1
|
Liu Q, Yang F, Zhang Y, Liu Q, Ma W, Wang Y. Glycosyltransferases: Pioneering roles in agriculture and medicine. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112520. [PMID: 40280492 DOI: 10.1016/j.plantsci.2025.112520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 03/12/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Glycosyltransferases (GTs) belong to a diverse family of enzymes that catalyze the transfer of sugar moieties from activated donor sugars to specific acceptors, thus playing a crucial roles in various biological processes. This review explores the pioneering roles of uridine diphosphate-dependent GTs (UGTs), which use uridine diphosphate glucose as donors. UGTs have also been extensively studied in agricultural and medical fields, emphasizing their potential to revolutionize these sectors. In the agricultural sector, the genetic engineering of UGTs has demonstrate potential in developing crops with enhanced stress tolerance, regulated plant development, and increased resistance to pests and diseases. These advancements not only contribute to sustainable farming practices but also address global food security challenges by facilitating the production of more resilient plant varieties. Furthermore, UGTs facilitate the synthesis of complex carbohydrates and glycoconjugates in plants, which are critical for developing drugs and therapeutic strategies targeting various ailments, including cancer and infectious diseases. Thus, this review explored the functions and synthesis methods of flavonoid glycosides, terpenoid glycosides, and polyketosides in detail. Moreover, owing to the functional diversity of UGTs, numerous research methods were reviewed, and novel, more valuable UGTs will be obtained. In summary, this study synthesizes the current research findings and discusses future perspectives to underscore the transgenic technology and synthetic biological impact of UGTs on agriculture and medicine and bridge the gap between fundamental science and practical applications.
Collapse
Affiliation(s)
- Qian Liu
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, China
| | - Fabin Yang
- School of Life Science and Bioengineering, Jining University, Jining 273155, China
| | - Yanan Zhang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, China
| | - Qingli Liu
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, China.
| | - Wenjian Ma
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| | - Ying Wang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, China.
| |
Collapse
|
2
|
Chen N, Jiang Z, Xie Z, Zhou S, Zeng T, Jiang S, Zheng Y, Yuan Y, Wu R. An Effective Computational Strategy for UGTs Catalytic Function Prediction. ACS Synth Biol 2025. [PMID: 40377913 DOI: 10.1021/acssynbio.4c00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
The GT-B type glycosyltransferases play a crucial post-modification role in synthesizing natural products, such as triterpenoid and steroidal saponins, renowned for their diverse pharmacological activities. Despite phylogenetic analysis aiding in enzyme family classification, distinguishing substrate specificity between triterpenoid and steroidal saponins, with their highly similar cyclic scaffolds, remains a formidable challenge. Our studies unveil the potential transport tunnels for the glycosyl donor and acceptor in PpUGT73CR1, by molecular dynamics simulations. This revelation leads to a plausible substrate transport mechanism, highlighting the regulatory role of the N-terminal domain (NTD) in glycosyl acceptor binding and transport. Inspired by these structural and mechanistic insights, we further analyze the binding pockets of 44 plant-derived UGTs known to glycosylate triterpenes and sterols. Notably, sterol UGTs are found to harbor aromatic and hydrophobic residues with polar residues typically present at the bottom of the active pocket. Drawing inspiration from the substrate binding and product release mechanism revealed through structure-based molecular modeling, we devised a fast sequence-based method for classifying UGTs using the pre-trained ESM2 protein model. This method involved extracting the NTD features of UGTs and performing PCA clustering analysis, enabling accurate identification of enzyme function, and even differentiation of substrate specificity/promiscuity between structurally similar triterpenoid and steroidal substrates, which is further validated by experiments. This work not only deepens our understanding of substrate binding mechanisms but also provides an effective computational protocol for predicting the catalytic function of unknown UGTs.
