1
|
Renziehausen T, Dirr A, Schmidt-Schippers R, Flashman E, Schippers J. Oxygen sensing and plant adaptation to flooding in a changing climate. Philos Trans R Soc Lond B Biol Sci 2025; 380:20240238. [PMID: 40439298 PMCID: PMC12121377 DOI: 10.1098/rstb.2024.0238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 06/02/2025] Open
Abstract
In times of climate change, frequency and intensity of extreme weather events are rising and thus demand a higher resilience of crop plants to environmental influences, such as flooding events, to minimize yield losses. Flooding causes acute oxygen deprivation in plants, accompanied by an energy crisis, starvation, growth retardation and ultimately increased harvest losses. At a molecular level, fluctuating oxygen concentrations are sensed via plant cysteine oxidases (PCOs) that, as part of the N-degron pathway, oxygen-dependently oxidize substrates such as vernalization 2, little zipper 2 and, most prominently, transcription factors of the group VII ETHYLENE RESPONSE FACTORS (ERFVIIs) to render them for degradation. When stabilized under hypoxia owing to the lack of oxygen, ERFVIIs act as transcriptional activators of hypoxia-response genes to evoke appropriate acclimation. Crop engineering for improved submergence resilience is an important goal for future food security, and prolonging ERFVII stability is a promising strategy. Here we discuss the potential molecular consequences of this strategy in terms of stabilization of Cys-initiating proteins in commercially relevant crop species, as well as ways in which this may be achieved, including via PCO engineering.This article is part of the theme issue 'Crops under stress: can we mitigate the impacts of climate change on agriculture and launch the 'Resilience Revolution'?'.
Collapse
Affiliation(s)
| | - Anna Dirr
- University of Oxford, OxfordOX1 3TA, UK
| | | | | | - Jos Schippers
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Sachsen-Anhalt06466, Germany
| |
Collapse
|
2
|
Yang L, Fang S, Liu L, Zhao L, Chen W, Li X, Xu Z, Chen S, Wang H, Yu D. WRKY transcription factors: Hubs for regulating plant growth and stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:488-509. [PMID: 39815727 DOI: 10.1111/jipb.13828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/21/2024] [Indexed: 01/18/2025]
Abstract
As sessile organisms, plants must directly face various stressors. Therefore, plants have evolved a powerful stress resistance system and can adjust their growth and development strategies appropriately in different stressful environments to adapt to complex and ever-changing conditions. Nevertheless, prioritizing defensive responses can hinder growth; this is a crucial factor for plant survival but is detrimental to crop production. As such, comprehending the impact of adverse environments on plant growth is not only a fundamental scientific inquiry but also imperative for the agricultural industry and for food security. The traditional view that plant growth is hindered during defense due to resource allocation trade-offs is challenged by evidence that plants exhibit both robust growth and defensive capabilities through human intervention. These findings suggest that the growth‒defense trade-off is not only dictated by resource limitations but also influenced by intricate transcriptional regulatory mechanisms. Hence, it is imperative to conduct thorough investigations on the central genes that govern plant resistance and growth in unfavorable environments. Recent studies have consistently highlighted the importance of WRKY transcription factors in orchestrating stress responses and plant-specific growth and development, underscoring the pivotal role of WRKYs in modulating plant growth under stressful conditions. Here, we review recent advances in understanding the dual roles of WRKYs in the regulation of plant stress resistance and growth across diverse stress environments. This information will be crucial for elucidating the intricate interplay between plant stress response and growth and may aid in identifying gene loci that could be utilized in future breeding programs to develop crops with enhanced stress resistance and productivity.
