1
|
Wu G, Ding Y, Li N, Zhang H, Liu N. Genome-Wide Identification of the Sulfate Transporter Gene Family Reveals That BolSULTR2;1 Regulates Plant Resistance to Alternaria brassicicola Through the Modulation of Glutathione Biosynthesis in Broccoli. Antioxidants (Basel) 2025; 14:496. [PMID: 40298881 PMCID: PMC12024372 DOI: 10.3390/antiox14040496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
Sulfate transporters (SULTRs) are key players that regulate sulfur acquisition and distribution within plants, thereby influencing cellular redox hemostasis under pathogen attacks, such as Alternaria brassicicola (Ab). In this study, a total of 23 BolSULTR (Brassica oleracea SULTR) genes were identified from the Brassica genome. These BolSULTRs are distributed across nine chromosomes, with all collinear BolSULTR gene pairs undergoing purifying selections. Phylogenetic analysis reveals that the SULTR family is evolutionarily conserved among plant kingdoms. qRT-PCR analysis demonstrated that the expression of BolSULTRs varies across different plant organs and is modulated by hormonal signals. Furthermore, transcriptome analysis identified several BolSULTRs whose expression levels were depressed in Ab-challenged leaves in broccoli. Among them, the BolSULTR2;1 gene emerged as a key player in the plant's response to Ab. Virus-induced gene silencing (VIGS) of BolSULTR2;1s resulted in elevated glutathione (GSH) levels and enhanced tolerance to Ab. Taken together, these findings underscore the role of BolSULTR2;1 in maintaining redox homeostasis and enhancing plant disease resistance, suggesting its potential as a target for genome editing to develop broccoli varieties with improved pathogen tolerance.
Collapse
Affiliation(s)
- Guize Wu
- Key Laboratory of Vegetable Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- Beijing Vegetable Research Center, National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- State Key Laboratory of Vegetable Biobreeding, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Yunhua Ding
- Beijing Vegetable Research Center, National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- State Key Laboratory of Vegetable Biobreeding, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ning Li
- Beijing Vegetable Research Center, National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- State Key Laboratory of Vegetable Biobreeding, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Hongji Zhang
- Key Laboratory of Vegetable Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Ning Liu
- Beijing Vegetable Research Center, National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- State Key Laboratory of Vegetable Biobreeding, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| |
Collapse
|
2
|
Kaur H, Shannon LM, Samac DA. A stepwise guide for pangenome development in crop plants: an alfalfa (Medicago sativa) case study. BMC Genomics 2024; 25:1022. [PMID: 39482604 PMCID: PMC11526573 DOI: 10.1186/s12864-024-10931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND The concept of pangenomics and the importance of structural variants is gaining recognition within the plant genomics community. Due to advancements in sequencing and computational technology, it has become feasible to sequence the entire genome of numerous individuals of a single species at a reasonable cost. Pangenomes have been constructed for many major diploid crops, including rice, maize, soybean, sorghum, pearl millet, peas, sunflower, grapes, and mustards. However, pangenomes for polyploid species are relatively scarce and are available in only few crops including wheat, cotton, rapeseed, and potatoes. MAIN BODY In this review, we explore the various methods used in crop pangenome development, discussing the challenges and implications of these techniques based on insights from published pangenome studies. We offer a systematic guide and discuss the tools available for constructing a pangenome and conducting downstream analyses. Alfalfa, a highly heterozygous, cross pollinated and autotetraploid forage crop species, is used as an example to discuss the concerns and challenges offered by polyploid crop species. We conducted a comparative analysis using linear and graph-based methods by constructing an alfalfa graph pangenome using three publicly available genome assemblies. To illustrate the intricacies captured by pangenome graphs for a complex crop genome, we used five different gene sequences and aligned them against the three graph-based pangenomes. The comparison of the three graph pangenome methods reveals notable variations in the genomic variation captured by each pipeline. CONCLUSION Pangenome resources are proving invaluable by offering insights into core and dispensable genes, novel gene discovery, and genome-wide patterns of variation. Developing user-friendly online portals for linear pangenome visualization has made these resources accessible to the broader scientific and breeding community. However, challenges remain with graph-based pangenomes including compatibility with other tools, extraction of sequence for regions of interest, and visualization of genetic variation captured in pangenome graphs. These issues necessitate further refinement of tools and pipelines to effectively address the complexities of polyploid, highly heterozygous, and cross-pollinated species.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, 55108, USA.
| | - Laura M Shannon
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, 55108, USA
| | - Deborah A Samac
- USDA-ARS, Plant Science Research Unit, St. Paul, MN, 55108, USA
| |
Collapse
|
3
|
Shi T, Gao Z, Chen J, Van de Peer Y. Dosage sensitivity shapes balanced expression and gene longevity of homoeologs after whole-genome duplications in angiosperms. THE PLANT CELL 2024; 36:4323-4337. [PMID: 39121058 PMCID: PMC7616505 DOI: 10.1093/plcell/koae227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 08/11/2024]
Abstract
Following whole-genome duplication (WGD), duplicate gene pairs (homoeologs) can evolve varying degrees of expression divergence. However, the determinants influencing these relative expression level differences (RFPKM) between homoeologs remain elusive. In this study, we analyzed the RFPKM between homoeologs in 3 angiosperms, Nymphaea colorata, Nelumbo nucifera, and Acorus tatarinowii, all having undergone a single WGD since the origin of angiosperms. Our results show significant positive correlations in RFPKM of homoeologs among tissues within the same species, and among orthologs across these 3 species, indicating convergent expression balance/bias between homoeologous gene copies following independent WGDs. We linked RFPKM between homoeologs to gene attributes associated with dosage-balance constraints, such as protein-protein interactions, lethal-phenotype scores in Arabidopsis (Arabidopsis thaliana) orthologs, domain numbers, and expression breadth. Notably, homoeologs with lower RFPKM often had more interactions and higher lethal-phenotype scores, indicating selective pressures favoring balanced expression. Also, homoeologs with lower RFPKM were more likely to be retained after WGDs in angiosperms. Within Nelumbo, greater RFPKM between homoeologs correlated with increased cis- and trans-regulatory differentiation between species, highlighting the ongoing escalation of gene expression divergence. We further found that expression degeneration in 1 copy of homoeologs is inclined toward nonfunctionalization. Our research highlights the importance of balanced expression, shaped by dosage-balance constraints, in the evolutionary retention of homoeologs in plants.
Collapse
Affiliation(s)
- Tao Shi
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan430074, China
| | - Zhiyan Gao
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan430074, China
| | - Jinming Chen
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan430074, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Centre for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, 0028Pretoria, South-Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, 210095Nanjing, China
| |
Collapse
|
4
|
Yan X, Shi G, Sun M, Shan S, Chen R, Li R, Wu S, Zhou Z, Li Y, Liu Z, Hu Y, Liu Z, Soltis PS, Zhang J, Soltis DE, Ning G, Bao M. Genome evolution of the ancient hexaploid Platanus × acerifolia (London planetree). Proc Natl Acad Sci U S A 2024; 121:e2319679121. [PMID: 38830106 PMCID: PMC11181145 DOI: 10.1073/pnas.2319679121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/25/2024] [Indexed: 06/05/2024] Open
Abstract
Whole-genome duplication (WGD; i.e., polyploidy) and chromosomal rearrangement (i.e., genome shuffling) significantly influence genome structure and organization. Many polyploids show extensive genome shuffling relative to their pre-WGD ancestors. No reference genome is currently available for Platanaceae (Proteales), one of the sister groups to the core eudicots. Moreover, Platanus × acerifolia (London planetree; Platanaceae) is a widely used street tree. Given the pivotal phylogenetic position of Platanus and its 2-y flowering transition, understanding its flowering-time regulatory mechanism has significant evolutionary implications; however, the impact of Platanus genome evolution on flowering-time genes remains unknown. Here, we assembled a high-quality, chromosome-level reference genome for P. × acerifolia using a phylogeny-based subgenome phasing method. Comparative genomic analyses revealed that P. × acerifolia (2n = 42) is an ancient hexaploid with three subgenomes resulting from two sequential WGD events; Platanus does not seem to share any WGD with other Proteales or with core eudicots. Each P. × acerifolia subgenome is highly similar in structure and content to the reconstructed pre-WGD ancestral eudicot genome without chromosomal rearrangements. The P. × acerifolia genome exhibits karyotypic stasis and gene sub-/neo-functionalization and lacks subgenome dominance. The copy number of flowering-time genes in P. × acerifolia has undergone an expansion compared to other noncore eudicots, mainly via the WGD events. Sub-/neo-functionalization of duplicated genes provided the genetic basis underlying the unique flowering-time regulation in P. × acerifolia. The P. × acerifolia reference genome will greatly expand understanding of the evolution of genome organization, genetic diversity, and flowering-time regulation in angiosperms.
Collapse
Affiliation(s)
- Xu Yan
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Gehui Shi
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Miao Sun
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Shengchen Shan
- Florida Museum of Natural History, University of Florida, Gainesville, FL32611
| | - Runzhou Chen
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Runhui Li
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Songlin Wu
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Zheng Zhou
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Yuhan Li
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | | | - Yonghong Hu
- Shanghai Chenshan Botanical Garden, Shanghai201602, China
| | - Zhongjian Liu
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou350002, China
| | - Pamela S. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL32611
- Biodiversity Institute, University of Florida, Gainesville, FL32611
- Genetics Institute, University of Florida, Gainesville, FL32608
| | - Jiaqi Zhang
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Douglas E. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL32611
- Biodiversity Institute, University of Florida, Gainesville, FL32611
- Genetics Institute, University of Florida, Gainesville, FL32608
- Department of Biology, University of Florida, Gainesville, FL32611
| | - Guogui Ning
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Manzhu Bao
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| |
Collapse
|
5
|
Kang H, Yang Y, Meng Y. Functional Differentiation of the Duplicated Gene BrrCIPK9 in Turnip ( Brassica rapa var. rapa). Genes (Basel) 2024; 15:405. [PMID: 38674340 PMCID: PMC11049275 DOI: 10.3390/genes15040405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Gene duplication is a key biological process in the evolutionary history of plants and an important driving force for the diversification of genomic and genetic systems. Interactions between the calcium sensor calcineurin B-like protein (CBL) and its target, CBL-interacting protein kinase (CIPK), play important roles in the plant's response to various environmental stresses. As a food crop with important economic and research value, turnip (Brassica rapa var. rapa) has been well adapted to the environment of the Tibetan Plateau and become a traditional crop in the region. The BrrCIPK9 gene in turnip has not been characterized. In this study, two duplicated genes, BrrCIPK9.1 and BrrCIPK9.2, were screened from the turnip genome. Based on the phylogenetic analysis, BrrCIPK9.1 and BrrCIPK9.2 were found located in different sub-branches on the phylogenetic tree. Real-time fluorescence quantitative PCR analyses revealed their differential expression levels between the leaves and roots and in response to various stress treatments. The differences in their interactions with BrrCBLs were also revealed by yeast two-hybrid analyses. The results indicate that BrrCIPK9.1 and BrrCIPK9.2 have undergone Asparagine-alanine-phenylalanine (NAF) site divergence during turnip evolution, which has resulted in functional differences between them. Furthermore, BrrCIPK9.1 responded to high-pH (pH 8.5) stress, while BrrCIPK9.2 retained its ancestral function (low K+), thus providing further evidence of their functional divergence. These functional divergence genes facilitate turnip's good adaptation to the extreme environment of the Tibetan Plateau. In summary, the results of this study reveal the characteristics of the duplicated BrrCIPK9 genes and provide a basis for further functional studies of BrrCBLs-BrrCIPKs in turnip.
Collapse
Affiliation(s)
- Haotong Kang
- Key Laboratory of Plant Resources Conservation and Utilization, College of Biological Resources and Environmental Sciences, Jishou University, Jishou 416000, China;
| | - Yunqiang Yang
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ying Meng
- Key Laboratory of Plant Resources Conservation and Utilization, College of Biological Resources and Environmental Sciences, Jishou University, Jishou 416000, China;
| |
Collapse
|
6
|
Fang C, Jiang N, Teresi SJ, Platts AE, Agarwal G, Niederhuth C, Edger PP, Jiang J. Dynamics of accessible chromatin regions and subgenome dominance in octoploid strawberry. Nat Commun 2024; 15:2491. [PMID: 38509076 PMCID: PMC10954716 DOI: 10.1038/s41467-024-46861-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/12/2024] [Indexed: 03/22/2024] Open
Abstract
Subgenome dominance has been reported in diverse allopolyploid species, where genes from one subgenome are preferentially retained and are more highly expressed than those from other subgenome(s). However, the molecular mechanisms responsible for subgenome dominance remain poorly understood. Here, we develop genome-wide map of accessible chromatin regions (ACRs) in cultivated strawberry (2n = 8x = 56, with A, B, C, D subgenomes). Each ACR is identified as an MNase hypersensitive site (MHS). We discover that the dominant subgenome A contains a greater number of total MHSs and MHS per gene than the submissive B/C/D subgenomes. Subgenome A suffers fewer losses of MHS-related DNA sequences and fewer MHS fragmentations caused by insertions of transposable elements. We also discover that genes and MHSs related to stress response have been preferentially retained in subgenome A. We conclude that preservation of genes and their cognate ACRs, especially those related to stress responses, play a major role in the establishment of subgenome dominance in octoploid strawberry.
