1
|
Li F, Tan X, Li S, Chen S, Liu L, Huang J, Li G, Lu Z, Wu J, Zeng D, Luo Y, Dong X, Ma X, Zhu Q, Chen L, Liu YG, Chen C, Xie X. SuperDecode: An integrated toolkit for analyzing mutations induced by genome editing. MOLECULAR PLANT 2025; 18:690-702. [PMID: 40045573 DOI: 10.1016/j.molp.2025.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/09/2025] [Accepted: 03/01/2025] [Indexed: 04/01/2025]
Abstract
Genome editing using CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein) or other systems has become a cornerstone of numerous biological and applied research fields. However, detecting the resulting mutations by analyzing sequencing data remains time consuming and inefficient. In response to this issue, we designed SuperDecode, an integrated software toolkit for analyzing editing outcomes using a range of sequencing strategies. SuperDecode comprises three modules, DSDecodeMS, HiDecode, and LaDecode, each designed to automatically decode mutations from Sanger, high-throughput short-read, and long-read sequencing data, respectively, from targeted PCR amplicons. By leveraging specific strategies for constructing sequencing libraries of pooled multiple amplicons, HiDecode and LaDecode facilitate large-scale identification of mutations induced by single or multiplex target-site editing in a cost-effective manner. We demonstrate the efficacy of SuperDecode by analyzing mutations produced using different genome editing tools (CRISPR/Cas, base editing, and prime editing) in different materials (diploid and tetraploid rice and protoplasts), underscoring its versatility in decoding genome editing outcomes across different applications. Furthermore, this toolkit can be used to analyze other genetic variations, as exemplified by its ability to estimate the C-to-U editing rate of the cellular RNA of a mitochondrial gene. SuperDecode offers both a standalone software package and a web-based version, ensuring its easy access and broad compatibility across diverse computer systems. Thus, SuperDecode provides a comprehensive platform for analyzing a wide array of mutations, advancing the utility of genome editing for scientific research and genetic engineering.
Collapse
Affiliation(s)
- Fuquan Li
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiyu Tan
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shengting Li
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shaotong Chen
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Lin Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing 210095, China
| | - Jingjing Huang
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Gufeng Li
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zijun Lu
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jinwen Wu
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Dongchang Zeng
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yanqiu Luo
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoou Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing 210095, China
| | - Xingliang Ma
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7H 0W9, Canada
| | - Qinlong Zhu
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Letian Chen
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yao-Guang Liu
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Chengjie Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & National Key Laboratory for Tropical Crop Breeding & Laboratory of Crop Gene Resources and Germplasm Enhancement in South China, Ministry of Agriculture and Rural Affairs & Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China.
| | - Xianrong Xie
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Ying Y, Zhang J, Hong X, Yuan W, Ma K, Huang X, Xu X, Zhu F. Comprehensive Annotation of Complete ABO Alleles and Resolution of ABO Variants by an Improved Full-Length ABO Haplotype Sequencing. Clin Chem 2025; 71:510-519. [PMID: 40048657 DOI: 10.1093/clinchem/hvaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/21/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND Full-length ABO haplotype sequencing is crucial for accurate genotyping, reference gene annotation, and molecular mechanism analysis of its variants. However, there is currently a deficiency of comprehensive annotation for full-length ABO haplotypes, spanning from the 5' untranslated region (UTR) to the 3' UTR. METHODS Two sets of specimens (79 random blood donors and 47 ABO variants) were tested. The full-length ABO gene spanning the 5' UTR to the 3' UTR was amplified using an improved one-step ultra-long-range PCR with a pair of PCR suppression primers. A single-molecule real-time library was constructed, and ABO haplotype sequencing was performed. Data analysis including basecalling, aligning, variant calling, clustering, and variant annotation were performed. RESULTS The amplicon measured 26.1 kb without splicing, representing the most complete ABO gene reported to date. The complete ABO haplotype sequence was obtained via long-read sequencing. The comprehensive ABO reference alleles were obtained and the ABO sequence patterns within each allele in a Chinese population were further classified. The full-length ABO gene haplotype analysis technique effectively resolved ABO variants with structural variations (SVs), including large fragment deletions, inversions, recombination, and chimeras. CONCLUSIONS Full-length ABO haplotype sequencing filled a gap that was missing with respect to the 3' UTR sequences of ABO alleles and can advance blood group genomic analysis, aiding in ABO gene function analysis, evolutionary studies, and the resolution of ABO variants.