Collapse
Affiliation(s)
- Lu Yang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Siyu Fang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Lei Liu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Lirong Zhao
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Wanqin Chen
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Xia Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650092, China
| | - Zhiyu Xu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Shidie Chen
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650092, China
| | - Houping Wang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650092, China
| |
Collapse
|
3
|
Li HG, Yang L, Fang Y, Wang G, Lyu S, Deng S. A genome-wide-level insight into the HSF gene family of Rhodomyrtus tomentosa and the functional divergence of RtHSFA2a and RtHSFA2b in thermal adaptation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109460. [PMID: 39793331 DOI: 10.1016/j.plaphy.2024.109460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 12/05/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025]
Abstract
Heat shock transcription factor (HSF) is one of the most important regulatory elements in plant development and stress response. Rhohomyrtus tomentosa has many advantages in adapting to high temperature and high humidity climates, whereas its inherence has barely been elucidated. In this study, we aimed to characterize the HSF family and investigate the thermal adaptation mechanisms of R. tomentosa. We identified 25 HSF genes in the R. tomentosa genome. They could be classified into three classes: HSFA, HSFB, and HSFC. Gene duplication events are major motivations for the expansion of the RtHSF gene family. Most of the genes in the same subclass share similar conserved motifs and gene structures. The cis-acting elements of the promoter regions of RtHSF genes are related to development, phytohormone signaling, and stress responses, and they vary among the genes even in the same subclass, resulting in different expression patterns. Especially, there exists subfunctionalization in the RtHSFA2 subfamily in responding to various abiotic stresses, viz. RtHSFA2a is sensitive to drought, salt, and cold stresses, whilst RtHSFA2b is mainly induced by heat stress. We further proved that RtHSFA2b might be of more importance in R. tomentosa thermotolerance, for Arabidopsis plants with overexpressed RtHSFA2b outperformed those with RtHSFA2a under heat stress, and RtHSFA2b had much higher transcription activity than RtHSFA2a in regulating certain heat shock response (HSR) genes. RtHSFA2a plays a role in transactivating RtHSFA2b. All these results provide a general prospect of the RtHSF gene family and enclose a basal thermal adaptation mechanism of R. tomentosa.
Collapse
Affiliation(s)
- Hui-Guang Li
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany, and Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Ling Yang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany, and Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yujie Fang
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Gui Wang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany, and Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shanwu Lyu
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany, and Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Shulin Deng
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany, and Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Feng A, Guan Y, Yang H, Zheng B, Zeng W, Hao P, Bacic A, Ding SY, Wu AM. Characterization of hemicellulose in sacred lotus (Nelumbo nucifera Gaetn.) petiole during xylogenesis. Carbohydr Polym 2025; 349:122940. [PMID: 39638498 DOI: 10.1016/j.carbpol.2024.122940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024]
Abstract
Hemicelluloses play a crucial role in connecting cellulose and lignin within the plant cell wall and find extensive biotechnological applications. There is a notable gap in research concerning the hemicellulose from Nelumbo nucifera, the basal eudicot adapted to aquatic environments. To fill this gap, hemicellulose characteristics from the apical to the basal segments of petioles from 4-month-old N. nucifera plants were examined. Results showed that during the initial phase of xylogenesis, xyloglucan predominated in the hemicellulose fraction, while later stages were gradually dominated by 4-O-methyl-D-glucurono-D-xylan (MGX). Having a typical tetrasaccharide reducing end, the glucuronoxylan in N. nucifera was also shown with a typical the MeGlcA on the C2 Xyl carbon sidechain. The total degree of acetylation increased from apex (0.45) to base (0.55) of petiole. Notably, no arabinosyl side-chains were detected in the N. nucifera xylan, suggesting that N. nucifera hemicellulose aligns most closely with dicot wood rather than the non-commelinid monocot (grass). Transcriptomic analysis also indicated that the middle and basal region exhibited higher xylan synthesis activity. This study contributes new evidence supporting the conservation of dicotyledonous hemicellulose during evolution.
Collapse
Affiliation(s)
- Anran Feng
- Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
| | - Yingying Guan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Haoqiang Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Biao Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Wei Zeng
- La Trobe Institute for Sustainable Agriculture and Food, School of Life Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Pengfei Hao
- La Trobe Institute for Sustainable Agriculture and Food, School of Life Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Antony Bacic
- La Trobe Institute for Sustainable Agriculture and Food, School of Life Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Shi-You Ding
- Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA.
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
5
|
Wang Y, Cao Y, Qin G. Multifaceted roles of TCP transcription factors in fate determination. THE NEW PHYTOLOGIST 2025; 245:95-101. [PMID: 39434425 DOI: 10.1111/nph.20188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024]
Abstract
Fate determination is indispensable for the accurate shaping and specialization of plant organs, a process critical to the structural and functional diversity in plant kingdom. The TEOSINTE BRANCHED 1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) family of transcription factors has been recognized for its significant contributions to plant organogenesis and morphogenesis. Recent research has shed light on the pivotal roles that TCPs play in fate determination. In this review, we delve into the current understanding of TCP functions, emphasizing their critical influence on fate determination from the organelle to the cell and organ levels. We also consolidate the molecular mechanisms through which TCPs exert their regulatory effects on fate determination. Additionally, we highlight intriguing points of TCPs that warrant further exploration in future research endeavors.