Collapse
Affiliation(s)
- Nianhang Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhennan Jiang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhekai Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Su Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tao Zeng
- School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Siqi Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ying Zheng
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Yuan Yuan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| |
Collapse
|
3
|
Wu Z, Hu Y, Hao R, Li R, Lu X, Itale MW, Yuan Y, Zhu X, Zhang J, Wang L, Sun M, Hou X. Research Progress of Genomics Applications in Secondary Metabolites of Medicinal Plants: A Case Study in Safflower. Int J Mol Sci 2025; 26:3867. [PMID: 40332590 PMCID: PMC12027854 DOI: 10.3390/ijms26083867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/17/2025] [Accepted: 04/13/2025] [Indexed: 05/08/2025] Open
Abstract
Medicinal plants, recognized as significant natural resources, have gained prominence in response to the increasing global demand for herbal medicines, necessitating the large-scale production of these plants and their derivatives. Medicinal plants are exposed to a variety of internal and external factors that interact to influence the biosynthesis and accumulation of secondary metabolites. With the rapid development of omics technologies such as genomics, transcriptomics, proteomics, and metabolomics, multi-omics technologies have become important tools for revealing the complexity and functionality of organisms. They are conducive to further uncovering the biological activities of secondary metabolites in medicinal plants and clarifying the molecular mechanisms underlying the production of secondary metabolites. Also, artificial intelligence (AI) technology accelerates the comprehensive utilization of high-dimensional datasets and offers transformative potential for multi-omics analysis. However, there is currently no systematic review summarizing the genomic mechanisms of secondary metabolite biosynthesis in medicinal plants. Safflower (Carthamus tinctorius L.) has rich and diverse bioactive flavonoids, among of which Hydroxysafflor yellow A (HSYA) is specific to safflower and emerging as a potential medication for treating a wide range of diseases. Hence, significant progress has been made in the study of safflower as an excellent example for the regulation of secondary metabolites in medicinal plants in recent years. Here, we review the progress on the understanding of the regulation of main secondary metabolites at the multi-omics level, and summarize the influence of various factors on their types and contents, with a particular focus on safflower flavonoids. This review aims to provide a comprehensive insight into the regulatory mechanisms of secondary metabolite biosynthesis from the perspective of genomics.
Collapse
Affiliation(s)
- Zhihua Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Yan Hu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Ruru Hao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Ruting Li
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Xiaona Lu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Mdachi Winfrida Itale
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Yang Yuan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China;
| | - Xiaoxian Zhu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Jiaqiang Zhang
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou 310053, China;
| | - Longxiang Wang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Meihao Sun
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Xianfei Hou
- Crop Research Institute, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| |
Collapse
|
4
|
He X, Wang H, Zhang M, Hou Y, Sheng J, Wu Y, Huang B, Zheng C. Identification and Functional Characterization of Two UDP-Glycosyltransferases Involved in Narcissoside Biosynthesis in Anoectochilus roxburghii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7888-7905. [PMID: 40105789 DOI: 10.1021/acs.jafc.4c12187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Flavonoid rutinosides, a group of bioactive compounds in Anoectochilus roxburghii, contribute greatly to the plant's beneficial effects on human health. However, the glycosylation mechanism of flavonoid rutinosides in A. roxburghii remains unclear. In this study, two efficient and selective glycosyltransferases, AUTG25 and AUTG23, involved in the biosynthesis of narcissoside, a major flavonoid rutinoside in A. roxburghii, were identified through transcriptome analysis and functional validation. AUTG25 could regioselectively catalyze 3-O-glucosylation of isorhamnetin to produce isorhamnetin 3-O-glucoside, while AUTG23 could further catalyze 6"-O-rhamnosylation to generate narcissoside. Both AUTG25 and AUTG23 exhibited high positional and sugar donor selectivities in the catalytic reaction. Homology modeling and site-directed mutagenesis showed that H20, E83, E385, and F143 in AUTG25 and E280, E89, D188, W327, D369, and Y191 in AUTG23 may be critical for their catalytic functions. Transient expression in Nicotiana benthamiana finally confirmed that AUTG25 possesses flavonol-3-O-glucosyltransferase activity and AUTG23 has flavonol-3-O-glucoside (1→6) rhamnosyltransferase activity. This study clarified and provided candidate UDP-dependent glycosyltransferase genes for narcissoside biosynthesis in A. roxburghii.
Collapse
Affiliation(s)
- Xuhui He
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
- Department of Pharmacognosy, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Hongrui Wang
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Mingyue Zhang
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Yuxin Hou
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Jiaqi Sheng
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Yanbin Wu
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou 350122, China
| | - Baokang Huang
- Department of Pharmacognosy, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Chengjian Zheng
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
- State Key Laboratory of Dao-di Herbs, Beijng 100700, China
| |
Collapse
|
5
|
Hao C, Hu K, Xie J, Tong X, Zhang X, Qi Z, Tang S. Recent Advancements in the Biomanufacturing of Crocetin and Crocins: Key Enzymes and Metabolic Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6400-6415. [PMID: 40056449 DOI: 10.1021/acs.jafc.4c12576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Crocetin and crocins are high-value apocarotenoids recognized for their role as food colorants as well as for their numerous industrial and therapeutic applications. Biotechnological platforms have the potential to replace traditional plant-based extraction of these compounds with a more sustainable approach. This review first introduced the catalytic characteristics of key enzymes involved in the biosynthetic pathway of crocetin and crocins, including carotenoid cleavage dioxygenases, aldehyde dehydrogenases, and uridine diphosphate glycosyltransferases. Next, we highlighted advanced metabolic engineering strategies aimed at enhancing crocetin and crocin production, such as increasing the pool of precursors and cofactors, protein mining and engineering, tuning protein expression, biosensor, genomic integration, and process optimization. Finally, the paper proposed potential strategies and tools associated with further boosting the heterologous production of crocetin and crocins to meet commercial-scale demands.