Collapse
Affiliation(s)
- Chao Fang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Ning Jiang
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI, 48824, USA
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Scott J Teresi
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Adrian E Platts
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Gaurav Agarwal
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Chad Niederhuth
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI, 48824, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
- Michigan State University AgBioResearch, East Lansing, MI, 48824, USA.
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI, 48824, USA.
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
- Michigan State University AgBioResearch, East Lansing, MI, 48824, USA.
| |
Collapse
|
7
|
Navarro-Quiles C, Lup SD, Muñoz-Nortes T, Candela H, Micol JL. The genetic and molecular basis of haploinsufficiency in flowering plants. TRENDS IN PLANT SCIENCE 2024; 29:72-85. [PMID: 37633803 DOI: 10.1016/j.tplants.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 08/28/2023]
Abstract
In diploid organisms, haploinsufficiency can be defined as the requirement for more than one fully functional copy of a gene. In contrast to most genes, whose loss-of-function alleles are recessive, loss-of-function alleles of haploinsufficient genes are dominant. However, forward and reverse genetic screens are biased toward obtaining recessive, loss-of-function mutations, and therefore, dominant mutations of all types are underrepresented in mutant collections. Despite this underrepresentation, haploinsufficient loci have intriguing implications for studies of genome evolution, gene dosage, stability of protein complexes, genetic redundancy, and gene expression. Here we review examples of haploinsufficiency in flowering plants and describe the underlying molecular mechanisms and evolutionary forces driving haploinsufficiency. Finally, we discuss the masking of haploinsufficiency by genetic redundancy, a widespread phenomenon among angiosperms.
Collapse
Affiliation(s)
- Carla Navarro-Quiles
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Samuel Daniel Lup
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Tamara Muñoz-Nortes
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain.
| |
Collapse
|
8
|
Xu Y, Bush SJ, Yang X, Xu L, Wang B, Ye K. Evolutionary analysis of conserved non-coding elements subsequent to whole-genome duplication in opium poppy. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1804-1824. [PMID: 37706612 DOI: 10.1111/tpj.16466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Whole-genome duplication (WGD) leads to the duplication of both coding and non-coding sequences within an organism's genome, providing an abundant supply of genetic material that can drive evolution, ultimately contributing to plant adaptation and speciation. Although non-coding sequences contain numerous regulatory elements, they have been understudied compared to coding sequences. In order to address this gap, we explored the evolutionary patterns of regulatory sequences, coding sequences and transcriptomes using conserved non-coding elements (CNEs) as regulatory element proxies following the recent WGD event in opium poppy (Papaver somniferum). Our results showed similar evolutionary patterns in subgenomes of regulatory and coding sequences. Specifically, the biased or unbiased retention of coding sequences reflected the same pattern as retention levels in regulatory sequences. Further, the divergence of gene expression patterns mediated by regulatory element variations occurred at a more rapid pace than that of gene coding sequences. However, gene losses were purportedly dependent on relaxed selection pressure in coding sequences. Specifically, the rapid evolution of tissue-specific benzylisoquinoline alkaloid production in P. somniferum was associated with regulatory element changes. The origin of a novel stem-specific ACR, which utilized ancestral cis-elements as templates, is likely to be linked to the evolutionary trajectory behind the transition of the PSMT1-CYP719A21 cluster from high levels of expression solely in P. rhoeas root tissue to its elevated expression in P. somniferum stem tissue. Our findings demonstrate that rapid regulatory element evolution can contribute to the emergence of new phenotypes and provide valuable insights into the high evolvability of regulatory elements.
Collapse
Affiliation(s)
- Yu Xu
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Stephen J Bush
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xinyi Yang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Linfeng Xu
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bo Wang
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kai Ye
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Genome Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
9
|
Zhang Z, Huo W, Wang X, Ren Z, Zhao J, Liu Y, He K, Zhang F, Li W, Jin S, Yang D. Origin, evolution, and diversification of the wall-associated kinase gene family in plants. PLANT CELL REPORTS 2023; 42:1891-1906. [PMID: 37743376 DOI: 10.1007/s00299-023-03068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023]
Abstract
KEY MESSAGE The study of the origin, evolution, and diversification of the wall-associated kinase gene family in plants facilitates their functional investigations in the future. Wall-associated kinases (WAKs) make up one subfamily of receptor-like kinases (RLKs), and function directly in plant cell elongation and responses to biotic and abiotic stresses. The biological functions of WAKs have been extensively characterized in angiosperms; however, the origin and evolutionary history of the WAK family in green plants remain unclear. Here, we performed a comprehensive analysis of the WAK family to reveal its origin, evolution, and diversification in green plants. In total, 1061 WAK genes were identified in 37 species from unicellular algae to multicellular plants, and the results showed that WAK genes probably originated before bryophyte differentiation and were widely distributed in land plants, especially angiosperms. The phylogeny indicated that the land plant WAKs gave rise to five clades and underwent lineage-specific expansion after species differentiation. Cis-acting elements and expression patterns analyses of WAK genes in Arabidopsis and rice demonstrated the functional diversity of WAK genes in these two species. Many gene gains and losses have occurred in angiosperms, leading to an increase in the number of gene copies. The evolutionary trajectory of the WAK family during polyploidization was uncovered using Gossypium species. Our results provide insights into the evolution of WAK genes in green plants, facilitating their functional investigations in the future.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenqi Huo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xingxing Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhongying Ren
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Junjie Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yangai Liu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Kunlun He
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fei Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wei Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Daigang Yang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
10
|
Sun M, Yao C, Shu Q, He Y, Chen G, Yang G, Xu S, Liu Y, Xue Z, Wu J. Telomere-to-telomere pear ( Pyrus pyrifolia) reference genome reveals segmental and whole genome duplication driving genome evolution. HORTICULTURE RESEARCH 2023; 10:uhad201. [PMID: 38023478 PMCID: PMC10681005 DOI: 10.1093/hr/uhad201] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/01/2023] [Indexed: 12/01/2023]
Abstract
Previously released pear genomes contain a plethora of gaps and unanchored genetic regions. Here, we report a telomere-to-telomere (T2T) gap-free genome for the red-skinned pear, 'Yunhong No. 1' (YH1; Pyrus pyrifolia), which is mainly cultivated in Yunnan Province (southwest China), the pear's primary region of origin. The YH1 genome is 501.20 Mb long with a contig N50 length of 29.26 Mb. All 17 chromosomes were assembled to the T2T level with 34 characterized telomeres. The 17 centromeres were predicted and mainly consist of centromeric-specific monomers (CEN198) and long terminal repeat (LTR) Gypsy elements (≥74.73%). By filling all unclosed gaps, the integrity of YH1 is markedly improved over previous P. pyrifolia genomes ('Cuiguan' and 'Nijisseiki'). A total of 1531 segmental duplication (SD) driven duplicated genes were identified and enriched in stress response pathways. Intrachromosomal SDs drove the expansion of disease resistance genes, suggesting the potential of SDs in adaptive pear evolution. A large proportion of duplicated gene pairs exhibit dosage effects or sub-/neo-functionalization, which may affect agronomic traits like stone cell content, sugar content, and fruit skin russet. Furthermore, as core regulators of anthocyanin biosynthesis, we found that MYB10 and MYB114 underwent various gene duplication events. Multiple copies of MYB10 and MYB114 displayed obvious dosage effects, indicating role differentiation in the formation of red-skinned pear fruit. In summary, the T2T gap-free pear genome provides invaluable resources for genome evolution and functional genomics.
Collapse
Affiliation(s)
- Manyi Sun
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Chenjie Yao
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Qun Shu
- Institute of Horticulture, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Yingyun He
- Institute of Horticulture, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Guosong Chen
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Guangyan Yang
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Shaozhuo Xu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Yueyuan Liu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Zhaolong Xue
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Jun Wu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| |
Collapse
|
11
|
Zheng H, Wang B, Hua X, Gao R, Wang Y, Zhang Z, Zhang Y, Mei J, Huang Y, Huang Y, Lin H, Zhang X, Lin D, Lan S, Liu Z, Lu G, Wang Z, Ming R, Zhang J, Lin Z. A near-complete genome assembly of the allotetrapolyploid Cenchrus fungigraminus (JUJUNCAO) provides insights into its evolution and C4 photosynthesis. PLANT COMMUNICATIONS 2023; 4:100633. [PMID: 37271992 PMCID: PMC10504591 DOI: 10.1016/j.xplc.2023.100633] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/07/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
JUJUNCAO (Cenchrus fungigraminus; 2n = 4x = 28) is a Cenchrus grass with the highest biomass production among cultivated plants, and it can be used for mushroom cultivation, animal feed, and biofuel production. Here, we report a nearly complete genome assembly of JUJUNCAO and reveal that JUJUNCAO is an allopolyploid that originated ∼2.7 million years ago (mya). Its genome consists of two subgenomes, and subgenome A shares high collinear synteny with pearl millet. We also investigated the genome evolution of JUJUNCAO and suggest that the ancestral karyotype of Cenchrus split into the A and B ancestral karyotypes of JUJUNCAO. Comparative transcriptome and DNA methylome analyses revealed functional divergence of homeologous gene pairs between the two subgenomes, which was a further indication of asymmetric DNA methylation. The three types of centromeric repeat in the JUJUNCAO genome (CEN137, CEN148, and CEN156) may have evolved independently within each subgenome, with some introgressions of CEN156 from the B to the A subgenome. We investigated the photosynthetic characteristics of JUJUNCAO, revealing its typical C4 Kranz anatomy and high photosynthetic efficiency. NADP-ME and PEPCK appear to cooperate in the major C4 decarboxylation reaction of JUJUNCAO, which is different from other C4 photosynthetic subtypes and may contribute to its high photosynthetic efficiency and biomass yield. Taken together, our results provide insights into the highly efficient photosynthetic mechanism of JUJUNCAO and provide a valuable reference genome for future genetic and evolutionary studies, as well as genetic improvement of Cenchrus grasses.
Collapse
Affiliation(s)
- Huakun Zheng
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baiyu Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, Guangxi, China; Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiuting Hua
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, Guangxi, China
| | - Ruiting Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, Guangxi, China
| | - Yuhao Wang
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zixin Zhang
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yixing Zhang
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Mei
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongji Huang
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Yumin Huang
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Lin
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xingtan Zhang
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongmei Lin
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siren Lan
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongjian Liu
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guodong Lu
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zonghua Wang
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ray Ming
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jisen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, Guangxi, China.
| | - Zhanxi Lin
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
12
|
Chen H, Guo M, Dong S, Wu X, Zhang G, He L, Jiao Y, Chen S, Li L, Luo H. A chromosome-scale genome assembly of Artemisia argyi reveals unbiased subgenome evolution and key contributions of gene duplication to volatile terpenoid diversity. PLANT COMMUNICATIONS 2023; 4:100516. [PMID: 36597358 DOI: 10.1016/j.xplc.2023.100516] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/14/2022] [Accepted: 12/31/2022] [Indexed: 05/11/2023]
Abstract
Artemisia argyi Lévl. et Vant., a perennial Artemisia herb with an intense fragrance, is widely used in traditional medicine in China and many other Asian countries. Here, we present a chromosome-scale genome assembly of A. argyi comprising 3.89 Gb assembled into 17 pseudochromosomes. Phylogenetic and comparative genomic analyses revealed that A. argyi underwent a recent lineage-specific whole-genome duplication (WGD) event after divergence from Artemisia annua, resulting in two subgenomes. We deciphered the diploid ancestral genome of A. argyi, and unbiased subgenome evolution was observed. The recent WGD led to a large number of duplicated genes in the A. argyi genome. Expansion of the terpene synthase (TPS) gene family through various types of gene duplication may have greatly contributed to the diversity of volatile terpenoids in A. argyi. In particular, we identified a typical germacrene D synthase gene cluster within the expanded TPS gene family. The entire biosynthetic pathways of germacrenes, (+)-borneol, and (+)-camphor were elucidated in A. argyi. In addition, partial deletion of the amorpha-4,11-diene synthase (ADS) gene and loss of function of ADS homologs may have resulted in the lack of artemisinin production in A. argyi. Our study provides new insights into the genome evolution of Artemisia and lays a foundation for further improvement of the quality of this important medicinal plant.
