1
|
Dai H, Hu L, Wang J, Yue Z, Wang J, Chen T, Li J, Dou T, Yu J, Liu Z. Constructing a Novel Disease Resistance Mechanism Model for Cruciferous Crops: An Example From Black Rot. MOLECULAR PLANT PATHOLOGY 2025; 26:e70060. [PMID: 39924905 PMCID: PMC11808048 DOI: 10.1111/mpp.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
Cruciferous crops are essential components of global agricultural production due to their rich nutritional value and extensive economic benefits. Black rot caused by Xanthomonas campestris pv. campestris (Xcc) has caused significant losses to cruciferous crops. Therefore, studying the resistance mechanisms of cruciferous crops to improve the disease resistance of cruciferous crops is of significant practical importance. This review introduces the biological characteristics and epidemiological patterns of the Xcc. The main resistance mechanisms including the physical barrier functions, immune responses, systemic resistance, regulation of photosynthesis, antimicrobial effects of secondary metabolites, production and regulation of reactive oxygen species, and the signalling pathways of salicylic acid, jasmonic acid and ethylene of cruciferous crops to Xcc are also summarised. Comprehensive knowledge of these resistance mechanisms will provide theoretical support for enhancing disease resistance in crops.
Collapse
Affiliation(s)
- Haojie Dai
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Linli Hu
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Jie Wang
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Zhibin Yue
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Jue Wang
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Tongyan Chen
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Jinbao Li
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Tingting Dou
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Jihua Yu
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Zeci Liu
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| |
Collapse
|
2
|
Dong B, Liu Y, Huang G, Song A, Chen S, Jiang J, Chen F, Fang W. Plant NAC transcription factors in the battle against pathogens. BMC PLANT BIOLOGY 2024; 24:958. [PMID: 39396978 PMCID: PMC11472469 DOI: 10.1186/s12870-024-05636-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND The NAC transcription factor family, which is recognized as one of the largest plant-specific transcription factor families, comprises numerous members that are widely distributed among various higher plant species and play crucial regulatory roles in plant immunity. RESULTS In this paper, we provided a detailed summary of the roles that NAC transcription factors play in plant immunity via plant hormone pathways and reactive oxygen species pathways. In addition, we conducted in-depth investigations into the interactions between NAC transcription factors and pathogen effectors to summarize the mechanism through which they regulate the expression of defense-related genes and ultimately affect plant disease resistance. CONCLUSIONS This paper presented a comprehensive overview of the crucial roles that NAC transcription factors play in regulating plant disease resistance through their involvement in diverse signaling pathways, acting as either positive or negative regulators, and thus provided references for further research on NAC transcription factors.
Collapse
Affiliation(s)
- Boxiao Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Ye Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China.
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China.
| | - Gan Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China.
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
3
|
Xiong Z, Zhang W, Yin H, Wan J, Wu Z, Gao Y. Diversity and Evolution of NLR Genes in Citrus Species. BIOLOGY 2024; 13:822. [PMID: 39452131 PMCID: PMC11504038 DOI: 10.3390/biology13100822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
NLR genes are crucial components of the effector-triggered immunity (ETI) system, responsible for recognizing pathogens and initiating immune responses. Although NLR genes in many plant species have been extensively studied, the diversity of NLR genes in citrus remains largely unknown. Our analysis revealed significant variations in the copy numbers of NLR genes among these species. Gene duplication and recombination were identified as the major driving forces behind this diversity. Additionally, horizontal gene transfer (HGT) emerged as the principal mechanism responsible for the increase in NLR gene copy number in A. buxifolia. The citrus NLR genes were classified into four categories: TIR-NBS-LRR (TNL), CC-NBS-LRR (CNL), RPW8-NBS-LRR (RNL), and NL. Our findings indicate that TNL, RNL, and CNL genes originated from NL genes through the acquisition of TIR and RPW8 domains, along with CC motifs, followed by the random loss of corresponding domains. Phylogenetic analysis suggested that citrus NLR genes originated alongside the species and underwent adaptive evolution, potentially playing crucial roles in the global colonization of citrus. This study provides important insights into the diversity of citrus NLR genes and serves as a foundational dataset for future research aimed at breeding disease-resistant citrus varieties.