Collapse
Affiliation(s)
- Yanling Ying
- Blood Center of Zhejiang Province, Blood Transfusion Medicine Research Institute, Hangzhou, Zhejiang, People's Republic of China
| | - Jingjing Zhang
- Blood Center of Zhejiang Province, Blood Transfusion Medicine Research Institute, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaozhen Hong
- Blood Center of Zhejiang Province, Blood Transfusion Medicine Research Institute, Hangzhou, Zhejiang, People's Republic of China
| | - Wenjing Yuan
- Blood Center of Zhejiang Province, Blood Transfusion Medicine Research Institute, Hangzhou, Zhejiang, People's Republic of China
| | - Kairong Ma
- Blood Center of Zhejiang Province, Blood Transfusion Medicine Research Institute, Hangzhou, Zhejiang, People's Republic of China
| | - Xinyu Huang
- Blood Center of Zhejiang Province, Blood Transfusion Medicine Research Institute, Hangzhou, Zhejiang, People's Republic of China
| | - Xianguo Xu
- Blood Center of Zhejiang Province, Blood Transfusion Medicine Research Institute, Hangzhou, Zhejiang, People's Republic of China
| | - Faming Zhu
- Blood Center of Zhejiang Province, Blood Transfusion Medicine Research Institute, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
3
|
Chen YN, Cui YZ, Chen XR, Wang JY, Li BZ, Yuan YJ. Direct cloning strategies for large genomic fragments: A review. Biotechnol Adv 2025; 79:108494. [PMID: 39637950 DOI: 10.1016/j.biotechadv.2024.108494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/08/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Mining large-scale functional regions of the genome helps to understand the essence of cellular life. The rapid accumulation of genomic information provides a wealth of material for genomic functional, evolutionary, and structural research. DNA cloning technology is an important tool for understanding, analyzing, and manipulating the genetic code of organisms. As synthetic biologists engineer greater and broader genetic pathways and expand their research into new organisms, efficient tools capable of manipulating large-scale DNA will offer momentum to the ability to design, modify, and construct engineering life. In this review, we discuss the recent advances in the field of direct cloning of large genomic fragments, particularly of 50-150 kb genomic fragments. We specifically introduce the technological advances in the targeted release and capture steps of these cloning strategies. Additionally, the applications of large fragment cloning in functional genomics and natural product mining are also summarized. Finally, we further discuss the challenges and prospects for these technologies in the future.
Collapse
Affiliation(s)
- Ya-Nan Chen
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China
| | - You-Zhi Cui
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China
| | - Xiang-Rong Chen
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China
| | - Jun-Yi Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China
| |
Collapse
|
4
|
Zheng H, Liang Y, Cheng G, Zhou J, Bi W, Hu H, Li Q. Optimization of Microsatellite Multiplex PCRs for Triploidy Verification and Genetic Diversity Assessment in the Pacific Oyster, Crassostrea gigas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:55. [PMID: 39982523 DOI: 10.1007/s10126-025-10432-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
The ploidy detection is crucial for the oyster industry. The objective of this study was to develop a method that verifies ploidy of the triploid Pacific oyster Crassostrea gigas by analyzing the diversity of triploid through microsatellite multiplex PCRs using fluorescent universal primers. We developed four information-rich multiplex PCR panels, comprising a total of 12 genomic microsatellites located in the genome of the C. gigas, distributed across seven chromosomes with an average of 14 alleles per locus. Each panel used M13(-21) primers labeled with specific fluorochrome dyes, and the forward primers for each locus were appended with M13(-21) sequences. We validated the approach to infer ploidy using flow cytometry as a reference, finding > 95% agreement between these methods, and demonstrated its potential utility to infer aneuploidy. Genotyping of 496 triploid samples from eight populations yielded 10 or more alleles per locus in 99.63% of samples in a single capillary electrophoresis. The correct assignment of triploidy depends on the number of markers with three unique allele fragments (MNM). Using semi-strict criteria of three unique alleles at one or more loci, the detection accuracy rate was 95.26% for triploids. Using the strict criteria of three unique alleles at two or more loci, the detection accuracy rate was 98.34%. Populations with reduced genetic diversity due to selective breeding were better suited for the semistrict criterion, maximizing triploid detection. And cultured populations were more suitable for evaluation using the strict criteria, which effectively reduced false-positive diploid assignment and increased triploid detection accuracy. The markers developed in this study were highly polymorphic and effective for assessing genetic diversity and distinguishing populations, providing a reliable tool for triploid detection and analysis in oyster breeding.