Collapse
Affiliation(s)
- Hongyu Chen
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Miaoxian Guo
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Shuting Dong
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xinling Wu
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Guobin Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China; College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Liu He
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| | - Hongmei Luo
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
13
|
Jiang Z, Zhao M, Qin H, Li S, Yang X. Genome-wide analysis of NBS-LRR genes revealed contribution of disease resistance from Saccharum spontaneum to modern sugarcane cultivar. FRONTIERS IN PLANT SCIENCE 2023; 14:1091567. [PMID: 36890898 PMCID: PMC9986449 DOI: 10.3389/fpls.2023.1091567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION During plant evolution, nucleotide-binding sites (NBS) and leucine-rich repeat (LRR) genes have made significant contributions to plant disease resistance. With many high-quality plant genomes sequenced, identification and comprehensive analyses of NBS-LRR genes at whole genome level are of great importance to understand and utilize them. METHODS In this study, we identified the NBS-LRR genes of 23 representative species at whole genome level, and researches on NBS-LRR genes of four monocotyledonous grass species, Saccharum spontaneum, Saccharum officinarum, Sorghum bicolor and Miscanthus sinensis, were focused. RESULTS AND DISCUSSION We found that whole genome duplication, gene expansion, and allele loss could be factors affecting the number of NBS-LRR genes in the species, and whole genome duplication is likely to be the main cause of the number of NBS-LRR genes in sugarcane. Meanwhile, we also found a progressive trend of positive selection on NBS-LRR genes. These studies further elucidated the evolutionary pattern of NBS-LRR genes in plants. Transcriptome data from multiple sugarcane diseases revealed that more differentially expressed NBS-LRR genes were derived from S. spontaneum than from S. officinarum in modern sugarcane cultivars, and the proportion was significantly higher than the expected. This finding reveals that S. spontaneum has a greater contribution to disease resistance for modern sugarcane cultivars. In addition, we observed allelespecific expression of seven NBS-LRR genes under leaf scald, and 125 NBS-LRR genes responding to multiple diseases were identified. Finally, we built a plant NBS-LRR gene database to facilitate subsequent analysis and use of NBSLRR genes obtained here. In conclusion, this study complemented and completed the research of plant NBS-LRR genes, and discussed how NBS-LRR genes responding to sugarcane diseases, which provided a guide and genetic resources for further research and utilization of NBS-LRR genes.
Collapse
Affiliation(s)
- Zhengjie Jiang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Mengyu Zhao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Hongzhen Qin
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Sicheng Li
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Xiping Yang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
14
|
Jia Y, Xu M, Hu H, Chapman B, Watt C, Buerte B, Han N, Zhu M, Bian H, Li C, Zeng Z. Comparative gene retention analysis in barley, wild emmer, and bread wheat pangenome lines reveals factors affecting gene retention following gene duplication. BMC Biol 2023; 21:25. [PMID: 36747211 PMCID: PMC9903521 DOI: 10.1186/s12915-022-01503-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 12/16/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Gene duplication is a prevalent phenomenon and a major driving force underlying genome evolution. The process leading to the fixation of gene duplicates following duplication is critical to understand how genome evolves but remains fragmentally understood. Most previous studies on gene retention are based on gene duplicate analyses in single reference genome. No population-based comparative gene retention analysis has been performed to date. RESULTS Taking advantage of recently published genomic data in Triticeae, we dissected a divergent homogentisate phytyltransferase (HPT2) lineage caught in the middle stage of gene fixation following duplication. The presence/absence of HPT2 in barley (diploid), wild emmer (tetraploid), and bread wheat (hexaploid) pangenome lines appears to be associated with gene dosage constraint and environmental adaption. Based on these observations, we adopted a phylogeny-based orthology inference approach and performed comparative gene retention analyses across barley, wild emmer, and bread wheat. This led to the identification of 326 HPT2-pattern-like genes at whole genome scale, representing a pool of gene duplicates in the middle stage of gene fixation. Majority of these HPT2-pattern-like genes were identified as small-scale duplicates, such as dispersed, tandem, and proximal duplications. Natural selection analyses showed that HPT2-pattern-like genes have experienced relaxed selection pressure, which is generally accompanied with partial positive selection and transcriptional divergence. Functional enrichment analyses showed that HPT2-pattern-like genes are over-represented with molecular-binding and defense response functions, supporting the potential role of environmental adaption during gene retention. We also observed that gene duplicates from larger gene family are more likely to be lost, implying a gene dosage constraint effect. Further comparative gene retention analysis in barley and bread wheat pangenome lines revealed combined effects of species-specific selection and gene dosage constraint. CONCLUSIONS Comparative gene retention analyses at the population level support gene dosage constraint, environmental adaption, and species-specific selection as three factors that may affect gene retention following gene duplication. Our findings shed light on the evolutionary process leading to the retention of newly formed gene duplicates and will greatly improve our understanding on genome evolution via duplication.
Collapse
Affiliation(s)
- Yong Jia
- grid.1025.60000 0004 0436 6763Western Crop Genetic Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia ,grid.1025.60000 0004 0436 6763Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia
| | - Mingrui Xu
- grid.410595.c0000 0001 2230 9154College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121 China
| | - Haifei Hu
- grid.1025.60000 0004 0436 6763Western Crop Genetic Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia ,grid.1025.60000 0004 0436 6763Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia
| | - Brett Chapman
- grid.1025.60000 0004 0436 6763Western Crop Genetic Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia ,grid.1025.60000 0004 0436 6763Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia
| | - Calum Watt
- grid.1025.60000 0004 0436 6763Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia ,grid.516230.30000 0005 0233 6218Intergrain Pty Ltd, Bibra Lake, WA 6163 Australia
| | - B. Buerte
- grid.13402.340000 0004 1759 700XInstitute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Ning Han
- grid.13402.340000 0004 1759 700XInstitute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Muyuan Zhu
- grid.13402.340000 0004 1759 700XInstitute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Hongwu Bian
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Chengdao Li
- Western Crop Genetic Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia. .,Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia. .,Department of Primary Industries and Regional Development, 3-Baron-Hay Court, South Perth, WA, 6151, Australia.
| | - Zhanghui Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China. .,Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China. .,Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou, 311121, China.
| |
Collapse
|
15
|
Zhang C, Jiao C, Sun X, Li X. A MYB Transcription Factor Atlas Provides Insights into the Evolution of Environmental Adaptations in Plants. Int J Mol Sci 2023; 24:2566. [PMID: 36768888 PMCID: PMC9916579 DOI: 10.3390/ijms24032566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The MYB transcription factor superfamily includes key regulators of plant development and responses to environmental changes. The diversity of lifestyles and morphological characteristics exhibited by plants are potentially associated with the genomic dynamics of the MYB superfamily. With the release of the plant genomes, a comprehensive phylogenomic analysis of the MYB superfamily across Viridiplantae is allowed. The present study performed phylogenetic, phylogenomic, syntenic, horizontal gene transfer, and neo/sub-functionalization analysis of the MYB superfamily to explore the evolutionary contributions of MYB members to species diversification, trait formation, and environmental adaptation in 437 different plant species. We identified major changes in copy number variation and genomic context within subclades across lineages. Multiple MYB subclades showed highly conserved copy number patterns and synteny across flowering plants, whereas others were more dynamic and showed lineage-specific patterns. As examples of lineage-specific morphological divergence, we hypothesize that the gain of a MYB orthogroup associated with flower development and environmental responses and an orthogroup associated with auxin and wax biosynthesis in angiosperms were correlated with the emergence of flowering plants, unbiased neo-/sub-functionalization of gene duplicates contributed to environmental adaptation, and species-specific neo-/sub-functionalization contributed to phenotype divergence between species. Transposable element insertion in promoter regions may have facilitated the sub-/neo-functionalization of MYB genes and likely played a tissue-specific role contributing to sub-/neo-functionalization in plant root tissues. This study provides new insights into the evolutionary divergence of the MYB superfamily across major flowering and non-flowering lineages and emphasizes the need for lineage-/tissue-specific characterization to further understand trait variability and environmental adaptation.
Collapse
Affiliation(s)
- Chaofan Zhang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A & F University, Hangzhou 311300, China
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A & F University, Hangzhou 311300, China
| | - Chen Jiao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xuepeng Sun
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A & F University, Hangzhou 311300, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A & F University, Hangzhou 311300, China
| | - Xiaolong Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A & F University, Hangzhou 311300, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A & F University, Hangzhou 311300, China
| |
Collapse
|
16
|
Zhao Y, Yao S, Zhang X, Wang Z, Jiang C, Liu Y, Jiang X, Gao L, Xia T. Flavan-3-ol Galloylation-Related Functional Gene Cluster and the Functional Diversification of SCPL Paralogs in Camellia sp. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:488-498. [PMID: 36562642 DOI: 10.1021/acs.jafc.2c06433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The high accumulation of galloylated flavan-3-ols in Camellia sp. is a noteworthy phenomenon. We identified a flavan-3-ol galloylation-related functional gene cluster in tannin-rich plant Camellia sp., which included UGT84A22 and SCPL-AT gene clusters. We investigated the possible correlation between the accumulation of metabolites and the expression of SCPL-ATs and UGT84A22. The results revealed that C. sinensis, C. ptilophylla, and C. oleifera accumulated galloylated cis-flavan-3-ols (EGCG), galloylated trans-flavan-3-ols (GCG), and hydrolyzed tannins, respectively; however, C. nitidissima did not accumulate any galloylated compounds. C. nitidissima exhibited no expression of SCPL-AT or UGT84A22, whereas the other three species of Camellia exhibited various expression patterns. This indicated that the functions of the paralogs of SCPL-AT vary. Enzymatic analysis revealed that SCPL5 was neofunctionalized as a noncatalytic chaperone paralog, a type of chaerone-like protein, associating with flavan-3-ol galloylation; moreover, CsSCPL4 was subfunctionalized in association with the galloylation of cis- and trans-flavan-3-ols. In C. nitidissima, an SCPL4 homolog was noted with mutations in two cysteine residues forming a disulfide bond, which suggested that this homolog was defunctionalized. The findings of this study improve our understanding of the functional diversification of SCPL paralogs in Camellia sp.
Collapse
Affiliation(s)
- Yue Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036, Anhui, People's Republic of China
| | - Shengbo Yao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036, Anhui, People's Republic of China
| | - Xue Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036, Anhui, People's Republic of China
| | - Zhihui Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036, Anhui, People's Republic of China
| | - Changjuan Jiang
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yajun Liu
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Xiaolan Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036, Anhui, People's Republic of China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036, Anhui, People's Republic of China
| |
Collapse
|
17
|
Shi J, Tian Z, Lai J, Huang X. Plant pan-genomics and its applications. MOLECULAR PLANT 2023; 16:168-186. [PMID: 36523157 DOI: 10.1016/j.molp.2022.12.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Plant genomes are so highly diverse that a substantial proportion of genomic sequences are not shared among individuals. The variable DNA sequences, along with the conserved core sequences, compose the more sophisticated pan-genome that represents the collection of all non-redundant DNA in a species. With rapid progress in genome sequencing technologies, pan-genome research in plants is now accelerating. Here we review recent advances in plant pan-genomics, including major driving forces of structural variations that constitute the variable sequences, methodological innovations for representing the pan-genome, and major successes in constructing plant pan-genomes. We also summarize recent efforts toward decoding the remaining dark matter in telomere-to-telomere or gapless plant genomes. These new genome resources, which have remarkable advantages over numerous previously assembled less-than-perfect genomes, are expected to become new references for genetic studies and plant breeding.
Collapse
Affiliation(s)
- Junpeng Shi
- State Key Laboratory of Biocontrol, School of Agriculture, Sun Yat-sen University, Shenzhen 518107, China.
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Xuehui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
18
|
Nie S, Tian XC, Kong L, Zhao SW, Chen ZY, Jiao SQ, El-Kassaby YA, Porth I, Yang FS, Zhao W, Mao JF. Potential allopolyploid origin of Ericales revealed with gene-tree reconciliation. FRONTIERS IN PLANT SCIENCE 2022; 13:1006904. [PMID: 36457535 PMCID: PMC9706204 DOI: 10.3389/fpls.2022.1006904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/27/2022] [Indexed: 05/31/2023]
Abstract
Few incidents of ancient allopolyploidization (polyploidization by hybridization or merging diverged genomes) were previously revealed, although there is significant evidence for the accumulation of whole genome duplications (WGD) in plants. Here, we focused on Ericales, one of the largest and most diverse angiosperm orders with significant ornamental and economic value. Through integrating 24 high-quality whole genome data selected from ~ 200 Superasterids genomes/species and an algorithm of topology-based gene-tree reconciliation, we explored the evolutionary history of in Ericales with ancient complex. We unraveled the allopolyploid origin of Ericales and detected extensive lineage-specific gene loss following the polyploidization. Our study provided a new hypothesis regarding the origin of Ericales and revealed an instructive perspective of gene loss as a pervasive source of genetic variation and adaptive phenotypic diversity in Ericales.