Collapse
Affiliation(s)
- Yutao Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yu Cao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Southwest United Graduate School, Kunming, 650092, China
| |
Collapse
|
6
|
Yuan S, Li Y, Li Y, Wei J, Liu M, Yang F, Yao X. DET1 modulates ATAF1-repressed thermosensory elongation through ubiquitination in Arabidopsis. PLANT CELL REPORTS 2024; 44:7. [PMID: 39688715 DOI: 10.1007/s00299-024-03402-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024]
Abstract
KEY MESSAGE The Arabidopsis transcription factor ATAF1 negatively regulates thermomorphogenesis by inhibiting the expression of key genes involved in thermoresponsive elongation. DET1-mediated ubiquitination promotes ATAF1 degradation. In response to warmer, non-stressful average temperatures, plants have evolved an adaptive morphologic response called thermomorphogenesis to increase their fitness. This adaptive morphologic development is regulated by transcription factors (TFs) that control the expression of heat-induced genes that gate thermoresponsive growth. No apical meristem (NAM), Arabidopsis thaliana-activating factor 1/2 (ATAF1/2), and cup-shaped cotyledon 2 (CUC2) (collectively known as NAC) TFs regulate morphogenesis and respond to temperature stress, but whether they regulate thermomorphogenesis remains largely unknown. Here, we identified ATAF1 as a negative regulator of thermomorphogenesis and revealed that the E3-ligase component de-etiolated 1 (DET1) mediated ATAF1 ubiquitination and degradation. Our results revealed that ATAF1 negatively regulates warm temperature-induced hypocotyl elongation and inhibits the expression of thermoresponsive genes. Moreover, ATAF1 directly targeted and repressed the expression of YUCCA 8 (YUC8) and phytochrome interacting factor 4 (PIF4), two key regulators involved in elongation. At the post-translational level, elevated ambient temperatures negatively modulated the stability of ATAF1 by inducing the DET1-mediated ubiquitination pathway. Our results demonstrated the presence of a DET1-ATAF1-PIF4/YUC8 control module for thermomorphogenesis in plants, which may increase fitness by fine-tuning thermoresponsive gene expression under warm temperatures.
Collapse
Affiliation(s)
- Shuai Yuan
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Department of Agriculture Forestry and Food Engineering, Yibin University, Yibin, China
- College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Yan Li
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Department of Agriculture Forestry and Food Engineering, Yibin University, Yibin, China
| | - Yayi Li
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Department of Agriculture Forestry and Food Engineering, Yibin University, Yibin, China
| | - Juan Wei
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Department of Agriculture Forestry and Food Engineering, Yibin University, Yibin, China
| | - Min Liu
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Department of Agriculture Forestry and Food Engineering, Yibin University, Yibin, China
| | - Feng Yang
- Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences (Deyang Branch, Sichuan Academy of Agricultural Sciences), Deyang, 618099, China.
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Sichuan Province Engineering Technology Research Center of Vegetables, Sichuan Academy of Agricultural Sciences, Chengdu, 610000, China.
| | - Xiuhong Yao
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Department of Agriculture Forestry and Food Engineering, Yibin University, Yibin, China.
| |
Collapse
|
7
|
Yu Y, Liu D, Wang F, Kong L, Lin Y, Chen L, Jiang W, Hou X, Xiao Y, Fu G, Liu W, Huo X. Comparative Transcriptomic Analysis and Candidate Gene Identification for Wild Rice (GZW) and Cultivated Rice (R998) Under Low-Temperature Stress. Int J Mol Sci 2024; 25:13380. [PMID: 39769145 PMCID: PMC11676510 DOI: 10.3390/ijms252413380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Rice is a short-day thermophilic crop that originated from the low latitudes of the tropics and subtropics; it requires high temperatures for growth but is sensitive to low temperatures. Therefore, it is highly important to explore and analyze the molecular mechanism of cold tolerance in rice to expand rice planting areas. Here, we report a phenotypic evaluation based on low-temperature stress in indica rice (R998) and wild rice (GZW) and a comparative transcriptomic study conducted at six time points. After 7 days of low-temperature treatment at 10 °C, R998 exhibited obvious yellowing and greening of the leaves, while GZW exhibited high low-temperature resistance, and the leaves maintained their normal morphology and exhibited no yellowing; GZW has a higher survival rate. Principal component analysis (PCA) and cluster analysis of the RNA-seq data revealed that the difference in low-temperature resistance between the two cultivars was caused mainly by the difference in low-temperature treatment after 6 h. Differential expression analysis revealed 2615 unique differentially expressed genes (DEGs) in the R998 material, 1578 unique DEGs in the GZW material, 1874 unique DEGs between R998 and GZW, and 2699 DEGs that were differentially expressed not only between cultivars but also at different time points in the same material under low-temperature treatment. A total of 15,712 DEGs were detected and were significantly enriched in the phenylalanine metabolism, photosynthesis, plant hormone signal transduction, and starch and sucrose metabolism pathways. These 15,712 DEGs included 1937 genes encoding transcription factors (TFs), of which 10 have been identified with functional validation in previous studies. In addition, a gene regulatory network was constructed via weighted gene correlation network analysis (WGCNA), and 12 key genes related to low-temperature tolerance in rice were identified, including five genes encoding TFs, one of which was identified and verified in previous studies. These results provide a theoretical basis for an in-depth understanding of the molecular mechanism of low-temperature tolerance in rice and provide new genetic resources for the study of low-temperature tolerance in rice.