Collapse
Affiliation(s)
- Huilin Zheng
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yuanxin Liang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Geng Cheng
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Jianmin Zhou
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Wenlong Bi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Hong Hu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
5
|
Lin S, Xu F, Huang B, Zhao LL, Pan D, Lin S. Visual codon: a user-friendly Python program for viewing and optimizing gene GC content. PeerJ 2024; 12:e18755. [PMID: 39717051 PMCID: PMC11665431 DOI: 10.7717/peerj.18755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/03/2024] [Indexed: 12/25/2024] Open
Abstract
Due to the codon bias of different species, codon optimization is usually carried out in the process of heterologous protein expression. At present, there are a variety of codon optimization tools. However, the optimized sequences may still have high or low points of local guanine and cytosine (GC) content, which is not conducive to the primer design of gene subcloning, and also makes it difficult to perform the experiment of synthesizing the whole gene with DNA fragments by polymerase chain reaction (PCR) reaction. In this study, we present a stand-alone software written in Python, with which users can manually check and adjust the GC content of sequence-optimized genes. The software takes the codon frequency of Escherichia coli as default and can work with other species as well. It provides a Graphical User Interface (GUI) interface, which allows users to change codons and intuitively see the effect of codon changes on local GC content. Our program brings convenience for the optimization of gene GC content and the subsequent gene cloning experiments.
Collapse
Affiliation(s)
- Shiming Lin
- School of Computing and Information Science, Fuzhou Institute of Technology, Fuzhou, Fujian, China
| | - Fei Xu
- College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Bifang Huang
- Life Science College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Li-li Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Danni Pan
- College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shiqiang Lin
- Life Science College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
6
|
Albayati SH, Nezhad NG, Taki AG, Rahman RNZRA. Efficient and easible biocatalysts: Strategies for enzyme improvement. A review. Int J Biol Macromol 2024; 276:133978. [PMID: 39038570 DOI: 10.1016/j.ijbiomac.2024.133978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Owing to the environmental friendliness and vast advantages that enzymes offer in the biotechnology and industry fields, biocatalysts are a prolific investigation field. However, the low catalytic activity, stability, and specific selectivity of the enzyme limit the range of the reaction enzymes involved in. A comprehensive understanding of the protein structure and dynamics in terms of molecular details enables us to tackle these limitations effectively and enhance the catalytic activity by enzyme engineering or modifying the supports and solvents. Along with different strategies including computational, enzyme engineering based on DNA recombination, enzyme immobilization, additives, chemical modification, and physicochemical modification approaches can be promising for the wide spread of industrial enzyme usage. This is attributed to the successful application of biocatalysts in industrial and synthetic processes requires a system that exhibits stability, activity, and reusability in a continuous flow process, thereby reducing the production cost. The main goal of this review is to display relevant approaches for improving enzyme characteristics to overcome their industrial application.