Collapse
Affiliation(s)
- Shuai Nie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xue-Chan Tian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Lei Kong
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shi-Wei Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhao-Yang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Si-Qian Jiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan University, Pingdingshan, China
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Ilga Porth
- Départment des Sciences du Bois et de la Forêt, Faculté de Foresterie, de Géographie et Géomatique, Université Laval, Québec, QC, Canada
| | - Fu-Sheng Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Zhao
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Jian-Feng Mao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
19
|
Evans CEB, Arunkumar R, Borrill P. Transcription factor retention through multiple polyploidization steps in wheat. G3 GENES|GENOMES|GENETICS 2022; 12:6617353. [PMID: 35748743 PMCID: PMC9339333 DOI: 10.1093/g3journal/jkac147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
Whole-genome duplication is widespread in plant evolutionary history and is followed by nonrandom gene loss to return to a diploid state. Across multiple angiosperm species, the retained genes tend to be dosage-sensitive regulatory genes such as transcription factors, yet data for younger polyploid species is sparse. Here, we analyzed the retention, expression, and genetic variation in transcription factors in the recent allohexaploid bread wheat (Triticum aestivum L.). By comparing diploid, tetraploid, and hexaploid wheat, we found that, following each of two hybridization and whole-genome duplication events, the proportion of transcription factors in the genome increased. Transcription factors were preferentially retained over other genes as homoeologous groups in tetraploid and hexaploid wheat. Across cultivars, transcription factor homoeologs contained fewer deleterious missense mutations than nontranscription factors, suggesting that transcription factors are maintained as three functional homoeologs in hexaploid wheat populations. Transcription factor homoeologs were more strongly coexpressed than nontranscription factors, indicating conservation of function between homoeologs. We found that the B3, MADS-M-type, and NAC transcription factor families were less likely to have three homoeologs present than other families, which was associated with low expression levels and high levels of tandem duplication. Together, our results show that transcription factors are preferentially retained in polyploid wheat genomes although there is variation between families. Knocking out one transcription factor homoeolog to alter gene dosage, using TILLING or CRISPR, could generate new phenotypes for wheat breeding.
Collapse
Affiliation(s)
- Catherine E B Evans
- Department of Crop Genetics, John Innes Centre , Norwich Research Park NR4 7UH, UK
- School of Biosciences, University of Birmingham , Birmingham B15 2TT, UK
| | - Ramesh Arunkumar
- Department of Crop Genetics, John Innes Centre , Norwich Research Park NR4 7UH, UK
| | - Philippa Borrill
- Department of Crop Genetics, John Innes Centre , Norwich Research Park NR4 7UH, UK
| |
Collapse
|
20
|
Wu W, Guo W, Ni G, Wang L, Zhang H, Ng WL. Expression Level Dominance and Homeolog Expression Bias Upon Cold Stress in the F1 Hybrid Between the Invasive Sphagneticola trilobata and the Native S. calendulacea in South China, and Implications for Its Invasiveness. Front Genet 2022; 13:833406. [PMID: 35664338 PMCID: PMC9160872 DOI: 10.3389/fgene.2022.833406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/15/2022] [Indexed: 11/21/2022] Open
Abstract
The role of hybridization is significant in biological invasion, and thermotolerance is a trait critical to range expansions. The South American Sphagneticola trilobata is now widespread in South China, threatening the native S. calendulacea by competition and hybridization. Furthermore, upon formation, their F1 hybrid can quickly replace both parents. In this study, the three taxa were used as a model to investigate the consequences of hybridization on cold tolerance, particularly the effect of subgenome dominance in the hybrid. Upon chilling treatments, physiological responses and transcriptome profiles were compared across different temperature points to understand their differential responses to cold. While both parents showed divergent responses, the hybrid’s responses showed an overall resemblance to S. calendulacea, but the contribution of homeolog expression bias to cold stress was not readily evident in the F1 hybrid possibly due to inherent bias that comes with the sampling location. Our findings provided insights into the role of gene expression in differential cold tolerance, and further contribute to predicting the invasive potential of other hybrids between S. trilobata and its congeners around the world.
Collapse
Affiliation(s)
- Wei Wu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wei Guo
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Guangyan Ni
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Longyuan Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Hui Zhang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wei Lun Ng
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Malaysia
- *Correspondence: Wei Lun Ng,
| |
Collapse
|
21
|
Zhang K, Yang Y, Wu J, Liang J, Chen S, Zhang L, Lv H, Yin X, Zhang X, Zhang Y, Zhang L, Zhang Y, Freeling M, Wang X, Cheng F. A cluster of transcripts identifies a transition stage initiating leafy head growth in heading morphotypes of Brassica. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:688-706. [PMID: 35118736 PMCID: PMC9314147 DOI: 10.1111/tpj.15695] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 05/10/2023]
Abstract
Leaf heading is an important and economically valuable horticultural trait in many vegetables. The formation of a leafy head is a specialized leaf morphogenesis characterized by the emergence of the enlarged incurving leaves. However, the transcriptional regulation mechanisms underlying the transition to leaf heading remain unclear. We carried out large-scale time-series transcriptome assays covering the major vegetative growth phases of two headingBrassica crops, Chinese cabbage and cabbage, with the non-heading morphotype Taicai as the control. A regulatory transition stage that initiated the heading process is identified, accompanied by a developmental switch from rosette leaf to heading leaf in Chinese cabbages. This transition did not exist in the non-heading control. Moreover, we reveal that the heading transition stage is also conserved in the cabbage clade. Chinese cabbage acquired through domestication a leafy head independently from the origins of heading in other cabbages; phylogenetics supports that the ancestor of all cabbages is non-heading. The launch of the transition stage is closely associated with the ambient temperature. In addition, examination of the biological activities in the transition stage identified the ethylene pathway as particularly active, and we hypothesize that this pathway was targeted for selection for domestication to form the heading trait specifically in Chinese cabbage. In conclusion, our findings on the transcriptome transition that initiated the leaf heading in Chinese cabbage and cabbage provide a new perspective for future studies of leafy head crops.
Collapse
Affiliation(s)
- Kang Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agricultureand Rural Affairs, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijingChina
| | - Yinqing Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agricultureand Rural Affairs, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijingChina
| | - Jian Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agricultureand Rural Affairs, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijingChina
| | - Jianli Liang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agricultureand Rural Affairs, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijingChina
| | - Shumin Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agricultureand Rural Affairs, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijingChina
| | - Lei Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agricultureand Rural Affairs, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijingChina
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agricultureand Rural Affairs, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijingChina
| | - Xiaona Yin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agricultureand Rural Affairs, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijingChina
| | - Xin Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agricultureand Rural Affairs, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijingChina
| | - Yiyue Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agricultureand Rural Affairs, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijingChina
| | - Lingkui Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agricultureand Rural Affairs, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijingChina
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agricultureand Rural Affairs, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijingChina
| | - Michael Freeling
- Department of Plant and Microbial BiologyUniversity of California, BerkeleyBerkeleyCAUSA
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agricultureand Rural Affairs, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijingChina
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agricultureand Rural Affairs, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijingChina
| |
Collapse
|
22
|
Zhang B, Chen S, Liu J, Yan YB, Chen J, Li D, Liu JY. A High-Quality Haplotype-Resolved Genome of Common Bermudagrass ( Cynodon dactylon L.) Provides Insights Into Polyploid Genome Stability and Prostrate Growth. FRONTIERS IN PLANT SCIENCE 2022; 13:890980. [PMID: 35548270 PMCID: PMC9081840 DOI: 10.3389/fpls.2022.890980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/04/2022] [Indexed: 05/03/2023]
Abstract
Common bermudagrass (Cynodon dactylon L.) is an important perennial warm-season turfgrass species with great economic value. However, the reference genome is still deficient in C. dactylon, which severely impedes basic studies and breeding studies. In this study, a high-quality haplotype-resolved genome of C. dactylon cultivar Yangjiang was successfully assembled using a combination of multiple sequencing strategies. The assembled genome is approximately 1.01 Gb in size and is comprised of 36 pseudo chromosomes belonging to four haplotypes. In total, 76,879 protein-coding genes and 529,092 repeat sequences were annotated in the assembled genome. Evolution analysis indicated that C. dactylon underwent two rounds of whole-genome duplication events, whereas syntenic and transcriptome analysis revealed that global subgenome dominance was absent among the four haplotypes. Genome-wide gene family analyses further indicated that homologous recombination-regulating genes and tiller-angle-regulating genes all showed an adaptive evolution in C. dactylon, providing insights into genome-scale regulation of polyploid genome stability and prostrate growth. These results not only facilitate a better understanding of the complex genome composition and unique plant architectural characteristics of common bermudagrass, but also offer a valuable resource for comparative genome analyses of turfgrasses and other plant species.
Collapse
Affiliation(s)
- Bing Zhang
- School of Life Sciences, Tsinghua University, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Si Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jianxiu Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yong-Bin Yan
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jingbo Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Dandan Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jin-Yuan Liu
- School of Life Sciences, Tsinghua University, Beijing, China
- *Correspondence: Jin-Yuan Liu,
| |
Collapse
|
23
|
A Dual-Successive-Screen Model at Pollen/Stigma and Pollen Tube/Ovary Explaining Paradoxical Self-Incompatibility Diagnosis in the Olive Tree—An Interpretative Update of the Literature. PLANTS 2021; 10:plants10091938. [PMID: 34579470 PMCID: PMC8466169 DOI: 10.3390/plants10091938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/04/2021] [Accepted: 09/10/2021] [Indexed: 01/13/2023]
Abstract
The ‘pollen test’ and ‘fruit set test’ following controlled crossing combinations of parents are the most commonly used methods for pollination incompatibility studies in Olea europaea L. Self-incompatibility (SI), with diagnoses based on the pollen test and pollen germination, indicating self-compatibility, is not always followed by fruit set in this species. To solve this dispute, we have reconciled all observations into a new model. Mismatches between field and laboratory data and between methods are resolved by the dual-successive-screen model (DSSM) supposing two different loci for the expression of the two SI mechanisms. Pollen/stigma is controlled by diallelic SI, or DSI, inferring two G1 and G2 compatibility/incompatibility (C/I) groups for varieties, whereas pollen tubes in ovaries are controlled by poly-allelic SI or PASI with twenty C/I groups. To explain the selfing of varieties, we have suggested that some determinants in the pollen tube and stigma are unstable and degrade (DS-D for degradation of S-determinant) after three to five days, enabling some pollen tubes to avoid being rejected, hence reaching ovules. DSI and PASI in the DSSM and DS-D mechanisms, plus the andromonoecy of the olive tree, complexify SI studies. Inferences from DSSM and DS-D mechanisms in olive orchard practice are detailed.
Collapse
|
24
|
Zhang Z, Ma W, Ren Z, Wang X, Zhao J, Pei X, Liu Y, He K, Zhang F, Huo W, Li W, Yang D, Ma X. Characterization and expression analysis of wall-associated kinase (WAK) and WAK-like family in cotton. Int J Biol Macromol 2021; 187:867-879. [PMID: 34339786 DOI: 10.1016/j.ijbiomac.2021.07.163] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/07/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022]
Abstract
The wall-associated kinases (WAKs) and WAK-like kinases (WAKLs) form a group of receptor-like kinases (RLKs) with extracellular domains tightly linked to the cell wall. The WAKs/WAKLs have been known to be involved in plant growth, development, and stress responses. However, the functions of WAKs/WAKLs are less well known in cotton. In this study, 58, 66, and 99 WAK/WAKL genes were identified in Gossypium arboreum, G. raimondii, and G. hirsutum, respectively. Phylogenetic analysis showed they were classified into five groups, with two groups specific to cotton. Collinearity analysis revealed that segmental and tandem duplications resulted in expansion of the WAK/WAKL gene family in cotton. Moreover, the Ka/Ks ratios indicated this family was exposed to purifying selection pressure during evolution. The structures of the GhWAK/WAKL genes and encoded proteins suggested the functions of WAKs/WAKLs in cotton were conserved. Transient expression of four WAK/WAKL-GFP fusion constructs in Arabidopsis protoplasts indicated that they were localized on the plasma membrane. The cis-elements in the GhWAK/WAKL promoters were responsive to multiple phytohormones and abiotic stresses. Expression profiling showed that GhWAK/WAKL genes were induced by various abiotic stresses. This study provides insights into the evolution of WAK/WAKL genes and presents fundamental information for further analysis in cotton.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenyu Ma
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhongying Ren
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Junjie Zhao
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiaoyu Pei
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yangai Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Kunlun He
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fei Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wenqi Huo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Wei Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China.
| | - Daigang Yang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
25
|
Huang J, Li X, Chen X, Guo Y, Liang W, Wang H. Genome-Wide Identification of Soybean ABC Transporters Relate to Aluminum Toxicity. Int J Mol Sci 2021; 22:6556. [PMID: 34207256 PMCID: PMC8234336 DOI: 10.3390/ijms22126556] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
ATP-binding cassette (ABC) transporter proteins are a gene super-family in plants and play vital roles in growth, development, and response to abiotic and biotic stresses. The ABC transporters have been identified in crop plants such as rice and buckwheat, but little is known about them in soybean. Soybean is an important oil crop and is one of the five major crops in the world. In this study, 255 ABC genes that putatively encode ABC transporters were identified from soybean through bioinformatics and then categorized into eight subfamilies, including 7 ABCAs, 52 ABCBs, 48 ABCCs, 5 ABCDs, 1 ABCEs, 10 ABCFs, 111 ABCGs, and 21 ABCIs. Their phylogenetic relationships, gene structure, and gene expression profiles were characterized. Segmental duplication was the main reason for the expansion of the GmABC genes. Ka/Ks analysis suggested that intense purifying selection was accompanied by the evolution of GmABC genes. The genome-wide collinearity of soybean with other species showed that GmABCs were relatively conserved and that collinear ABCs between species may have originated from the same ancestor. Gene expression analysis of GmABCs revealed the distinct expression pattern in different tissues and diverse developmental stages. The candidate genes GmABCB23, GmABCB25, GmABCB48, GmABCB52, GmABCI1, GmABCI5, and GmABCI13 were responsive to Al toxicity. This work on the GmABC gene family provides useful information for future studies on ABC transporters in soybean and potential targets for the cultivation of new germplasm resources of aluminum-tolerant soybean.