Collapse
Affiliation(s)
- Zhiwei Xiong
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China; (Z.X.); (W.Z.); (H.Y.); (J.W.); (Z.W.)
| | - Wanshan Zhang
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China; (Z.X.); (W.Z.); (H.Y.); (J.W.); (Z.W.)
| | - Hui Yin
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China; (Z.X.); (W.Z.); (H.Y.); (J.W.); (Z.W.)
| | - Jiaxing Wan
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China; (Z.X.); (W.Z.); (H.Y.); (J.W.); (Z.W.)
| | - Zhuozhuo Wu
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China; (Z.X.); (W.Z.); (H.Y.); (J.W.); (Z.W.)
| | - Yuxia Gao
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China; (Z.X.); (W.Z.); (H.Y.); (J.W.); (Z.W.)
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants (2024SSY04181), Ganzhou 341000, China
| |
Collapse
|
4
|
Wu D, Lei K, Wang D, Fu ZQ. Effector-triggered and self-regulated plant resistance to insects. TRENDS IN PLANT SCIENCE 2024; 29:1-3. [PMID: 37838518 DOI: 10.1016/j.tplants.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
Despite many years of research, the molecular mechanisms underlying the activation and regulation of host plant resistance (HPR) to insects remain elusive. Recently, Guo et al. reported that a nucleotide-binding leucine-rich repeat NLR protein activates HPR through direct recognition of an insect effector and that autophagy-mediated degradation of this effector negatively regulates HPR.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Kang Lei
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
5
|
Chen J, Chen J, Sun Z. Staying vigilant: NLR monitors virus invasion. TRENDS IN PLANT SCIENCE 2023; 28:617-619. [PMID: 36935266 DOI: 10.1016/j.tplants.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 05/13/2023]
Abstract
Phytohormones play important roles in plant immunity. Recently, Chen et al. discovered that the tomato spotted wilt virus attacks the plant hormone receptor to promote infection. Plants evolved an immune receptor to mimic the attacked hormone receptors to recognize the virus, thereby activating a robust immune response.
Collapse
Affiliation(s)
- Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang 212013, China.
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China.
| |
Collapse
|
6
|
Zhang S, Chen J. Ubiquitination of PHYTOSULFOKINE RECEPTOR1 regulates plant immunity. PLANT PHYSIOLOGY 2023:kiad224. [PMID: 37061833 DOI: 10.1093/plphys/kiad224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Affiliation(s)
- Shiqing Zhang
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists, USA
| |
Collapse
|
7
|
Zhai R, Huang A, Mo R, Zou C, Wei X, Yang M, Tan H, Huang K, Qin J. SNP-based bulk segregant analysis revealed disease resistance QTLs associated with northern corn leaf blight in maize. Front Genet 2022; 13:1038948. [PMID: 36506330 PMCID: PMC9732028 DOI: 10.3389/fgene.2022.1038948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Maize (Zea mays L.) is the most important food security crop worldwide. Northern corn leaf blight (NCLB), caused by Exserohilum turcicum, severely reduces production causing millions of dollars in losses worldwide. Therefore, this study aimed to identify significant QTLs associated with NCLB by utilizing next-generation sequencing-based bulked-segregant analysis (BSA). Parental lines GML71 (resistant) and Gui A10341 (susceptible) were used to develop segregating population F2. Two bulks with 30 plants each were further selected from the segregating population for sequencing along with the parental lines. High throughput sequencing data was used for BSA. We identified 10 QTLs on Chr 1, Chr 2, Chr 3, and Chr 5 with 265 non-synonymous SNPs. Moreover, based on annotation information, we identified 27 candidate genes in the QTL regions. The candidate genes associated with disease resistance include AATP1, At4g24790, STICHEL-like 2, BI O 3-BIO1, ZAR1, SECA2, ABCG25, LECRK54, MKK7, MKK9, RLK902, and DEAD-box ATP-dependent RNA helicase. The annotation information suggested their involvement in disease resistance-related pathways, including protein phosphorylation, cytoplasmic vesicle, protein serine/threonine kinase activity, and ATP binding pathways. Our study provides a substantial addition to the available information regarding QTLs associated with NCLB, and further functional verification of identified candidate genes can broaden the scope of understanding the NCLB resistance mechanism in maize.