Collapse
Affiliation(s)
- Samah Hashim Albayati
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Anmar Ghanim Taki
- Department of Radiology Techniques, Health and Medical Techniques College, Alnoor University, Mosul, Iraq
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Institute Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
7
|
Bai X, Chen Z, Chen K, Wu Z, Wang R, Liu J, Chang L, Wen L, Tang F. Simultaneous de novo calling and phasing of genetic variants at chromosome-scale using NanoStrand-seq. Cell Discov 2024; 10:74. [PMID: 38977679 PMCID: PMC11231365 DOI: 10.1038/s41421-024-00694-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 05/23/2024] [Indexed: 07/10/2024] Open
Abstract
The successful accomplishment of the first telomere-to-telomere human genome assembly, T2T-CHM13, marked a milestone in achieving completeness of the human reference genome. The upcoming era of genome study will focus on fully phased diploid genome assembly, with an emphasis on genetic differences between individual haplotypes. Most existing sequencing approaches only achieved localized haplotype phasing and relied on additional pedigree information for further whole-chromosome scale phasing. The short-read-based Strand-seq method is able to directly phase single nucleotide polymorphisms (SNPs) at whole-chromosome scale but falls short when it comes to phasing structural variations (SVs). To shed light on this issue, we developed a Nanopore sequencing platform-based Strand-seq approach, which we named NanoStrand-seq. This method allowed for de novo SNP calling with high precision (99.52%) and acheived a superior phasing accuracy (0.02% Hamming error rate) at whole-chromosome scale, a level of performance comparable to Strand-seq for haplotype phasing of the GM12878 genome. Importantly, we demonstrated that NanoStrand-seq can efficiently resolve the MHC locus, a highly polymorphic genomic region. Moreover, NanoStrand-seq enabled independent direct calling and phasing of deletions and insertions at whole-chromosome level; when applied to long genomic regions of SNP homozygosity, it outperformed the strategy that combined Strand-seq with bulk long-read sequencing. Finally, we showed that, like Strand-seq, NanoStrand-seq was also applicable to primary cultured cells. Together, here we provided a novel methodology that enabled interrogation of a full spectrum of haplotype-resolved SNPs and SVs at whole-chromosome scale, with broad applications for species with diploid or even potentially polypoid genomes.
Collapse
Affiliation(s)
- Xiuzhen Bai
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Changping Laboratory, Beijing, China
| | - Zonggui Chen
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Changping Laboratory, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Kexuan Chen
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
| | - Zixin Wu
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Rui Wang
- Department of Medicine, Cancer Institute, Stanford University, Stanford, CA, USA
| | - Jun'e Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Changping Laboratory, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
| | - Liang Chang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education Beijing, Beijing, China
- Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Lu Wen
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Changping Laboratory, Beijing, China
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China.
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China.
- Changping Laboratory, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
8
|
Qi Y, Yang H, Wang S, Zou L, Zhao F, Zhang Q, Hong Y, Luo Q, Zhou Q, Geng P, Chen H, Ji F, Cai J, Dai D. Identification and Functional Assessment of Eight CYP3A4 Allelic Variants *39-*46 Detected in the Chinese Han Population. Drug Metab Dispos 2024; 52:218-227. [PMID: 38195522 DOI: 10.1124/dmd.123.001542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
Cytochrome P450 3A4 (CYP3A4), a key enzyme, is pivotal in metabolizing approximately half of the drugs used clinically. The genetic polymorphism of the CYP3A4 gene significantly influences individual variations in drug metabolism, potentially leading to severe adverse drug reactions (ADRs). In this study, we conducted a genetic analysis on CYP3A4 gene in 1163 Chinese Han individuals to identify the genetic variations that might affect their drug metabolism capabilities. For this purpose, a multiplex polymerase chain reaction (PCR) amplicon sequencing technique was developed, enabling us to perform the genotyping of CYP3A4 gene efficiently and economically on a large scale. As a result, a total of 14 CYP3A4 allelic variants were identified, comprising six previously reported alleles and eight new nonsynonymous variants that were nominated as new allelic variants *39-*46 by the PharmVar Association. Further, functional assessments of these novel CYP3A4 variants were undertaken by coexpressing them with cytochromes P450 oxidoreductase (CYPOR) in Saccharomyces cerevisiae microsomes. Immunoblot analysis indicated that with the exception of CYP3A4.40 and CYP3A4.45, the protein expression levels of most new variants were similar to that of the wild-type CYP3A4.1 in yeast cells. To evaluate their catalytic activities, midazolam was used as a probe drug. The results showed that variant CYP3A4.45 had almost no catalytic activity, whereas the other variants exhibited significantly reduced drug metabolism abilities. This suggests that the majority of the CYP3A4 variants identified in the Chinese population possess markedly altered capacities for drug metabolism. SIGNIFICANCE STATEMENT: In this study, we established a multiplex polymerase chain reaction (PCR) amplicon sequencing method and detected the maximum number of new CYP3A4 variants in a single ethnic population. Additionally, we performed the functional characterizations of these eight novel CYP3A4 allele variants in vitro. This study not only contributes to the understanding of CYP3A4 genetic polymorphism in the Chinese Han population but also holds substantial reference value for their potential clinical applications in personalized medicine.