Collapse
Affiliation(s)
| | | | | | | | | | - Huahua Wang
- College of Life Science, Henan Normal University, Xinxiang 453007, China; (J.H.); (X.L.); (X.C.); (Y.G.); (W.L.)
| |
Collapse
|
26
|
Chen S, Wu J, Zhang Y, Zhao Y, Xu W, Li Y, Xie J. Genome-Wide Analysis of Coding and Non-coding RNA Reveals a Conserved miR164-NAC-mRNA Regulatory Pathway for Disease Defense in Populus. Front Genet 2021; 12:668940. [PMID: 34122520 PMCID: PMC8195341 DOI: 10.3389/fgene.2021.668940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/29/2021] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) contribute to plant defense responses by increasing the overall genetic diversity; however, their origins and functional importance in plant defense remain unclear. Here, we employed Illumina sequencing technology to assess how miRNA and messenger RNA (mRNA) populations vary in the Chinese white poplar (Populus tomentosa) during a leaf black spot fungus (Marssonina brunnea) infection. We sampled RNAs from infective leaves at conidia germinated stage [12 h post-inoculation (hpi)], infective vesicles stage (24 hpi), and intercellular infective hyphae stage (48 hpi), three essential stages associated with plant colonization and biotrophic growth in M. brunnea fungi. In total, 8,938 conserved miRNA-target gene pairs and 3,901 Populus-specific miRNA-target gene pairs were detected. The result showed that Populus-specific miRNAs (66%) were more involved in the regulation of the disease resistance genes. By contrast, conserved miRNAs (>80%) target more whole-genome duplication (WGD)-derived transcription factors (TFs). Among the 1,023 WGD-derived TF pairs, 44.9% TF pairs had only one paralog being targeted by a miRNA that could be due to either gain or loss of a miRNA binding site after the WGD. A conserved hierarchical regulatory network combining promoter analyses and hierarchical clustering approach uncovered a miR164–NAM, ATAF, and CUC (NAC) transcription factor–mRNA regulatory module that has potential in Marssonina defense responses. Furthermore, analyses of the locations of miRNA precursor sequences reveal that pseudogenes and transposon contributed a certain proportion (∼30%) of the miRNA origin. Together, these observations provide evolutionary insights into the origin and potential roles of miRNAs in plant defense and functional innovation.
Collapse
Affiliation(s)
- Sisi Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jiadong Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yanfeng Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yiyang Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Weijie Xu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yue Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jianbo Xie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
27
|
Hao Y, Mabry ME, Edger PP, Freeling M, Zheng C, Jin L, VanBuren R, Colle M, An H, Abrahams RS, Washburn JD, Qi X, Barry K, Daum C, Shu S, Schmutz J, Sankoff D, Barker MS, Lyons E, Pires JC, Conant GC. The contributions from the progenitor genomes of the mesopolyploid Brassiceae are evolutionarily distinct but functionally compatible. Genome Res 2021; 31:799-810. [PMID: 33863805 PMCID: PMC8092008 DOI: 10.1101/gr.270033.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/05/2021] [Indexed: 01/08/2023]
Abstract
The members of the tribe Brassiceae share a whole-genome triplication (WGT), and one proposed model for its formation is a two-step pair of hybridizations producing hexaploid descendants. However, evidence for this model is incomplete, and the evolutionary and functional constraints that drove evolution after the hexaploidy are even less understood. Here, we report a new genome sequence of Crambe hispanica, a species sister to most sequenced Brassiceae. Using this new genome and three others that share the hexaploidy, we traced the history of gene loss after the WGT using the Polyploidy Orthology Inference Tool (POInT). We confirm the two-step formation model and infer that there was a significant temporal gap between those two allopolyploidizations, with about a third of the gene losses from the first two subgenomes occurring before the arrival of the third. We also, for the 90,000 individual genes in our study, make parental subgenome assignments, inferring, with measured uncertainty, from which of the progenitor genomes of the allohexaploidy each gene derives. We further show that each subgenome has a statistically distinguishable rate of homoeolog losses. There is little indication of functional distinction between the three subgenomes: the individual subgenomes show no patterns of functional enrichment, no excess of shared protein-protein or metabolic interactions between their members, and no biases in their likelihood of having experienced a recent selective sweep. We propose a "mix and match" model of allopolyploidy, in which subgenome origin drives homoeolog loss propensities but where genes from different subgenomes function together without difficulty.
Collapse
Affiliation(s)
- Yue Hao
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Makenzie E Mabry
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
- Genetics and Genome Sciences, Michigan State University, East Lansing, Michigan 48824, USA
| | - Michael Freeling
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Chunfang Zheng
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Lingling Jin
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, USA
| | - Marivi Colle
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
| | - Hong An
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - R Shawn Abrahams
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Jacob D Washburn
- Plant Genetics Research Unit, USDA-ARS, Columbia, Missouri 65211, USA
| | - Xinshuai Qi
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Christopher Daum
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Shengqiang Shu
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jeremy Schmutz
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - David Sankoff
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - Eric Lyons
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona 85721, USA
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri 65211, USA
- Informatics Institute, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Gavin C Conant
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, USA
- Program in Genetics, North Carolina State University, Raleigh, North Carolina 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
- Division of Animal Sciences, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| |
Collapse
|
28
|
Wang T, Dong Q, Wang W, Chen S, Cheng Y, Tian H, Li X, Hussain S, Wang L, Gong L, Wang S. Evolution of AITR family genes in cotton and their functions in abiotic stress tolerance. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23 Suppl 1:58-68. [PMID: 33202099 DOI: 10.1111/plb.13218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/11/2020] [Indexed: 05/18/2023]
Abstract
Abiotic stresses are major environmental factors inhibiting plant growth and development. AITRs (ABA-induced transcription repressors) are a novel family of transcription factors regulating ABA (abscisic acid) signalling and plant responses to abiotic stresses in Arabidopsis. However, the composition and evolution history of AITRs and their roles in the cotton genus are largely unknown. A total of 12 putative AITRs genes were identified in cultivated tetraploid cotton, Gossypium hirsutum. Phylogenetic analysis of GhAITRs in these tetraploid cottons and their closely related species implicate ancient genome-wide duplication occurring after speciation of Gossypium, and Theobroma could generate duplicates of GhAITRs. Duplicated GhAITRs were stably inherited following diploid speciation and further allotetraploidy in Gossypium. Homologous GhAITRs shared common expression patterns in response to ABA, drought and salinity treatments, and drought tolerance induced in transgenic Arabidopsis plants expressing GhAITR-A1. Together, our findings reveal that duplicates in the GhAITRs gene family were achieved by whole genome duplication rather than three individual duplication events, and that GhAITRs function as transcription repressors and are involved in the regulation of plant responses to ABA and drought stress. These results provide insights towards the improvement of abiotic stress tolerance in cotton using GhAITRs.
Collapse
Affiliation(s)
- T Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Q Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - W Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - S Chen
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Y Cheng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - H Tian
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - X Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - S Hussain
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - L Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, China
| | - L Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - S Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, China
| |
Collapse
|
29
|
Yu X, Wang P, Li J, Zhao Q, Ji C, Zhu Z, Zhai Y, Qin X, Zhou J, Yu H, Cheng X, Isshiki S, Jahn M, Doyle JJ, Ottosen C, Bai Y, Cai Q, Cheng C, Lou Q, Huang S, Chen J. Whole-Genome Sequence of Synthesized Allopolyploids in Cucumis Reveals Insights into the Genome Evolution of Allopolyploidization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004222. [PMID: 33977063 PMCID: PMC8097326 DOI: 10.1002/advs.202004222] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/14/2021] [Indexed: 05/16/2023]
Abstract
The importance of allopolyploidy in plant evolution has been widely recognized. The genetic changes triggered by allopolyploidy, however, are not yet fully understood due to inconsistent phenomena reported across diverse species. The construction of synthetic polyploids offers a controlled approach to systematically reveal genomic changes that occur during the process of polyploidy. This study reports the first fully sequenced synthetic allopolyploid constructed from a cross between Cucumis sativus and C. hystrix, with high-quality assembly. The two subgenomes are confidently partitioned and the C. sativus-originated subgenome predominates over the C. hystrix-originated subgenome, retaining more sequences and showing higher homeologous gene expression. Most of the genomic changes emerge immediately after interspecific hybridization. Analysis of a series of genome sequences from several generations (S0, S4-S13) of C. ×hytivus confirms that genomic changes occurred in the very first generations, subsequently slowing down as the process of diploidization is initiated. The duplicated genome of the allopolyploid with double genes from both parents broadens the genetic base of C. ×hytivus, resulting in enhanced phenotypic plasticity. This study provides novel insights into plant polyploid genome evolution and demonstrates a promising strategy for the development of a wide array of novel plant species and varieties through artificial polyploidization.
Collapse
Affiliation(s)
- Xiaqing Yu
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Panqiao Wang
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Ji Li
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Qinzheng Zhao
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Changmian Ji
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off‐Season Reproduction RegionsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikou571101China
- Biomarker TechnologiesBeijing101300China
| | - Zaobing Zhu
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Yufei Zhai
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Xiaodong Qin
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Junguo Zhou
- College of Horticulture and LandscapeHenan Institute of Science and TechnologyXinxiang453000China
| | - Haiyan Yu
- Biomarker TechnologiesBeijing101300China
| | | | - Shiro Isshiki
- Faculty of AgricultureSaga UniversitySaga840‐8502Japan
| | - Molly Jahn
- Jahn Research GroupUSDA/FPLMadisonWI53726USA
| | - Jeff J. Doyle
- Section of Plant Breeding and GeneticsSchool of Integrated Plant SciencesCornell UniversityIthacaNY14853USA
| | | | - Yuling Bai
- Department of Plant SciencesWageningen University and ResearchWageningen6700 AJNetherlands
| | - Qinsheng Cai
- College of Life ScienceNanjing Agricultural UniversityNanjing210095China
| | - Chunyan Cheng
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Qunfeng Lou
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Sanwen Huang
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
| | - Jinfeng Chen
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| |
Collapse
|
30
|
Costello R, Emms DM, Kelly S. Gene Duplication Accelerates the Pace of Protein Gain and Loss from Plant Organelles. Mol Biol Evol 2021; 37:969-981. [PMID: 31750917 PMCID: PMC7086175 DOI: 10.1093/molbev/msz275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Organelle biogenesis and function is dependent on the concerted action of both organellar-encoded (if present) and nuclear-encoded proteins. Differences between homologous organelles across the Plant Kingdom arise, in part, as a result of differences in the cohort of nuclear-encoded proteins that are targeted to them. However, neither the rate at which differences in protein targeting accumulate nor the evolutionary consequences of these changes are known. Using phylogenomic approaches coupled to ancestral state estimation, we show that the plant organellar proteome has diversified in proportion with molecular sequence evolution such that the proteomes of plant chloroplasts and mitochondria lose or gain on average 3.6 proteins per million years. We further demonstrate that changes in organellar protein targeting are associated with an increase in the rate of molecular sequence evolution and that such changes predominantly occur in genes with regulatory rather than metabolic functions. Finally, we show that gain and loss of protein target signals occurs at a higher rate following gene duplication, revealing that gene and genome duplication are a key facilitator of plant organelle evolution.
Collapse
Affiliation(s)
- Rona Costello
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - David M Emms
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Lv Z, Li Z, Wang M, Zhao F, Zhang W, Li C, Gong L, Zhang Y, Mason AS, Liu B. Conservation and trans-regulation of histone modification in the A and B subgenomes of polyploid wheat during domestication and ploidy transition. BMC Biol 2021; 19:42. [PMID: 33750361 PMCID: PMC7944620 DOI: 10.1186/s12915-021-00985-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polyploidy has played a prominent role in the evolution of plants and many other eukaryotic lineages. However, how polyploid genomes adapt to the abrupt presence of two or more sets of chromosomes via genome regulation remains poorly understood. Here, we analyzed genome-wide histone modification and gene expression profiles in relation to domestication and ploidy transition in the A and B subgenomes of polyploid wheat. RESULTS We found that epigenetic modification patterns by two typical euchromatin histone markers, H3K4me3 and H3K27me3, for the great majority of homoeologous triad genes in A and B subgenomes were highly conserved between wild and domesticated tetraploid wheats and remained stable in the process of ploidy transitions from hexaploid to extracted tetraploid and then back to resynthesized hexaploid. However, a subset of genes was differentially modified during tetraploid and hexaploid wheat domestication and in response to ploidy transitions, and these genes were enriched for particular gene ontology (GO) terms. The extracted tetraploid wheat manifested higher overall histone modification levels than its hexaploid donor, and which were reversible and restored to normal levels in the resynthesized hexaploid. Further, while H3K4me3 marks were distally distributed along each chromosome and significantly correlated with subgenome expression as expected, H3K27me3 marks showed only a weak distal bias and did not show a significant correlation with gene expression. CONCLUSIONS Our results reveal overall high stability of histone modification patterns in the A and B subgenomes of polyploid wheat during domestication and in the process of ploidy transitions. However, modification levels of a subset of functionally relevant genes in the A and B genomes were trans-regulated by the D genome in hexaploid wheat.