Collapse
Affiliation(s)
- Yongmei Yu
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (W.J.); (Y.X.); (G.F.)
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/South China High-Quality Rice Breeding Laboratory (Jointly Established by Ministry of Agriculture and Rural Affairs and Provincial Government)/Guangdong Key Laboratory of Rice Science and Technology/Guangdong Rice Engineering Laboratory, Guangzhou 510640, China; (D.L.); (F.W.); (L.K.); (L.C.); (X.H.)
| | - Dilin Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/South China High-Quality Rice Breeding Laboratory (Jointly Established by Ministry of Agriculture and Rural Affairs and Provincial Government)/Guangdong Key Laboratory of Rice Science and Technology/Guangdong Rice Engineering Laboratory, Guangzhou 510640, China; (D.L.); (F.W.); (L.K.); (L.C.); (X.H.)
| | - Feng Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/South China High-Quality Rice Breeding Laboratory (Jointly Established by Ministry of Agriculture and Rural Affairs and Provincial Government)/Guangdong Key Laboratory of Rice Science and Technology/Guangdong Rice Engineering Laboratory, Guangzhou 510640, China; (D.L.); (F.W.); (L.K.); (L.C.); (X.H.)
| | - Le Kong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/South China High-Quality Rice Breeding Laboratory (Jointly Established by Ministry of Agriculture and Rural Affairs and Provincial Government)/Guangdong Key Laboratory of Rice Science and Technology/Guangdong Rice Engineering Laboratory, Guangzhou 510640, China; (D.L.); (F.W.); (L.K.); (L.C.); (X.H.)
| | - Yanhui Lin
- Institute of Food Crops, Hainan Academy of Agricultural Sciences, Haikou 571100, China;
| | - Leiqing Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/South China High-Quality Rice Breeding Laboratory (Jointly Established by Ministry of Agriculture and Rural Affairs and Provincial Government)/Guangdong Key Laboratory of Rice Science and Technology/Guangdong Rice Engineering Laboratory, Guangzhou 510640, China; (D.L.); (F.W.); (L.K.); (L.C.); (X.H.)
| | - Wenjing Jiang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (W.J.); (Y.X.); (G.F.)
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/South China High-Quality Rice Breeding Laboratory (Jointly Established by Ministry of Agriculture and Rural Affairs and Provincial Government)/Guangdong Key Laboratory of Rice Science and Technology/Guangdong Rice Engineering Laboratory, Guangzhou 510640, China; (D.L.); (F.W.); (L.K.); (L.C.); (X.H.)
| | - Xueru Hou
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/South China High-Quality Rice Breeding Laboratory (Jointly Established by Ministry of Agriculture and Rural Affairs and Provincial Government)/Guangdong Key Laboratory of Rice Science and Technology/Guangdong Rice Engineering Laboratory, Guangzhou 510640, China; (D.L.); (F.W.); (L.K.); (L.C.); (X.H.)
| | - Yanxia Xiao
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (W.J.); (Y.X.); (G.F.)
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/South China High-Quality Rice Breeding Laboratory (Jointly Established by Ministry of Agriculture and Rural Affairs and Provincial Government)/Guangdong Key Laboratory of Rice Science and Technology/Guangdong Rice Engineering Laboratory, Guangzhou 510640, China; (D.L.); (F.W.); (L.K.); (L.C.); (X.H.)
| | - Gongzhen Fu
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (W.J.); (Y.X.); (G.F.)
