, while simultaneously highlighting the difficulties remaining before this can become standard of care.
Collapse
Affiliation(s)
- Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, IRBLLEIDA, University of Lleida, Av. Alcalde Rovira Roure 80, 25198, Lleida, Spain,
| | | |
Collapse
|
14
|
Bruchim I, Sarfstein R, Werner H. The IGF Hormonal Network in Endometrial Cancer: Functions, Regulation, and Targeting Approaches. Front Endocrinol (Lausanne) 2014; 5:76. [PMID: 24904527 PMCID: PMC4032924 DOI: 10.3389/fendo.2014.00076] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 05/02/2014] [Indexed: 12/29/2022] Open
Abstract
Epidemiological as well as clinical and experimental data identified the insulin-like growth factors (IGF1, IGF2) as important players in gynecological cancers in general, and endometrial tumors in particular. The IGF1 receptor (IGF1R), which mediates the proliferative and anti-apoptotic activities of both ligands, emerged in recent years as a promising therapeutic target in oncology. However, most clinical trials conducted so far led to mixed results, emphasizing the need to identify biomarkers that can predict responsiveness to anti-IGF1R-targeted therapies. This article will review recent data regarding the role and expression of IGF system components in endometrial cancer. In addition, we will review data on the interplay between the IGF signaling pathway and tumor suppressors p53 and breast cancer susceptibility gene-1 (BRCA1). Anti-oncogenes p53 and BRCA1 play a key role in the etiology of gynecological cancers and, therefore, their interaction with IGF1R is of high relevance in translational terms. A better understanding of the complex mechanisms underlying the regulation of the IGF system will improve our ability to develop effective treatment modalities for endometrial tumors.
Collapse
Affiliation(s)
- Ilan Bruchim
- Gynecologic Oncology Unit, Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Sava, Israel
| | - Rive Sarfstein
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Haim Werner, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel e-mail:
| |
Collapse
|
15
|
Combination of Vorinostat and caspase-8 inhibition exhibits high anti-tumoral activity on endometrial cancer cells. Mol Oncol 2013; 7:763-75. [PMID: 23590818 DOI: 10.1016/j.molonc.2013.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 01/17/2023] Open
Abstract
Histone deacetylase inhibitors such as Vorinostat display anti-neoplastic activity against a variety of solid tumors. Here, we have investigated the anti-tumoral activity of Vorinostat on endometrial cancer cells. We have found that Vorinostat caused cell growth arrest, loss of clonogenic growth and apoptosis of endometrial cancer cells. Vorinostat-induced the activation of caspase-8 and -9, the initiators caspases of the extrinsic and the intrinsic apoptotic pathways, respectively. Next, we investigated the role of the extrinsic pathway in apoptosis triggered by Vorinostat. We found that Vorinostat caused a dramatic decrease of FLIP mRNA and protein levels. However, overexpression of the long from of FLIP did not block Vorinostat-induced apoptosis. To further investigate the role of extrinsic apoptotic pathway in Vorinostat-induced apoptosis, we performed an shRNA-mediated knock-down of caspase-8. Surprisingly, downregulation of caspase-8 alone caused a marked decrease in clonogenic ability and reduced the growth of endometrial cancer xenografts in vivo, revealing that targeting caspase-8 may be an attractive target for anticancer therapy on endometrial tumors. Furthermore, combination of caspase-8 inhibition and Vorinostat treatment caused an enhancement of apoptotic cell death and a further decrease of clonogenic growth of endometrial cancer cells. More importantly, combination of Vorinostat and caspase-8 inhibition caused a nearly complete inhibition of tumor xenograft growth. Finally, we demonstrate that cell death triggered by Vorinostat alone or in combination with caspase-8 shRNAs was inhibited by the anti-apoptotic protein Bcl-XL. Our results suggest that combinatory therapies using Vorinostat treatment and caspase-8 inhibition can be an effective treatment for endometrial carcinomas.
Collapse
|