Collapse
Affiliation(s)
- Zhenling Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
- Department of Plant Breeding, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Zijuan Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Meiyue Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjie Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Changping Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yijng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Annaliese S Mason
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
- Department of Plant Breeding, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
32
|
Genome-wide identification and characterization of olfactory receptor genes in common carp (Cyprinus carpio). Gene 2021; 777:145468. [PMID: 33539942 DOI: 10.1016/j.gene.2021.145468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/10/2021] [Accepted: 01/25/2021] [Indexed: 11/21/2022]
Abstract
The environment contains a large extent of chemical information, which could be detected as olfactory sense. Olfactory in vertebrates plays important roles on many aspects during life time, including localizing prey or food, avoiding predators, mating behavior and social communication. Considering the essential role of olfactory receptors in the specific recognition of diverse stimuli, understanding the evolutionary dynamics of olfactory receptors in teleost means a lot, especially in the allotetraploid common carp, who has undergone the fourth whole-genome duplication event. Here, we identified the whole set of olfactory receptor genes in representative teleosts and found a significant contraction in common carp when compared with other teleosts. Odorant receptor genes (OR) occupy the most among four groups of olfactory receptors, including 33 functional genes and 16 pseudogenes. Furthermore, 6 trace amine-associated receptor (TAAR) genes (including 1 pseudogene), 7 odorant-related-A receptor genes, and 10 olfactory C family receptor genes (including 3 pseudogenes) were identified in common carp. Phylogenetic and motif analysis were performed to illustrate the phylogenetic relationship and structural conservation of teleost olfactory receptors. Selection pressure analysis suggested that olfactory receptor groups in common carp were all under relaxed purifying-selection. Additionally, gene expression divergences for olfactory receptor genes were investigated during embryonic development stages of common carp. We aim to determine the abundance of common carp olfactory receptor genes, explore the evolutionary fate and expression dynamics, and provide some genomic clues for the evolution of polyploid olfactory after whole-genome duplication and for future studies of teleost olfactory.
Collapse
|
33
|
Zou X, Du Y, Wang X, Wang Q, Zhang B, Chen J, Chen M, Doyle JJ, Ge S. Genome evolution in Oryza allopolyploids of various ages: Insights into the process of diploidization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:721-735. [PMID: 33145857 DOI: 10.1111/tpj.15066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/18/2020] [Accepted: 10/28/2020] [Indexed: 05/20/2023]
Abstract
The prevalence and recurrence of whole-genome duplication in plants and its major role in evolution have been well recognized. Despite great efforts, many aspects of genome evolution, particularly the temporal progression of genomic responses to allopolyploidy and the underlying mechanisms, remain poorly understood. The rice genus Oryza consists of both recently formed and older allopolyploid species, representing an attractive system for studying the genome evolution after allopolyploidy. In this study, through screening BAC libraries and sequencing and annotating the targeted BAC clones, we generated orthologous genomic sequences surrounding the DEP1 locus, a major grain yield QTL in cultivated rice, from four Oryza polyploids of various ages and their likely diploid genome donors or close relatives. Based on sequenced DEP1 region and published data from three other genomic regions, we investigated the temporal evolutionary dynamics of four polyploid genomes at both genetic and expression levels. In the recently formed BBCC polyploid, Oryza minuta, genome dominance was not observed and its short-term responses to allopolyploidy are mainly manifested as a high proportion of homoeologous gene pairs showing unequal expression. This could partly be explained by parental legacy, rewiring of divergent regulatory networks and epigenetic modulation. Moreover, we detected an ongoing diploidization process in this genus, and suggest that the expression divergence driven by changes of selective constraint probably plays a big role in the long-term diploidization. These findings add novel insights into our understanding of genome evolution after allopolyploidy, and could facilitate crop improvements through hybridization and polyploidization.
Collapse
Affiliation(s)
- Xinhui Zou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yusu Du
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xin Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jinfeng Chen
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mingsheng Chen
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jeff J Doyle
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
34
|
Wu H, Yu Q, Ran JH, Wang XQ. Unbiased Subgenome Evolution in Allotetraploid Species of Ephedra and Its Implications for the Evolution of Large Genomes in Gymnosperms. Genome Biol Evol 2020; 13:5983329. [PMID: 33196777 PMCID: PMC7900875 DOI: 10.1093/gbe/evaa236] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2020] [Indexed: 12/22/2022] Open
Abstract
The evolutionary dynamics of polyploid genomes and consequences of polyploidy have been studied extensively in angiosperms but very rarely in gymnosperms. The gymnospermous genus Ephedra is characterized by a high frequency of polyploidy, and thus provides an ideal system to investigate the evolutionary mode of allopolyploid genomes and test whether subgenome dominance has occurred in gymnosperms. Here, we sequenced transcriptomes of two allotetraploid species of Ephedra and their putative diploid progenitors, identified expressed homeologs, and analyzed alternative splicing and homeolog expression based on PacBio Iso-Seq and Illumina RNA-seq data. We found that the two subgenomes of the allotetraploids had similar numbers of expressed homeologs, similar percentages of homeologs with dominant expression, and approximately equal numbers of isoforms with alternative splicing, showing an unbiased subgenome evolution as in a few polyploid angiosperms, with a divergence of the two subgenomes at ∼8 Ma. In addition, the nuclear DNA content of the allotetraploid species is almost equal to the sum of two putative progenitors, suggesting limited genome restructuring after allotetraploid speciation. The allopolyploid species of Ephedra might have undergone slow diploidization, and the unbiased subgenome evolution implies that the formation of large genomes in gymnosperms could be attributed to even and slow fractionation following polyploidization.
Collapse
Affiliation(s)
- Hui Wu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Qiong Yu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Hua Ran
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Quan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Coate JE, Farmer AD, Schiefelbein JW, Doyle JJ. Expression Partitioning of Duplicate Genes at Single Cell Resolution in Arabidopsis Roots. Front Genet 2020; 11:596150. [PMID: 33240334 PMCID: PMC7670048 DOI: 10.3389/fgene.2020.596150] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/12/2020] [Indexed: 01/11/2023] Open
Abstract
Gene duplication is a key evolutionary phenomenon, prevalent in all organisms but particularly so in plants, where whole genome duplication (WGD; polyploidy) is a major force in genome evolution. Much effort has been expended in attempting to understand the evolution of duplicate genes, addressing such questions as why some paralog pairs rapidly return to single copy status whereas, in other pairs, both paralogs are retained and may diverge in expression pattern or function. The effect of a gene - its site of expression and thus the initial locus of its function - occurs at the level of a cell comprising a single cell type at a given state of the cell's development. Using Arabidopsis thaliana single cell transcriptomic data we categorized patterns of expression for 11,470 duplicate gene pairs across 36 cell clusters comprising nine cell types and their developmental states. Among these 11,470 pairs, 10,187 (88.8%) had at least one copy expressed in at least one of the 36 cell clusters. Pairs produced by WGD more often had both paralogs expressed in root cells than did pairs produced by small scale duplications. Three quarters of gene pairs expressed in the 36 cell clusters (7,608/10,187) showed extreme expression bias in at least one cluster, including 352 cases of reciprocal bias, a pattern consistent with expression subfunctionalization. More than twice as many pairs showed reciprocal expression bias between cell states than between cell types or between roots and leaves. A group of 33 gene pairs with reciprocal expression bias showed evidence of concerted divergence of gene networks in stele vs. epidermis. Pairs with both paralogs expressed without bias were less likely to have paralogs with divergent mutant phenotypes; such bias-free pairs showed evidence of preservation by maintenance of dosage balance. Overall, we found considerable evidence of shifts in gene expression following duplication, including in >80% of pairs encoding 7,653 genes expressed ubiquitously in all root cell types and states for which we inferred the polarity of change.
Collapse
Affiliation(s)
- Jeremy E. Coate
- Department of Biology, Reed College, Portland, OR, United States
| | - Andrew D. Farmer
- National Center for Genome Resources, Santa Fe, NM, United States
| | - John W. Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Jeff J. Doyle
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, United States
| |
Collapse
|
36
|
Simmons CR, Weers BP, Reimann KS, Abbitt SE, Frank MJ, Wang W, Wu J, Shen B, Habben JE. Maize BIG GRAIN1 homolog overexpression increases maize grain yield. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2304-2315. [PMID: 32356392 PMCID: PMC7589417 DOI: 10.1111/pbi.13392] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/15/2020] [Accepted: 04/20/2020] [Indexed: 05/14/2023]
Abstract
The Zea Mays BIG GRAIN 1 HOMOLOG 1 (ZM-BG1H1) was ectopically expressed in maize. Elite commercial hybrid germplasm was yield tested in diverse field environment locations representing commercial models. Yield was measured in 101 tests across all 4 events, 26 locations over 2 years, for an average yield gain of 355 kg/ha (5.65 bu/ac) above control, with 83% tests broadly showing yield gains (range +2272 kg/ha to -1240 kg/ha), with seven tests gaining more than one metric ton per hectare. Plant and ear height were slightly elevated, and ear and tassel flowering time were delayed one day, but ASI was unchanged, and these traits did not correlate to yield gain. ZM-BG1H1 overexpression is associated with increased ear kernel row number and total ear kernel number and mass, but individual kernels trended slightly smaller and less dense. The ZM-BG1H1 protein is detected in the plasma membrane like rice OS-BG1. Five predominant native ZM-BG1H1 alleles exhibit little structural and expression variation compared to the large increased expression conferred by these ectopic alleles.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bo Shen
- Corteva AgriscienceJohnstonIAUSA
| | | |
Collapse
|
37
|
Shen E, Chen T, Zhu X, Fan L, Sun J, Llewellyn DJ, Wilson I, Zhu QH. Expansion of MIR482/2118 by a class-II transposable element in cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2084-2099. [PMID: 32578284 DOI: 10.1111/tpj.14885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Some plant microRNA (miRNA) families contain multiple members generating identical or highly similar mature miRNA variants. Mechanisms underlying the expansion of miRNA families remain elusive, although tandem and/or segmental duplications have been proposed. In this study of two tetraploid cottons, Gossypium hirsutum and Gossypium barbadense, and their extant diploid progenitors, Gossypium arboreum and Gossypium raimondii, we investigated the gain and loss of members of the miR482/2118 superfamily, which modulates the expression of nucleotide-binding site leucine-rich repeat (NBS-LRR) disease resistance genes. We found significant expansion of MIR482/2118d in G. barbadense, G. hirsutum and G. raimondii, but not in G. arboreum. Several newly expanded MIR482/2118d loci have mutated to produce different miR482/2118 variants with altered target-gene specificity. Based on detailed analysis of sequences flanking these MIR482/2118 loci, we found that this expansion of MIR482/2118d and its derivatives resulted from an initial capture of an MIR482/2118d by a class-II DNA transposable element (TE) in G. raimondii prior to the tetraploidization event, followed by transposition to new genomic locations in G. barbadense, G. hirsutum and G. raimondii. The 'GosTE' involved in the capture and proliferation of MIR482/2118d and its derivatives belongs to the PIF/Harbinger superfamily, generating a 3-bp target site duplication upon insertion at new locations. All orthologous MIR482/2118 loci in the two diploids were retained in the two tetraploids, but mutation(s) in miR482/2118 were observed across all four species as well as in different cultivars of both G. barbadense and G. hirsutum, suggesting a dynamic co-evolution of miR482/2118 and its NBS-LRR targets. Our results provide fresh insights into the mechanisms contributing to MIRNA proliferation and enrich our knowledge on TEs.