Collapse
Affiliation(s)
- Yuying Qi
- Peking University Fifth School of Clinical Medicine, Beijing, China (Y.Q., H.Y., D.D.); The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China (H.Y., F.Z., J.C.); Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, China (S.W., Q.Z., P.G.); and Department of Cardiology (L.Z., Q.Z., H.C., F.J.) and Department of Gastroenterology (Y.H., Q.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Hang Yang
- Peking University Fifth School of Clinical Medicine, Beijing, China (Y.Q., H.Y., D.D.); The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China (H.Y., F.Z., J.C.); Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, China (S.W., Q.Z., P.G.); and Department of Cardiology (L.Z., Q.Z., H.C., F.J.) and Department of Gastroenterology (Y.H., Q.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuanghu Wang
- Peking University Fifth School of Clinical Medicine, Beijing, China (Y.Q., H.Y., D.D.); The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China (H.Y., F.Z., J.C.); Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, China (S.W., Q.Z., P.G.); and Department of Cardiology (L.Z., Q.Z., H.C., F.J.) and Department of Gastroenterology (Y.H., Q.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lili Zou
- Peking University Fifth School of Clinical Medicine, Beijing, China (Y.Q., H.Y., D.D.); The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China (H.Y., F.Z., J.C.); Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, China (S.W., Q.Z., P.G.); and Department of Cardiology (L.Z., Q.Z., H.C., F.J.) and Department of Gastroenterology (Y.H., Q.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Fangling Zhao
- Peking University Fifth School of Clinical Medicine, Beijing, China (Y.Q., H.Y., D.D.); The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China (H.Y., F.Z., J.C.); Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, China (S.W., Q.Z., P.G.); and Department of Cardiology (L.Z., Q.Z., H.C., F.J.) and Department of Gastroenterology (Y.H., Q.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qing Zhang
- Peking University Fifth School of Clinical Medicine, Beijing, China (Y.Q., H.Y., D.D.); The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China (H.Y., F.Z., J.C.); Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, China (S.W., Q.Z., P.G.); and Department of Cardiology (L.Z., Q.Z., H.C., F.J.) and Department of Gastroenterology (Y.H., Q.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Hong
- Peking University Fifth School of Clinical Medicine, Beijing, China (Y.Q., H.Y., D.D.); The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China (H.Y., F.Z., J.C.); Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, China (S.W., Q.Z., P.G.); and Department of Cardiology (L.Z., Q.Z., H.C., F.J.) and Department of Gastroenterology (Y.H., Q.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qingfeng Luo
- Peking University Fifth School of Clinical Medicine, Beijing, China (Y.Q., H.Y., D.D.); The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China (H.Y., F.Z., J.C.); Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, China (S.W., Q.Z., P.G.); and Department of Cardiology (L.Z., Q.Z., H.C., F.J.) and Department of Gastroenterology (Y.H., Q.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Quan Zhou
- Peking University Fifth School of Clinical Medicine, Beijing, China (Y.Q., H.Y., D.D.); The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China (H.Y., F.Z., J.C.); Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, China (S.W., Q.Z., P.G.); and Department of Cardiology (L.Z., Q.Z., H.C., F.J.) and Department of Gastroenterology (Y.H., Q.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Peiwu Geng
- Peking University Fifth School of Clinical Medicine, Beijing, China (Y.Q., H.Y., D.D.); The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China (H.Y., F.Z., J.C.); Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, China (S.W., Q.Z., P.G.); and Department of Cardiology (L.Z., Q.Z., H.C., F.J.) and Department of Gastroenterology (Y.H., Q.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Hao Chen
- Peking University Fifth School of Clinical Medicine, Beijing, China (Y.Q., H.Y., D.D.); The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China (H.Y., F.Z., J.C.); Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, China (S.W., Q.Z., P.G.); and Department of Cardiology (L.Z., Q.Z., H.C., F.J.) and Department of Gastroenterology (Y.H., Q.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Fusui Ji
- Peking University Fifth School of Clinical Medicine, Beijing, China (Y.Q., H.Y., D.D.); The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China (H.Y., F.Z., J.C.); Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, China (S.W., Q.Z., P.G.); and Department of Cardiology (L.Z., Q.Z., H.C., F.J.) and Department of Gastroenterology (Y.H., Q.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianping Cai