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/South China High-Quality Rice Breeding Laboratory (Jointly Established by Ministry of Agriculture and Rural Affairs and Provincial Government)/Guangdong Key Laboratory of Rice Science and Technology/Guangdong Rice Engineering Laboratory, Guangzhou 510640, China; (D.L.); (F.W.); (L.K.); (L.C.); (X.H.)
| | - Wuge Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/South China High-Quality Rice Breeding Laboratory (Jointly Established by Ministry of Agriculture and Rural Affairs and Provincial Government)/Guangdong Key Laboratory of Rice Science and Technology/Guangdong Rice Engineering Laboratory, Guangzhou 510640, China; (D.L.); (F.W.); (L.K.); (L.C.); (X.H.)
| | - Xing Huo
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/South China High-Quality Rice Breeding Laboratory (Jointly Established by Ministry of Agriculture and Rural Affairs and Provincial Government)/Guangdong Key Laboratory of Rice Science and Technology/Guangdong Rice Engineering Laboratory, Guangzhou 510640, China; (D.L.); (F.W.); (L.K.); (L.C.); (X.H.)
| |
Collapse
|
8
|
Liu Y, Xiao W, Liao L, Zheng B, Cao Y, Zhao Y, Zhang RX, Han Y. A PpEIL2/3-PpNAC1-PpWRKY14 module regulates fruit ripening by modulating ethylene production in peach. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39185667 DOI: 10.1111/jipb.13761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024]
Abstract
WRKY transcription factors play key roles in plant resistance to various stresses, but their roles in fruit ripening remain largely unknown. Here, we report a WRKY gene PpWRKY14 involved in the regulation of fruit ripening in peach. The expression of PpWRKY14 showed an increasing trend throughout fruit development. PpWRKY14 was a target gene of PpNAC1, a master regulator of peach fruit ripening. PpWRKY14 could directly bind to the promoters of PpACS1 and PpACO1 to induce their expression, and this induction was greatly enhanced when PpWRKY14 formed a dimer with PpNAC1. However, the transcription of PpNAC1 could be directly suppressed by two EIN3/EIL1 genes, PpEIL2 and PpEIL3. The PpEIL2/3 genes were highly expressed at the early stages of fruit development, but their expression was programmed to decrease significantly during the ripening stage, thus derepressing the expression of PpNAC1. These results suggested a PpEIL2/3-PpNAC1-PpWRKY14 module that regulates fruit ripening by modulating ethylene production in peach. Our results provided an insight into the regulatory roles of EIN3/EIL1 and WRKY genes in fruit ripening.
Collapse
Affiliation(s)
- Yudi Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen Xiao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Liao Liao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Beibei Zheng
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yunpeng Cao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yun Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Ruo-Xi Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
9
|
Luan Y, Chen Z, Fang Z, Meng J, Tao J, Zhao D. PoWRKY69-PoVQ11 module positively regulates drought tolerance by accumulating fructose in Paeonia ostii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1782-1799. [PMID: 38975960 DOI: 10.1111/tpj.16884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024]
Abstract
Drought is a detrimental environmental factor that restricts plant growth and threatens food security throughout the world. WRKY transcription factors play vital roles in abiotic stress response. However, the roles of IIe subgroup members from WRKY transcription factor family in soluble sugar mediated drought response are largely elusive. In this study, we identified a drought-responsive IIe subgroup WRKY transcription factor, PoWRKY69, from Paeonia ostii. PoWRKY69 functioned as a positive regulator in response to drought stress with nucleus expression and transcriptional activation activity. Silencing of PoWRKY69 increased plants sensitivity to drought stress, whereas conversely, overexpression of PoWRKY69 enhanced drought tolerance in plants. As revealed by yeast one-hybrid, electrophoretic mobility shift assay, and luciferase reporter assays, PoWRKY69 could directly bind to the W-box element of fructose-1,6-bisphosphate aldolase 5 (PoFBA5) promoter, contributing to a cascade regulatory network to activate PoFBA5 expression. Furthermore, virus-induced gene silencing and overexpression assays demonstrated that PoFBA5 functioned positively in response to drought stress by accumulating fructose to alleviate membrane lipid peroxidation and activate antioxidant defense system, these changes resulted in reactive oxygen species scavenging. According to yeast two-hybrid, bimolecular fluorescence complementation, and firefly luciferase complementation imaging assays, valine-glutamine 11 (PoVQ11) physically interacted with PoWRKY69 and led to an enhanced activation of PoWRKY69 on PoFBA5 promoter activity. This study broadens our understanding of WRKY69-VQ11 module regulated fructose accumulation in response to drought stress and provides feasible molecular measures to create novel drought-tolerant germplasm of P. ostii.