Collapse
Affiliation(s)
- Ruining Zhai
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Aihua Huang
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Runxiu Mo
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Chenglin Zou
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Xinxing Wei
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Meng Yang
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Hua Tan
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Kaijian Huang
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China,*Correspondence: Kaijian Huang, ; Jie Qin,
| | - Jie Qin
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China,*Correspondence: Kaijian Huang, ; Jie Qin,
| |
Collapse
|
8
|
Liu N, Chen H, Wang X, Wang D, Fu ZQ. TIRggering cell death via two enzymatic reactions. MOLECULAR PLANT 2022; 15:1263-1265. [PMID: 35808828 DOI: 10.1016/j.molp.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Na Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Huan Chen
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Xu Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
9
|
Huang F, Wu F, Yu M, Shabala S. Nucleotide-binding leucine-rich repeat proteins: a missing link in controlling cell fate and plant adaptation to hostile environment? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:631-635. [PMID: 34661650 DOI: 10.1093/jxb/erab458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Programmed cell death is a tightly regulated genetically controlled process that leads to cell suicide and eliminates cells that are either no longer needed or damaged/harmful. Nucleotide-binding leucine-rich repeat proteins have recently emerged as a novel class of Ca2+-permeable channels that operate in plant immune responses. This viewpoint argues that the unique structure of this channel, its permeability to other cations, and specificity of its operation make it an ideal candidate to mediate cell signaling and adaptive responses not only to pathogens but also to a broad range of abiotic stress factors.
Collapse
Affiliation(s)
- Feifei Huang
- College of Life and Oceanography Sciences, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Feihua Wu
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan Guangdong 528000, China
| | - Min Yu
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan Guangdong 528000, China
| | - Sergey Shabala
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan Guangdong 528000, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7005, Australia
| |
Collapse
|
10
|
Khan MSS, Islam F, Chen H, Chang M, Wang D, Liu F, Fu ZQ, Chen J. Transcriptional Coactivators: Driving Force of Plant Immunity. FRONTIERS IN PLANT SCIENCE 2022; 13:823937. [PMID: 35154230 PMCID: PMC8831314 DOI: 10.3389/fpls.2022.823937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/10/2022] [Indexed: 05/03/2023]
Abstract
Salicylic acid (SA) is a plant defense signal that mediates local and systemic immune responses against pathogen invasion. However, the underlying mechanism of SA-mediated defense is very complex due to the involvement of various positive and negative regulators to fine-tune its signaling in diverse pathosystems. Upon pathogen infections, elevated level of SA promotes massive transcriptional reprogramming in which Non-expresser of PR genes 1 (NPR1) acts as a central hub and transcriptional coactivator in defense responses. Recent findings show that Enhanced Disease Susceptibility 1 (EDS1) also functions as a transcriptional coactivator and stimulates the expression of PR1 in the presence of NPR1 and SA. Furthermore, EDS1 stabilizes NPR1 protein level, while NPR1 sustains EDS1 expression during pathogenic infection. The interaction of NPR1 and EDS1 coactivators initiates transcriptional reprogramming by recruiting cyclin-dependent kinase 8 in the Mediator complex to control immune responses. In this review, we highlight the recent breakthroughs that considerably advance our understanding on how transcriptional coactivators interact with their functional partners to trigger distinct pathways to facilitate immune responses, and how SA accumulation induces dynamic changes in NPR1 structure for transcriptional reprogramming. In addition, the functions of different Mediator subunits in SA-mediated plant immunity are also discussed in light of recent discoveries. Taken together, the available evidence suggests that transcriptional coactivators are essential and potent regulators of plant defense pathways and play crucial roles in coordinating plant immune responses during plant-pathogen interactions.
Collapse
Affiliation(s)
| | - Faisal Islam
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Huan Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - Ming Chang
- The Key Laboratory of Bio-interactions and Plant Health, College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- *Correspondence: Fengquan Liu,
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Zheng Qing Fu,
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, China
- Jian Chen,
| |
Collapse
|