- Peking University Fifth School of Clinical Medicine, Beijing, China (Y.Q., H.Y., D.D.); The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China (H.Y., F.Z., J.C.); Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, China (S.W., Q.Z., P.G.); and Department of Cardiology (L.Z., Q.Z., H.C., F.J.) and Department of Gastroenterology (Y.H., Q.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Dapeng Dai
- Peking University Fifth School of Clinical Medicine, Beijing, China (Y.Q., H.Y., D.D.); The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China (H.Y., F.Z., J.C.); Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, China (S.W., Q.Z., P.G.); and Department of Cardiology (L.Z., Q.Z., H.C., F.J.) and Department of Gastroenterology (Y.H., Q.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Zhao Z, Ding Z, Huang J, Meng H, Zhang Z, Gou X, Tang H, Xie X, Ping J, Xiao F, Liu YG, Xie Y, Chen L. Copy number variation of the restorer Rf4 underlies human selection of three-line hybrid rice breeding. Nat Commun 2023; 14:7333. [PMID: 37957162 PMCID: PMC10643609 DOI: 10.1038/s41467-023-43009-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Cytoplasmic male sterility (CMS) lines are important for breeding hybrid crops, and utilization of CMS lines requires strong fertility restorer (Rf) genes. Rf4, a major Rf for Wild-Abortive CMS (CMS-WA), has been cloned in rice. However, the Rf4 evolution and formation of CMS-WA/Rf system remain elusive. Here, we show that the Rf4 locus emerges earlier than the CMS-WA gene WA352 in wild rice, and 69 haplotypes of the Rf4 locus are generated in the Oryza genus through the copy number and sequence variations. Eight of these haplotypes of the Rf4 locus are enriched in modern rice cultivars during natural and human selections, whereas non-functional rf4i is preferentially selected for breeding current CMS-WA lines. We further verify that varieties carrying two-copy Rf4 haplotype have stronger fertility restoration ability and are widely used in three-line hybrid rice breeding. Our findings increase our understanding of CMS/Rf systems and will likely benefit crop breeding.
Collapse
Affiliation(s)
- Zhe Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zhi Ding
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jingjing Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Hengjun Meng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zixu Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xin Gou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Huiwu Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jingyao Ping
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Fangming Xiao
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yongyao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
10
|
Li S, Luo Y, Wei G, Zong W, Zeng W, Xiao D, Zhang H, Song Y, Hao Y, Sun K, Lei C, Guo X, Xu B, Li W, Wu Z, Liu Y, Xie X, Guo J. Improving yield-related traits by editing the promoter of the heading date gene Ehd1 in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:239. [PMID: 37930441 DOI: 10.1007/s00122-023-04489-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
KEY MESSAGE We developed an efficient promoter editing method to create different weak Ehd1 alleles in elite japonica rice variety ZJ8 with slightly delayed heading and improved yield for use in breeding. Heading date is an important agronomic trait of rice (Oryza sativa) that determines the planting areas and cultivation seasons of different varieties, thus affecting final yield. Early heading date 1 (Ehd1) is a major rice integrator gene in the regulatory network of heading date whose expression level is negatively correlated with heading date and grain yield. Some elite japonica varieties such as Zhongjia 8 (ZJ8) show very early heading with poor agronomic traits when planted in South China. This problem can be addressed by downregulating the expression of Ehd1. In this study, we analyzed the cis-regulatory elements in the Ehd1 promoter region. We then used CRISPR/Cas9-mediated editing to modify the Ehd1 promoter at multiple target sites in ZJ8. We rapidly identified homozygous allelic mutations in the T2 generation via long-read sequencing. We obtained several Ehd1 promoter mutants with different degrees of lower Ehd1 expression, delayed heading date, and improved yield-related traits. We developed an efficient promoter editing method to create different weak Ehd1 alleles for breeding selection. Using this method, a series of heading date materials from elite varieties can be created to expand the planting area of rice and improve grain yields.