Collapse
Affiliation(s)
- Enhui Shen
- Institute of Crop Sciences and Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- New Rural Development Institute, Zhejiang University, Hangzhou, 310058, China
| | - Tianzi Chen
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xintian Zhu
- Institute of Crop Sciences and Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Longjiang Fan
- Institute of Crop Sciences and Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jie Sun
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Danny J Llewellyn
- Black Mountain Laboratories, CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Iain Wilson
- Black Mountain Laboratories, CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Qian-Hao Zhu
- Black Mountain Laboratories, CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
| |
Collapse
|
38
|
Shi T, Rahmani RS, Gugger PF, Wang M, Li H, Zhang Y, Li Z, Wang Q, Van de Peer Y, Marchal K, Chen J. Distinct Expression and Methylation Patterns for Genes with Different Fates following a Single Whole-Genome Duplication in Flowering Plants. Mol Biol Evol 2020; 37:2394-2413. [PMID: 32343808 PMCID: PMC7403625 DOI: 10.1093/molbev/msaa105] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
For most sequenced flowering plants, multiple whole-genome duplications (WGDs) are found. Duplicated genes following WGD often have different fates that can quickly disappear again, be retained for long(er) periods, or subsequently undergo small-scale duplications. However, how different expression, epigenetic regulation, and functional constraints are associated with these different gene fates following a WGD still requires further investigation due to successive WGDs in angiosperms complicating the gene trajectories. In this study, we investigate lotus (Nelumbo nucifera), an angiosperm with a single WGD during the K-pg boundary. Based on improved intraspecific-synteny identification by a chromosome-level assembly, transcriptome, and bisulfite sequencing, we explore not only the fundamental distinctions in genomic features, expression, and methylation patterns of genes with different fates after a WGD but also the factors that shape post-WGD expression divergence and expression bias between duplicates. We found that after a WGD genes that returned to single copies show the highest levels and breadth of expression, gene body methylation, and intron numbers, whereas the long-retained duplicates exhibit the highest degrees of protein-protein interactions and protein lengths and the lowest methylation in gene flanking regions. For those long-retained duplicate pairs, the degree of expression divergence correlates with their sequence divergence, degree in protein-protein interactions, and expression level, whereas their biases in expression level reflecting subgenome dominance are associated with the bias of subgenome fractionation. Overall, our study on the paleopolyploid nature of lotus highlights the impact of different functional constraints on gene fate and duplicate divergence following a single WGD in plant.
Collapse
Affiliation(s)
- Tao Shi
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Razgar Seyed Rahmani
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Paul F Gugger
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD
| | - Muhua Wang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hui Li
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhizhong Li
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingfeng Wang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Centre for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Department of Information Technology, IDLab, IMEC, Ghent University, Ghent, Belgium
| | - Jinming Chen
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
39
|
Tel-Zur N, Mouyal J, Zurgil U, Mizrahi Y. In Support of Winge's Theory of "Hybridization Followed by Chromosome Doubling". FRONTIERS IN PLANT SCIENCE 2020; 11:954. [PMID: 32670340 PMCID: PMC7332690 DOI: 10.3389/fpls.2020.00954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Polyploidy-or chromosome doubling-plays a significant role in plant speciation and evolution. Much of the existing evidence indicates that fusion of unreduced (or 2n) gametes is the major pathway responsible for polyploid formation. In the early 1900s, a theory was put forward that the mechanism of "hybridization followed by chromosome doubling" would enable the survival and development of the hybrid zygote by providing each chromosome with a homolog with which to pair. However, to date there is only scant empirical evidence supporting this theory. In our previous study, interspecific-interploid crosses between the tetraploid Hylocereus megalanthus, as the female parent, and the diploid H. undatus, as the male parent, yielded only allopentaploids, allohexaploids, and 5x-and 6x-aneuploids instead of the expected allotriploids. No viable hybrids were obtained from the reciprocal cross. Since H. undatus underwent normal meiosis with regular pairing in the pollen mother cells and only reduced pollen grains were observed, the allohexaploids obtained supported the concept of "chromosome doubling." In this work, we report ploidy level, fruit morphology, and pollen viability and diameter in a group of putative hybrids obtained from an embryo rescue procedure following controlled H. megalanthus × H. undatus crosses, with the aim to elucidate, for the first time, the timing and developmental stage of the chromosome doubling. As in our previous report, no triploids were obtained, but tetraploids, pentaploids, hexaploids, and 5x- and 6x-aneuploids were found in the regenerated plants. The tetraploids exhibited the morphological features of the maternal parent and could not be considered true hybrids. Based on our previous studies, we can assume that the pentaploids were a result of a fertilization event between one unreduced (2n) female gamete from the tetraploid H. megalanthus and a normal (n) haploid male gamete from H. undatus. All the allohexaploids obtained from the embryo rescue technique where those that regenerated from fertilized ovules 10 days after pollination (at the pro-embryo stage), showing that the chromosome doubling event occurred at a very early development stage, i.e., at the zygote stage or shortly after zygote formation. These allohexaploids thus constitute empirical evidence of "hybridization followed by chromosome doubling."
Collapse
Affiliation(s)
- Noemi Tel-Zur
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Joseph Mouyal
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Udi Zurgil
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yosef Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
40
|
Lian S, Zhou Y, Liu Z, Gong A, Cheng L. The differential expression patterns of paralogs in response to stresses indicate expression and sequence divergences. BMC PLANT BIOLOGY 2020; 20:277. [PMID: 32546126 PMCID: PMC7298774 DOI: 10.1186/s12870-020-02460-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/24/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Theoretically, paralogous genes generated through whole genome duplications should share identical expression levels due to their identical sequences and chromatin environments. However, functional divergences and expression differences have arisen due to selective pressures throughout evolution. A comprehensive investigation of the expression patterns of paralogous gene pairs in response to various stresses and a study of correlations between the expression levels and sequence divergences of the paralogs are needed. RESULTS In this study, we analyzed the expression patterns of paralogous genes under different types of stress and investigated the correlations between the expression levels and sequence divergences of the paralogs. We analyzed the differential expression patterns of the paralogs under four different types of stress (drought, cold, infection, and herbivory) and classified them into three main types according to their expression patterns. We then further analyzed the differential expression patterns under various degrees of stress and constructed corresponding co-expression networks of differentially expressed paralogs and transcription factors. Finally, we investigated the correlations between the expression levels and sequence divergences of the paralogs and identified positive correlations between expression level and sequence divergence. With regard to sequence divergence, we identified correlations between selective pressures and phylogenetic relationships. CONCLUSIONS These results shed light on differential expression patterns of paralogs in response to environmental stresses and are helpful for understanding the relationships between expression levels and sequences divergences.
Collapse
Affiliation(s)
- Shuaibin Lian
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, China
| | - Yongjie Zhou
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, China
| | - Zixiao Liu
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, China
| | - Andong Gong
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Lin Cheng
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|
41
|
Hu G, Grover CE, Arick MA, Liu M, Peterson DG, Wendel JF. Homoeologous gene expression and co-expression network analyses and evolutionary inference in allopolyploids. Brief Bioinform 2020; 22:1819-1835. [PMID: 32219306 PMCID: PMC7986634 DOI: 10.1093/bib/bbaa035] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/06/2020] [Accepted: 02/24/2020] [Indexed: 12/29/2022] Open
Abstract
Polyploidy is a widespread phenomenon throughout eukaryotes. Due to the coexistence of duplicated genomes, polyploids offer unique challenges for estimating gene expression levels, which is essential for understanding the massive and various forms of transcriptomic responses accompanying polyploidy. Although previous studies have explored the bioinformatics of polyploid transcriptomic profiling, the causes and consequences of inaccurate quantification of transcripts from duplicated gene copies have not been addressed. Using transcriptomic data from the cotton genus (Gossypium) as an example, we present an analytical workflow to evaluate a variety of bioinformatic method choices at different stages of RNA-seq analysis, from homoeolog expression quantification to downstream analysis used to infer key phenomena of polyploid expression evolution. In general, EAGLE-RC and GSNAP-PolyCat outperform other quantification pipelines tested, and their derived expression dataset best represents the expected homoeolog expression and co-expression divergence. The performance of co-expression network analysis was less affected by homoeolog quantification than by network construction methods, where weighted networks outperformed binary networks. By examining the extent and consequences of homoeolog read ambiguity, we illuminate the potential artifacts that may affect our understanding of duplicate gene expression, including an overestimation of homoeolog co-regulation and the incorrect inference of subgenome asymmetry in network topology. Taken together, our work points to a set of reasonable practices that we hope are broadly applicable to the evolutionary exploration of polyploids.
Collapse
Affiliation(s)
- Guanjing Hu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Mark A Arick
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Meiling Liu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Daniel G Peterson
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
42
|
Sri T, Gupta B, Tyagi S, Singh A. Homeologs of Brassica SOC1, a central regulator of flowering time, are differentially regulated due to partitioning of evolutionarily conserved transcription factor binding sites in promoters. Mol Phylogenet Evol 2020; 147:106777. [PMID: 32126279 DOI: 10.1016/j.ympev.2020.106777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/03/2020] [Accepted: 02/26/2020] [Indexed: 01/06/2023]
Abstract
Evolution of Brassica genome post-polyploidization reveals asymmetrical genome fractionation and copy number variation. Herein, we describe the impact of promoter divergence among SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) homeologs on expression and function in Brassica spp. SOC1, a regulated floral pathway integrator, is conserved as 3 redundant homeologs in diploid Brassicas. Even with high sequence identity within coding regions (92.8-100%), the spatio-temporal expression patterns of 9 SOC1 homologs in B. juncea and B. nigra indicates regulatory divergence. While LF and MF2 SOC1 homeologs are upregulated during floral transition, MF1 is barely expressed. Also, MF2 homeolog levels do not decline post-flowering, unlike LF. To investigate the underlying source of divergence, we analyzed the sequence and phylogeny of all reported (22) and isolated (21) upstream regions of Brassica SOC1. Full length upstream regions (4712-19189 bp) reveal 5 ubiquitously conserved ancestral Blocks, harboring binding sites of 18 TFs (TFBSs) characterized in Arabidopsis thaliana. The orthologs of these TFBSs are differentially conserved among Brassica SOC1 homeologs, imparting expression divergence. No crucial TFBSs are exclusively lost from LF_SOC1 promoter, while MF1_SOC1 has lost NF-Y binding site crucial for SOC1 activation by CONSTANS. MF2_SOC1 homeologs have lost important TFBSs (SEP3, AP1 and SMZ), responsible for SOC1 repression post-flowering. BjuAALF_SOC1 promoter (proximal 2 kb) shows ubiquitous reporter expression in B. juncea cv. Varuna transgenics, while BjuAAMF1_SOC1 promoter shows absence of reporter expression, validating the impact of TFBS divergence. Conservation of the original primary protein sequence is discovered in B. rapa homeologs (46) of 18 TFs. Co-regulation pattern of these TFs appeared similar for B. rapa LF and MF2 SOC1 homeologs; MF1 shows significant variation. Strong regulatory association is recorded for AP1, AP2, SEP3, FLC and CONSTANS/NF-Y, highlighting their importance in homeolog-specific SOC1 regulation. Correlation of B. juncea AP1, AP2 and FLC expression with SOC1 homeologs also complies with the TFBS differences. We thus conclude that redundant SOC1 loci contribute differentially to cumulative expression of SOC1 due to divergent selection of ancestral TFBSs.
Collapse
Affiliation(s)
- Tanu Sri
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi 110070, India
| | - Bharat Gupta
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi 110070, India
| | - Shikha Tyagi
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi 110070, India
| | - Anandita Singh
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi 110070, India.
| |
Collapse
|
43
|
Walsh JR, Woodhouse MR, Andorf CM, Sen TZ. Tissue-specific gene expression and protein abundance patterns are associated with fractionation bias in maize. BMC PLANT BIOLOGY 2020; 20:4. [PMID: 31900107 PMCID: PMC6942271 DOI: 10.1186/s12870-019-2218-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 12/24/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Maize experienced a whole-genome duplication event approximately 5 to 12 million years ago. Because this event occurred after speciation from sorghum, the pre-duplication subgenomes can be partially reconstructed by mapping syntenic regions to the sorghum chromosomes. During evolution, maize has had uneven gene loss between each ancient subgenome. Fractionation and divergence between these genomes continue today, constantly changing genetic make-up and phenotypes and influencing agronomic traits. RESULTS Here we regenerate the subgenome reconstructions for the most recent maize reference genome assembly. Based on both expression and abundance data for homeologous gene pairs across multiple tissues, we observed functional divergence of genes across subgenomes. Although the genes in the larger maize subgenome are often expressing more highly than their homeologs in the smaller subgenome, we observed cases where homeolog expression dominance switches in different tissues. We demonstrate for the first time that protein abundances are higher in the larger subgenome, but they also show tissue-specific dominance, a pattern similar to RNA expression dominance. We also find that pollen expression is uniquely decoupled from protein abundance. CONCLUSION Our study shows that the larger subgenome has a greater range of functional assignments and that there is a relative lack of overlap between the subgenomes in terms of gene functions than would be suggested by similar patterns of gene expression and protein abundance. Our study also revealed that some reactions are catalyzed uniquely by the larger and smaller subgenomes. The tissue-specific, nonequivalent expression-level dominance pattern observed here implies a change in regulatory control which favors differentiated selective pressure on the retained duplicates leading to eventual change in gene functions.
Collapse
Affiliation(s)
- Jesse R Walsh
- U.S. Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA, 50011, USA
| | - Margaret R Woodhouse
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA, 94710, USA
| | - Carson M Andorf
- U.S. Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA, 50011, USA
- Department of Computer Science, Iowa State University, Ames, IA, 50011, USA
| | - Taner Z Sen
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA, 94710, USA.