Collapse
Affiliation(s)
- Chengpeng Hao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Kefa Hu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Jingcong Xie
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, China
| | - Xinyi Tong
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiaomeng Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhipeng Qi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Shaoheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| |
Collapse
|
6
|
Dong H, Qi X. Biosynthesis of triterpenoids in plants: Pathways, regulation, and biological functions. CURRENT OPINION IN PLANT BIOLOGY 2025; 85:102701. [PMID: 40112428 DOI: 10.1016/j.pbi.2025.102701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 03/22/2025]
Abstract
Plant triterpenoids, a vast and diverse group of natural compounds derived from six isoprene units, exhibit an extensive array of structural diversity and remarkable biological activities. In this review, we update the recent research progress in the catalytic mechanisms underlying triterpene synthesis and summarize the current insights into the biosynthetic pathways and regulatory mechanisms of triterpenoids. We emphasize the biosynthesis of pharmacologically active triterpenoids and the role of triterpenoid synthesis in plant growth, development, defense mechanisms, and plant-microbe interactions. This insight review offers a comprehensive perspective on the applications and future avenues of triterpenoid research.
Collapse
Affiliation(s)
- Huan Dong
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaoquan Qi
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
7
|
Srivastava P, Ghosh S. Insights into functional divergence, catalytic versatility and specificity of small molecule glycosyltransferases. Int J Biol Macromol 2025; 292:138821. [PMID: 39708858 DOI: 10.1016/j.ijbiomac.2024.138821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Glycosylation is one of the most fundamental biochemical processes in cells. It plays crucial roles in diversifying plant natural products for structures, bioavailability and bioactivity, and thus, renders the glycosylated compounds valuable as food additives, nutraceuticals and pharmaceuticals. Moreover, glycosylated compounds impact plant growth, development and stress response. Therefore, understanding the biochemical function of the glycosyltransferases (GTs) is crucial to the elucidation of natural product biosynthetic pathways, improving plant traits and development of processes for industrially-important compounds. UDP-dependent glycosyltransferases (UGTs) that belong to the glycosyltransferase family-1 (GT1) and catalyze the transfer of glycosyl moieties from UDP-sugars to various small molecules, are the key players in natural product glycosylation. Recent studies also found the involvement of non-canonical cellulose synthase-like (CesAs) and glycosyl hydrolase (GH) family enzymes in the glycosylation of plant specialized metabolites. Decades of research on GTs provided critical insights into catalytic mechanism, substrate/product specificity and catalytic promiscuity, but biochemical function and physiological roles of GTs in majority of the natural product biosynthetic pathways remain to be understood. It is also important to redefine high-throughput strategies of GT mining to uncover novel biochemical function, considering that GTs are the large superfamily members in plants and other organisms. This review underscores the roles of GTs in small molecule glycosylation, plant development and stress responses, highlighting the catalytic versatility and substrate/product specificity of GTs in shaping plant metabolic diversity, and discusses the emerging strategies for mining of uncharacterized GTs to unravel biochemical and physiological functions and to elucidate natural product biosynthetic pathways.
Collapse
Affiliation(s)
- Payal Srivastava
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India; Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824, USA(1)
| | - Sumit Ghosh
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
8
|
Huo H, Li J, Tian L, Dong X, Xu J, Zhang Y, Qi D, Liu C, Ye Z, Jiang Z, Li Z, Zhou Z, Cao Y. Multi-omics analysis reveals the role of UGT72 family genes in arbutin biosynthesis in Pyrus and evolution driven by whole genome duplication. Int J Biol Macromol 2025; 291:139005. [PMID: 39708880 DOI: 10.1016/j.ijbiomac.2024.139005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
The UGT72 gene family encodes proteins that glycosylate phenylpropanoids, and thus contribute to the synthesis of various phenolic substances. However, their functional role and evolutionary history in Pyrus spp. remains poorly understood. Here we explored the evolution, amplification, coding region structural variation, and functional divergence of the UGT72 gene family and its subfamilies. Further, we identified functional genes involved in arbutin synthesis and functionally validated the key genes. 15 UGT72 genes were identified in the complete genome sequence and classified into two subfamilies of Pyrus betulifolia. Significant expansion of the UGT72 gene family occurred after genome duplication in P. betulifolia. 53.33 % of all UGT72 family genes were found to have undergone expansion via WGD/segmental duplication. A noteworthy discovery was that the amplification of functional genes such as PbUGT72B1714 during polyploidization, combined with the loss of vital motifs and variations at important sites within these genes, significantly impacted the diversification of arbutin metabolism. These findings offer novel insights into how gene gains and losses caused by WGDs have contributed to metabolic diversification and evolutionary adaptation in Pyrus, as well as a groundwork for more detailed investigations into the mechanisms of arbutin metabolism.