Collapse
Affiliation(s)
- Shengting Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yanqiu Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China
| | - Guangliang Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wubei Zong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wanyong Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Dongdong Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Han Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yingang Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yu Hao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Kangli Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Chen Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaotong Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Bingqun Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Weitao Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zeqiang Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Jingxin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
11
|
Li Y, Ding B, Mao Y, Zhang H, Wang X, Ding Q. Tandem and inverted duplications in haemophilia A: Breakpoint characterisation provides insight into possible rearrangement mechanisms. Haemophilia 2023. [PMID: 37192522 DOI: 10.1111/hae.14799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
INTRODUCTION Approximately half of patients with severe haemophilia A are caused by structural variants in the F8 gene. Unlike inversions or deletions directly impairing the integrity of F8, some duplications do not completely disrupt the open reading frame or even retain an intact F8 copy. Currently, only a few duplication breakpoints were precisely characterized, and the corresponding rearrangement mechanisms and clinical outcomes remain to be further investigated. AIM Establishing an effective strategy for breakpoint characterization of duplications and revealing their rearrangement mechanisms. METHODS AccuCopy is used for the detection of duplications, long-distance PCR for the characterization of tandem duplications, genome walking technique and whole genome sequencing for the characterization of inverted duplications. RESULTS Four F8 duplication rearrangements were successfully characterized at the nucleotide level: one tandem duplication (exons 7-11) and three inverted duplications (exons 7-22, exons 2-26, and exons 15-22). Two shared features of inverted duplication were found after carefully analysing our results and breakpoint information in the literature: 1, an inverted fragment was inserted into the original chromosome via two junctions; 2, one junction is mediated by a pair of inverted repetitive elements, while the other consists of two breakpoints with microhomology. CONCLUSION Similar breakpoint features motivated us to propose a DNA replication-based model to explain the formation of duplication rearrangements. Based on our model, we further divide the inverted duplications into three basic types: type I with a DEL-NOR/INV-DUP pattern, type II with a DUP-NOR/INV-DUP pattern and type III with a DUP-TRP/INV-DUP pattern.
Collapse
Affiliation(s)
- Yang Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Biying Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yinqi Mao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huayang Zhang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Abstract
Polymerase chain reaction (PCR) is a laboratory technique used to amplify a targeted region of DNA, demarcated by a set of oligonucleotide primers. Long-range PCR is a form of PCR optimized to facilitate the amplification of large fragments. Using the adapted long-range PCR protocol described in this chapter, we were able to generate PCR products of 6.6, 7.2, 13, and 20 kb from human genomic DNA samples. For some of the long PCRs, successful amplification was not possible without the use of PCR enhancers. Thus, we also evaluated the impact of some enhancers on long-range PCR and included the findings as part of this updated chapter.
Collapse
Affiliation(s)
- Ping Siu Kee
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Harsheni Karunanathie
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Simran D S Maggo
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
- Department of Pathology, Center for Personalized Medicine, Children's Hospital Los Angeles, California, LA, USA
| | - Martin A Kennedy
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Eng Wee Chua
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
13
|
Zhao Y, Han J, Tan J, Yang Y, Li S, Gou Y, Luo Y, Li T, Xiao W, Xue Y, Hao Y, Xie X, Liu Y, Zhu Q. Efficient assembly of long DNA fragments and multiple genes with improved nickase-based cloning and Cre/loxP recombination. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1983-1995. [PMID: 35767383 PMCID: PMC9491458 DOI: 10.1111/pbi.13882] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Functional genomics, synthetic biology and metabolic engineering require efficient tools to deliver long DNA fragments or multiple gene constructs. Although numerous DNA assembly methods exist, most are complicated, time-consuming and expensive. Here, we developed a simple and flexible strategy, unique nucleotide sequence-guided nicking endonuclease (UNiE)-mediated DNA assembly (UNiEDA), for efficient cloning of long DNAs and multigene stacking. In this system, a set of unique 15-nt 3' single-strand overhangs were designed and produced by nicking endonucleases (nickases) in vectors and insert sequences. We introduced UNiEDA into our modified Cre/loxP recombination-mediated TransGene Stacking II (TGSII) system to generate an improved multigene stacking system we call TGSII-UNiE. Using TGSII-UNiE, we achieved efficient cloning of long DNA fragments of different sizes and assembly of multiple gene cassettes. Finally, we engineered and validated the biosynthesis of betanin in wild tobacco (Nicotiana benthamiana) leaves and transgenic rice (Oryza sativa) using multigene stacking constructs based on TGSII-UNiE. In conclusion, UNiEDA is an efficient, convenient and low-cost method for DNA cloning and multigene stacking, and the TGSII-UNiE system has important application prospects for plant functional genomics, genetic engineering and synthetic biology research.