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
44
|
Zhang T, Zhou G, Goring DR, Liang X, Macgregor S, Dai C, Wen J, Yi B, Shen J, Tu J, Fu T, Ma C. Generation of Transgenic Self-Incompatible Arabidopsis thaliana Shows a Genus-Specific Preference for Self-Incompatibility Genes. PLANTS 2019; 8:plants8120570. [PMID: 31817214 PMCID: PMC6963867 DOI: 10.3390/plants8120570] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022]
Abstract
Brassicaceae species employ both self-compatibility and self-incompatibility systems to regulate post-pollination events. Arabidopsis halleri is strictly self-incompatible, while the closely related Arabidopsis thaliana has transitioned to self-compatibility with the loss of functional S-locus genes during evolution. The downstream signaling protein, ARC1, is also required for the self-incompatibility response in some Arabidopsis and Brassica species, and its gene is deleted in the A. thaliana genome. In this study, we attempted to reconstitute the SCR-SRK-ARC1 signaling pathway to restore self-incompatibility in A. thaliana using genes from A. halleri and B. napus, respectively. Several of the transgenic A. thaliana lines expressing the A. halleriSCR13-SRK13-ARC1 transgenes displayed self-incompatibility, while all the transgenic A. thaliana lines expressing the B. napusSCR1-SRK1-ARC1 transgenes failed to show any self-pollen rejection. Furthermore, our results showed that the intensity of the self-incompatibility response in transgenic A. thaliana plants was not associated with the expression levels of the transgenes. Thus, this suggests that there are differences between the Arabidopsis and Brassica self-incompatibility signaling pathways, which perhaps points to the existence of other factors downstream of B. napusSRK that are absent in Arabidopsis species.
Collapse
Affiliation(s)
- Tong Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Guilong Zhou
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Daphne R. Goring
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
- Centre for Genome Analysis & Function, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Xiaomei Liang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Stuart Macgregor
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: ; Tel.: +86-27-8728-18-07
| |
Collapse
|
45
|
Tang CY, Li S, Wang YT, Wang X. Comparative genome/transcriptome analysis probes Boraginales' phylogenetic position, WGDs in Boraginales, and key enzyme genes in the alkannin/shikonin core pathway. Mol Ecol Resour 2019; 20:228-241. [PMID: 31625679 DOI: 10.1111/1755-0998.13104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 12/27/2022]
Abstract
Boraginales (the forget-me-not order) is a core group within the lamiids clade. However, until now, no genome from Boraginales has been reported, and published transcriptomes are also rare. Here, we report the first Boraginales species de novo genome (i.e. Echium plantagineum genome) and seven other Boraginales species transcriptomes to probe three issues: (i) Boraginales' phylogenetic position within the lamiids clade; (ii) potential whole genome duplications (WGDs) in Boraginales; and (iii) candidate key enzyme genes in the alkannin/shikonin core pathway. The results showed that: (i) Boraginales was most probably closer to the Solanales/Gentianales clade than the Lamiales clade, at least based on the single-copy orthologous genes from genome/transcriptome data; (ii) after the gamma (γ) event, Boraginaceae (classified into the Boraginales I clade) probably underwent at least two rounds of WGD, whereas Heliotropiaceae and Ehretiaceae (classified into the Boraginales II clade) probably underwent only one round of WGD; and (iii) several candidate key enzyme genes in the alkannin/shikonin core pathway were inferred, e.g. genes corresponding to geranyl cyclase, naphthol hydroxylase and O-acyl transferase.
Collapse
Affiliation(s)
- Cheng-Yi Tang
- School of the Environment, Nanjing University, Nanjing, China
| | - Song Li
- School of the Environment, Nanjing University, Nanjing, China.,Biomarker Technologies Corporation, Beijing, China
| | | | - Xi Wang
- Biomarker Technologies Corporation, Beijing, China
| |
Collapse
|
46
|
Ciska M, Hikida R, Masuda K, Moreno Díaz de la Espina S. Evolutionary history and structure of nuclear matrix constituent proteins, the plant analogues of lamins. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2651-2664. [PMID: 30828723 PMCID: PMC6506774 DOI: 10.1093/jxb/erz102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/20/2019] [Indexed: 05/09/2023]
Abstract
Nuclear matrix constituent proteins (NMCPs), the structural components of the plant lamina, are considered to be the analogues of lamins in plants based on numerous structural and functional similarities. Current phylogenetic knowledge suggests that, in contrast to lamins, which are widely distributed in eukaryotes, NMCPs are taxonomically restricted to Streptophyta. At present, most information about NMCPs comes from angiosperms, and virtually no data are available from more ancestral groups. In angiosperms, the NMCP family comprises two phylogenetic groups, NMCP1 and NMCP2, which evolved from the NMCP1 and NMCP2 progenitor genes. Based on sequence conservation and the presence of NMCP-specific domains, we determined the structure and number of NMCP genes present in different Streptophyta clades. We analysed 91 species of embryophytes and report additional NMCP sequences from mosses, liverworts, clubmosses, horsetail, ferns, gymnosperms, and Charophyta algae. Our results confirm an origin of NMCPs in Charophyta (the earliest diverging group of Streptophyta), resolve the number and structure of NMCPs in the different clades, and propose the emergence of additional NMCP homologues by whole-genome duplication events. Immunofluorescence microscopy demonstrated localization of a basal NMCP from the moss Physcomitrella patens at the nuclear envelope, suggesting a functional conservation for basal and more evolved NMCPs.
Collapse
Affiliation(s)
- Malgorzata Ciska
- Cell and Molecular Biology Department, Centre of Biological Researches, CSIC, Ramiro de Maeztu, Madrid, Spain
| | - Riku Hikida
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo Japan
| | - Kiyoshi Masuda
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo Japan
| | - Susana Moreno Díaz de la Espina
- Cell and Molecular Biology Department, Centre of Biological Researches, CSIC, Ramiro de Maeztu, Madrid, Spain
- Correspondence:
| |
Collapse
|
47
|
Pont C, Wagner S, Kremer A, Orlando L, Plomion C, Salse J. Paleogenomics: reconstruction of plant evolutionary trajectories from modern and ancient DNA. Genome Biol 2019; 20:29. [PMID: 30744646 PMCID: PMC6369560 DOI: 10.1186/s13059-019-1627-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
How contemporary plant genomes originated and evolved is a fascinating question. One approach uses reference genomes from extant species to reconstruct the sequence and structure of their common ancestors over deep timescales. A second approach focuses on the direct identification of genomic changes at a shorter timescale by sequencing ancient DNA preserved in subfossil remains. Merged within the nascent field of paleogenomics, these complementary approaches provide insights into the evolutionary forces that shaped the organization and regulation of modern genomes and open novel perspectives in fostering genetic gain in breeding programs and establishing tools to predict future population changes in response to anthropogenic pressure and global warming.
Collapse
Affiliation(s)
- Caroline Pont
- INRA-UCA UMR 1095 Génétique Diversité et Ecophysiologie des Céréales, 63100, Clermont-Ferrand, France
| | - Stefanie Wagner
- Laboratoire d'Anthropobiologie Moléculaire et d'Imagerie de Synthèse, CNRS UMR 5288, allées Jules Guesde, Bâtiment A, 31000, Toulouse, France.,INRA-Université Bordeaux UMR1202, Biodiversité Gènes et Communautés, 33610, Cestas, France
| | - Antoine Kremer
- INRA-Université Bordeaux UMR1202, Biodiversité Gènes et Communautés, 33610, Cestas, France
| | - Ludovic Orlando
- Laboratoire d'Anthropobiologie Moléculaire et d'Imagerie de Synthèse, CNRS UMR 5288, allées Jules Guesde, Bâtiment A, 31000, Toulouse, France.,Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade, 1350K, Copenhagen, Denmark
| | - Christophe Plomion
- INRA-Université Bordeaux UMR1202, Biodiversité Gènes et Communautés, 33610, Cestas, France
| | - Jerome Salse
- INRA-UCA UMR 1095 Génétique Diversité et Ecophysiologie des Céréales, 63100, Clermont-Ferrand, France.
| |
Collapse
|
48
|
Escalera-Fanjul X, Quezada H, Riego-Ruiz L, González A. Whole-Genome Duplication and Yeast’s Fruitful Way of Life. Trends Genet 2019; 35:42-54. [DOI: 10.1016/j.tig.2018.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/10/2018] [Accepted: 09/27/2018] [Indexed: 01/30/2023]
|
49
|
Identification and Characterization of the EXO70 Gene Family in Polyploid Wheat and Related Species. Int J Mol Sci 2018; 20:ijms20010060. [PMID: 30586859 PMCID: PMC6337732 DOI: 10.3390/ijms20010060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/13/2018] [Accepted: 12/21/2018] [Indexed: 12/24/2022] Open
Abstract
The EXO70 gene family is involved in different biological processes in plants, ranging from plant polar growth to plant immunity. To date, analysis of the EXO70 gene family has been limited in Triticeae species, e.g., hexaploidy Triticum aestivum and its ancestral/related species. By in silico analysis of multiple Triticeae sequence databases, a total of 200 EXO70 members were identified. By homologue cloning approaches, 15 full-length cDNA of EXO70s were cloned from diploid Haynaldia villosa. Phylogenetic relationship analysis of 215 EXO70 members classified them into three groups (EXO70.1, EXO70.2, and EXO70.3) and nine subgroups (EXO70A to EXO70I). The distribution of most EXO70 genes among different species/sub-genomes were collinear, implying their orthologous relationship. The EXO70A subgroup has the most introns (at least five introns), while the remaining seven subgroups have only one intron on average. The expression profiling of EXO70 genes from wheat revealed that 40 wheat EXO70 genes were expressed in at least one tissue (leaf, stem, or root), of which 25 wheat EXO70 genes were in response to at least one biotic stress (stripe rust or powdery mildew) or abiotic stress (drought or heat). Subcellular localization analysis showed that ten EXO70-V proteins had distinct plasma membrane localization, EXO70I1-V showed a distinctive spotted pattern on the membrane. The 15 EXO70-V genes were differentially expressed in three tissue. Apart from EXO70D2-V, the remaining EXO70-V genes were in response to at least one stress (flg22, chitin, powdery mildew, drought, NaCl, heat, or cold) or phytohormones (salicylic acid, methyl jasmonate, ethephon, or abscisic acid) and hydrogen peroxide treatments. This research provides a genome-wide glimpse of the Triticeae EXO70 gene family and those up- or downregulated genes require further validation of their biological roles in response to biotic/abiotic stresses.
Collapse
|
50
|
Tyagi S, Mazumdar PA, Mayee P, Shivaraj SM, Anand S, Singh A, Madhurantakam C, Sharma P, Das S, Kumar A, Singh A. Natural variation in Brassica FT homeologs influences multiple agronomic traits including flowering time, silique shape, oil profile, stomatal morphology and plant height in B. juncea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:251-266. [PMID: 30466591 DOI: 10.1016/j.plantsci.2018.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 06/09/2023]
Abstract
Natural structural variants of regulatory proteins causing quantitative phenotypic consequences have not been reported in plants. Herein, we show that 28 natural structural variants of FT homeologs, isolated from 6 species of Brassica, differ with respect to amino-acid substitutions in regions critical for interactions with FD and represent two evolutionarily distinct categories. Analysis of structural models of selected candidates from Brassica juncea (BjuFT_AAMF1) and Brassica napus (BnaFT_CCLF) predicted stronger binding between BjuFT and Arabidopsis thaliana FD. Over-expression of BjuFT and BnaFT in wild type and ft-10 mutant backgrounds of Arabidopsis validated higher potency of BjuFT in triggering floral transition. Analysis of gain-of-function and artificial miRNA mediated silenced lines of B. juncea implicated Brassica FT in multiple agronomic traits beyond flowering, consistent with a pleiotropic effect. Several dependent and independent traits such as lateral branching, silique shape, seed size, oil-profile, stomatal morphology and plant height were found altered in mutant lines. Enhanced FT levels caused early flowering, which in turn was positively correlated to a higher proportion of desirable fatty acids (PUFA). However, higher FT levels also resulted in altered silique shape and reduced seed size, suggesting trait trade-offs. Modulation of FT levels for achieving optimal balance of trait values and parsing pair-wise interactions among a reportoire of regulatory protein homeologs in polyploid genomes are indeed future areas of crop research.
Collapse
Affiliation(s)
- Shikha Tyagi
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | | | - Pratiksha Mayee
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India; Department of Research, Ankur Seeds Pvt. Ltd., 27, Nagpur, Maharashtra, 440018, India
| | - S M Shivaraj
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India; Departement de Phytologie, Université Laval, Quebec City, Quebec, G1V 0A6, Canada
| | - Saurabh Anand
- Department of Botany, University of Delhi, New Delhi, 110007, India
| | - Anupama Singh
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | - Chaithanya Madhurantakam
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | - Prateek Sharma
- Department of Energy and Environment, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | - Sandip Das
- Department of Botany, University of Delhi, New Delhi, 110007, India
| | - Arun Kumar
- National Phytotron Facility, IARI, New Delhi, 110012, India
| | - Anandita Singh
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India.
| |
Collapse
|