Collapse
Affiliation(s)
- Yuting Luan
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zijie Chen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Ziwen Fang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jiasong Meng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jun Tao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Daqiu Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| |
Collapse
|
10
|
Yin Q, Qin W, Zhou Z, Wu A, Deng W, Li Z, Shan W, Chen J, Kuang J, Lu W. Banana MaNAC1 activates secondary cell wall cellulose biosynthesis to enhance chilling resistance in fruit. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:413-426. [PMID: 37816143 PMCID: PMC10826994 DOI: 10.1111/pbi.14195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/11/2023] [Accepted: 09/23/2023] [Indexed: 10/12/2023]
Abstract
Chilling injury has a negative impact on the quantity and quality of crops, especially subtropical and tropical plants. The plant cell wall is not only the main source of biomass production, but also the first barrier to various stresses. Therefore, improving the understanding of the alterations in cell wall architecture is of great significance for both biomass production and stress adaptation. Herein, we demonstrated that the cell wall principal component cellulose accumulated during chilling stress, which was caused by the activation of MaCESA proteins. The sequence-multiple comparisons show that a cold-inducible NAC transcriptional factor MaNAC1, a homologue of Secondary Wall NAC transcription factors, has high sequence similarity with Arabidopsis SND3. An increase in cell wall thickness and cellulosic glucan content was observed in MaNAC1-overexpressing Arabidopsis lines, indicating that MaNAC1 participates in cellulose biosynthesis. Over-expression of MaNAC1 in Arabidopsis mutant snd3 restored the defective secondary growth of thinner cell walls and increased cellulosic glucan content. Furthermore, the activation of MaCESA7 and MaCESA6B cellulose biosynthesis genes can be directly induced by MaNAC1 through binding to SNBE motifs within their promoters, leading to enhanced cellulose content during low-temperature stress. Ultimately, tomato fruit showed greater cold resistance in MaNAC1 overexpression lines with thickened cell walls and increased cellulosic glucan content. Our findings revealed that MaNAC1 performs a vital role as a positive modulator in modulating cell wall cellulose metabolism within banana fruit under chilling stress.
Collapse
Affiliation(s)
- Qi Yin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesSouth China Agricultural UniversityGuangzhouChina
| | - Wenqi Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesSouth China Agricultural UniversityGuangzhouChina
| | - Zibin Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesSouth China Agricultural UniversityGuangzhouChina
| | - Ai‐Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesSouth China Agricultural UniversityGuangzhouChina
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life SciencesChongqing UniversityChongqingChina
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life SciencesChongqing UniversityChongqingChina
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesSouth China Agricultural UniversityGuangzhouChina
| | - Jian‐ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesSouth China Agricultural UniversityGuangzhouChina
| | - Jian‐fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesSouth China Agricultural UniversityGuangzhouChina
| | - Wang‐jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
11
|
Barratt LJ, Franco Ortega S, Harper AL. Identification of candidate regulators of the response to early heat stress in climate-adapted wheat landraces via transcriptomic and co-expression network analyses. FRONTIERS IN PLANT SCIENCE 2024; 14:1252885. [PMID: 38235195 PMCID: PMC10791870 DOI: 10.3389/fpls.2023.1252885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024]
Abstract
Introduction Climate change is likely to lead to not only increased global temperatures but also a more variable climate where unseasonal periods of heat stress are more prevalent. This has been evidenced by the observation of spring-time temperatures approaching 40°C in some of the main spring-wheat producing countries, such as the USA, in recent years. With an optimum growth temperature of around 20°C, wheat is particularly prone to damage by heat stress. A warming climate with increasingly common fluctuations in temperature therefore threatens wheat crops and subsequently the lives and livelihoods of billions of people who depend on the crop for food. To futureproof wheat against a variable climate, a better understanding of the response to early heat stress is required. Methods Here, we utilised DESeq2 to identify 7,827 genes which were differentially expressed in wheat landraces after early heat stress exposure. Candidate hub genes, which may regulate the transcriptional response to early heat stress, were identified via weighted gene co-expression network analysis (WGCNA), and validated by qRT-PCR. Results Two of the most promising candidate hub genes (TraesCS3B02G409300 and TraesCS1B02G384900) may downregulate the expression of genes involved in the drought, salinity, and cold responses-genes which are unlikely to be required under heat stress-as well as photosynthesis genes and stress hormone signalling repressors, respectively. We also suggest a role for a poorly characterised sHSP hub gene (TraesCS4D02G212300), as an activator of the heat stress response, potentially inducing the expression of a vast suite of heat shock proteins and transcription factors known to play key roles in the heat stress response. Discussion The present work represents an exploratory examination of the heat-induced transcriptional change in wheat landrace seedlings and identifies several candidate hub genes which may act as regulators of this response and, thus, may be targets for breeders in the production of thermotolerant wheat varieties.