Collapse
Affiliation(s)
- Yanchang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Jingluan Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Jiantao Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yaqian Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Shuangchun Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yajun Gou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yuyu Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Tie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Wenyu Xiao
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yang Xue
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yu Hao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yao‐Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
14
|
Liao J, Liu T, Xie L, Mo C, Huang X, Cui S, Jia X, Lan F, Luo Z, Ma X. Plant Metabolic Engineering by Multigene Stacking: Synthesis of Diverse Mogrosides. Int J Mol Sci 2022; 23:ijms231810422. [PMID: 36142335 PMCID: PMC9499096 DOI: 10.3390/ijms231810422] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Mogrosides are a group of health-promoting natural products that extracted from Siraitia grosvenorii fruit (Luo-han-guo or monk fruit), which exhibited a promising practical application in natural sweeteners and pharmaceutical development. However, the production of mogrosides is inadequate to meet the need worldwide, and uneconomical synthetic chemistry methods are not generally recommended for structural complexity. To address this issue, an in-fusion based gene stacking strategy (IGS) for multigene stacking has been developed to assemble 6 mogrosides synthase genes in pCAMBIA1300. Metabolic engineering of Nicotiana benthamiana and Arabidopsis thaliana to produce mogrosides from 2,3-oxidosqualene was carried out. Moreover, a validated HPLC-MS/MS method was used for the quantitative analysis of mogrosides in transgenic plants. Herein, engineered Arabidopsis thaliana produced siamenoside I ranging from 29.65 to 1036.96 ng/g FW, and the content of mogroside III at 202.75 ng/g FW, respectively. The production of mogroside III was from 148.30 to 252.73 ng/g FW, and mogroside II-E with concentration between 339.27 and 5663.55 ng/g FW in the engineered tobacco, respectively. This study provides information potentially applicable to develop a powerful and green toolkit for the production of mogrosides.
Collapse
Affiliation(s)
- Jingjing Liao
- The Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tingyao Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Lei Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Changming Mo
- Guangxi Crop Genetic Improvement and Biotechnology Lab, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xiyang Huang
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Shengrong Cui
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Xunli Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Fusheng Lan
- Guilin GFS Monk Fruit Corp, Guilin 541006, China
| | - Zuliang Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Correspondence: (Z.L.); (X.M.); Tel.: +86-(010)-57833155 (X.M.)
| | - Xiaojun Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Correspondence: (Z.L.); (X.M.); Tel.: +86-(010)-57833155 (X.M.)
| |
Collapse
|
15
|
Heterologous Biosynthesis of Health-Promoting Baicalein in Lycopersicon esculentum. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103086. [PMID: 35630564 PMCID: PMC9146059 DOI: 10.3390/molecules27103086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022]
Abstract
Baicalein is a valuable flavonoid isolated from the medicinal plant Scutellaria baicalensis Georgi, which exhibits intensive biological activities, such as anticancer and antiviral activities. However, its production is limited in the root with low yield. In this study, In-Fusion and 2A peptide linker were developed to assemble SbCLL-7, SbCHI, SbCHS-2, SbFNSII-2 and SbCYP82D1.1 genes driven by the AtPD7, CaMV 35S and AtUBQ10 promoters with HSP, E9 and NOS terminators, and were used to engineer baicalein biosynthesis in transgenic tomato plants. The genetically modified tomato plants with this construct synthesized baicalein, ranging from 150 ng/g to 558 ng/g FW (fresh weight). Baicalein-fortified tomatoes have the potential to be health-promoting fresh vegetables and provide an alternative source of baicalein production, with great prospects for market application.
Collapse
|