Collapse
Affiliation(s)
| | | | - Andrea L. Harper
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
12
|
Zhang J, Zhao H, Chen L, Lin J, Wang Z, Pan J, Yang F, Ni X, Wang Y, Wang Y, Li R, Pi E, Wang S. Multifaceted roles of WRKY transcription factors in abiotic stress and flavonoid biosynthesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1303667. [PMID: 38169626 PMCID: PMC10758500 DOI: 10.3389/fpls.2023.1303667] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Increasing biotic and abiotic stresses are seriously impeding the growth and yield of staple crops and threatening global food security. As one of the largest classes of regulators in vascular plants, WRKY transcription factors play critical roles governing flavonoid biosynthesis during stress responses. By binding major W-box cis-elements (TGACCA/T) in target promoters, WRKYs modulate diverse signaling pathways. In this review, we optimized existing WRKY phylogenetic trees by incorporating additional plant species with WRKY proteins implicated in stress tolerance and flavonoid regulation. Based on the improved frameworks and documented results, we aim to deduce unifying themes of distinct WRKY subfamilies governing specific stress responses and flavonoid metabolism. These analyses will generate experimentally testable hypotheses regarding the putative functions of uncharacterized WRKY homologs in tuning flavonoid accumulation to enhance stress resilience.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Shang Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
13
|
Wang H, Feng M, Jiang Y, Du D, Dong C, Zhang Z, Wang W, Liu J, Liu X, Li S, Chen Y, Guo W, Xin M, Yao Y, Ni Z, Sun Q, Peng H, Liu J. Thermosensitive SUMOylation of TaHsfA1 defines a dynamic ON/OFF molecular switch for the heat stress response in wheat. THE PLANT CELL 2023; 35:3889-3910. [PMID: 37399070 PMCID: PMC10533334 DOI: 10.1093/plcell/koad192] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 07/05/2023]
Abstract
Dissecting genetic components in crop plants associated with heat stress (HS) sensing and adaptation will facilitate the design of modern crop varieties with improved thermotolerance. However, the molecular mechanisms underlying the ON/OFF switch controlling HS responses (HSRs) in wheat (Triticum aestivum) remain largely unknown. In this study, we focused on the molecular action of TaHsfA1, a class A heat shock transcription factor, in sensing dynamically changing HS signals and regulating HSRs. We show that the TaHsfA1 protein is modified by small ubiquitin-related modifier (SUMO) and that this modification is essential for the full transcriptional activation activity of TaHsfA1 in triggering downstream gene expression. During sustained heat exposure, the SUMOylation of TaHsfA1 is suppressed, which partially reduces TaHsfA1 protein activity, thereby reducing the intensity of downstream HSRs. In addition, we demonstrate that TaHsfA1 interacts with the histone acetyltransferase TaHAG1 in a thermosensitive manner. Together, our findings emphasize the importance of TaHsfA1 in thermotolerance in wheat. In addition, they define a highly dynamic SUMOylation-dependent "ON/OFF" molecular switch that senses temperature signals and contributes to thermotolerance in crops.
Collapse
Affiliation(s)
- Haoran Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Man Feng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yujie Jiang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Dejie Du
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Chaoqun Dong
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhaoheng Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Wenxi Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jing Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiangqing Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Sufang Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
14
|
Lan J, Wang N, Wang Y, Jiang Y, Yu H, Cao X, Qin G. Arabidopsis TCP4 transcription factor inhibits high temperature-induced homeotic conversion of ovules. Nat Commun 2023; 14:5673. [PMID: 37704599 PMCID: PMC10499876 DOI: 10.1038/s41467-023-41416-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
Abnormal high temperature (HT) caused by global warming threatens plant survival and food security, but the effects of HT on plant organ identity are elusive. Here, we show that Class II TEOSINTE BRANCHED 1/CYCLOIDEA/ PCF (TCP) transcription factors redundantly protect ovule identity under HT. The duodecuple tcp2/3/4/5/10/13/17/24/1/12/18/16 (tcpDUO) mutant displays HT-induced ovule conversion into carpelloid structures. Expression of TCP4 in tcpDUO complements the ovule identity conversion. TCP4 interacts with AGAMOUS (AG), SEPALLATA3 (SEP3), and the homeodomain transcription factor BELL1 (BEL1) to strengthen the association of BEL1 with AG-SEP3. The tcpDUO mutant synergistically interacts with bel1 and the ovule identity gene seedstick (STK) mutant stk in tcpDUO bel1 and tcpDUO stk. Our findings reveal the critical roles of Class II TCPs in maintaining ovule identity under HT and shed light on the molecular mechanisms by which ovule identity is determined by the integration of internal factors and environmental temperature.
Collapse
Affiliation(s)
- Jingqiu Lan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ning Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yutao Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yidan Jiang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Hao Yu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
15
|
Wu X, Zhang X, Huang B, Han J, Fang H. Advances in biological functions and mechanisms of histone variants in plants. Front Genet 2023; 14:1229782. [PMID: 37588047 PMCID: PMC10426802 DOI: 10.3389/fgene.2023.1229782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Nucleosome is the basic subunit of chromatin, consisting of approximately 147bp DNA wrapped around a histone octamer, containing two copies of H2A, H2B, H3 and H4. A linker histone H1 can bind nucleosomes through its conserved GH1 domain, which may promote chromatin folding into higher-order structures. Therefore, the complexity of histones act importantly for specifying chromatin and gene activities. Histone variants, encoded by separate genes and characterized by only a few amino acids differences, can affect nucleosome packaging and stability, and then modify the chromatin properties. Serving as carriers of pivotal genetic and epigenetic information, histone variants have profound significance in regulating plant growth and development, response to both biotic and abiotic stresses. At present, the biological functions of histone variants in plant have become a research hotspot. Here, we summarize recent researches on the biological functions, molecular chaperons and regulatory mechanisms of histone variants in plant, and propose some novel research directions for further study of plant histone variants research field. Our study will provide some enlightens for studying and understanding the epigenetic regulation and chromatin specialization mediated by histone variant in plant.
Collapse
Affiliation(s)
- Xi Wu
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Xu Zhang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Borong Huang
- Developmental Biology, Laboratory of Plant Molecular and Zhejiang A & F University, Hangzhou, China
| | - Junyou Han
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Huihui Fang
- Developmental Biology, Laboratory of Plant Molecular and Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
16
|
Reis RS. Thermomorphogenesis: Opportunities and challenges in posttranscriptional regulation. JOURNAL OF EXPERIMENTAL BOTANY 2023:7134107. [PMID: 37082809 DOI: 10.1093/jxb/erad134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Indexed: 05/03/2023]
Abstract
Plants exposed to mildly elevated temperatures display morphological and developmental changes collectively termed thermomorphogenesis. This adaptative process has several undesirable consequences to food production, including yield reduction and increased vulnerability to pathogens. Understanding thermomorphogenesis is, thus, critical for understanding how plants will respond to increasingly warmer temperature conditions, such as those caused by climate change. Recently, we have made major advances in that direction, and it has become apparent that plants resource to a broad range of molecules and molecular mechanisms to perceive and respond to increases in environmental temperature. However, most of our efforts have been focused on regulation of transcription and protein abundance and activity, with an important gap encompassing nearly all processes involving RNA (i.e., posttranscriptional regulation). Here, I summarized our current knowledge of thermomorphogenesis involving transcriptional, posttranscriptional, and posttranslational regulation, focused on opportunities and challenges in understanding posttranscriptional regulation-a fertile field for exciting new discoveries.
Collapse
Affiliation(s)
- Rodrigo S Reis
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, Switzerland
| |
Collapse
|
17
|
Zhou Y, Xu F, Shao Y, He J. Regulatory Mechanisms of Heat Stress Response and Thermomorphogenesis in Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:3410. [PMID: 36559522 PMCID: PMC9788449 DOI: 10.3390/plants11243410] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
As worldwide warming intensifies, the average temperature of the earth continues to increase. Temperature is a key factor for the growth and development of all organisms and governs the distribution and seasonal behavior of plants. High temperatures lead to various biochemical, physiological, and morphological changes in plants and threaten plant productivity. As sessile organisms, plants are subjected to various hostile environmental factors and forced to change their cellular state and morphological architecture to successfully deal with the damage they suffer. Therefore, plants have evolved multiple strategies to cope with an abnormal rise in temperature. There are two main mechanisms by which plants respond to elevated environmental temperatures. One is the heat stress response, which is activated under extremely high temperatures; the other is the thermomorphogenesis response, which is activated under moderately elevated temperatures, below the heat-stress range. In this review, we summarize recent progress in the study of these two important heat-responsive molecular regulatory pathways mediated, respectively, by the Heat Shock Transcription Factor (HSF)-Heat Shock Protein (HSP) pathway and PHYTOCHROME INTER-ACTING FACTOR 4 (PIF4) pathways in plants and elucidate the regulatory mechanisms of the genes involved in these pathways to provide comprehensive data for researchers studying the heat response. We also discuss future perspectives in this field.
Collapse
Affiliation(s)
| | | | | | - Junna He
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|