Collapse
Affiliation(s)
- Hongliang Huo
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning Province 125100, China; College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Jing Li
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning Province 125100, China
| | - Luming Tian
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning Province 125100, China
| | - Xingguang Dong
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning Province 125100, China
| | - Jiayu Xu
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning Province 125100, China
| | - Ying Zhang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning Province 125100, China
| | - Dan Qi
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning Province 125100, China
| | - Chao Liu
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning Province 125100, China
| | - Zimao Ye
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Zixiao Jiang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Zhenqing Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China.
| | - Yufen Cao
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning Province 125100, China.
| |
Collapse
|
9
|
Wang X, Wu L, Zhang W, Qiu S, Xu Z, Wan H, He J, Wang W, Wang M, Yin Q, Shi Y, Gao R, Xiang L, Yang W. Multi-omics analysis reveals promiscuous O-glycosyltransferases involved in the diversity of flavonoid glycosides in Periploca forrestii (Apocynaceae). Comput Struct Biotechnol J 2024; 23:1106-1116. [PMID: 38495554 PMCID: PMC10940802 DOI: 10.1016/j.csbj.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Flavonoid glycosides are widespread in plants, and are of great interest owing to their diverse biological activities and effectiveness in preventing chronic diseases. Periploca forrestii, a renowned medicinal plant of the Apocynaceae family, contains diverse flavonoid glycosides and is clinically used to treat rheumatoid arthritis and traumatic injuries. However, the mechanisms underlying the biosynthesis of these flavonoid glycosides have not yet been elucidated. In this study, we used widely targeted metabolomics and full-length transcriptome sequencing to identify flavonoid diversity and biosynthetic genes in P. forrestii. A total of 120 flavonoid glycosides, including 21 C-, 96 O-, and 3 C/O-glycosides, were identified and annotated. Based on 24,123 full-length coding sequences, 99 uridine diphosphate sugar-utilizing glycosyltransferases (UGTs) were identified and classified into 14 groups. Biochemical assays revealed that four UGTs exhibited O-glycosyltransferase activity toward apigenin and luteolin. Among them, PfUGT74B4 and PfUGT92A8 were highly promiscuous and exhibited multisite O-glycosylation or consecutive glycosylation activities toward various flavonoid aglycones. These four glycosyltransferases may significantly contribute to the diversity of flavonoid glycosides in P. forrestii. Our findings provide a valuable genetic resource for further studies on P. forrestii and insights into the metabolic engineering of bioactive flavonoid glycosides.
Collapse
Affiliation(s)
- Xiaotong Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Harbin 150006, China
| | - Lan Wu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wanran Zhang
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Harbin 150006, China
| | - Shi Qiu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhichao Xu
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Harbin 150006, China
| | - Huihua Wan
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiang He
- Xinjiang Institute of Materia Medica/Key Laboratory of Xinjiang Uygur Medicine, Urumqi 830004, China
| | - Wenting Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Mengyue Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qinggang Yin
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuhua Shi
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ranran Gao
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Li Xiang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Xinjiang Institute of Materia Medica/Key Laboratory of Xinjiang Uygur Medicine, Urumqi 830004, China
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urmuqi 830000, China
| | - Weijun Yang
- Xinjiang Institute of Materia Medica/Key Laboratory of Xinjiang Uygur Medicine, Urumqi 830004, China
| |
Collapse
|
10
|
Han X, Zhao J, Zhou H, Zhou X, Deng Z, Liu Z, Yu Y. The biosynthesis of asiaticoside and madecassoside reveals tandem duplication-directed evolution of glycoside glycosyltransferases in the Apiales. PLANT COMMUNICATIONS 2024; 5:101005. [PMID: 38902923 PMCID: PMC11573922 DOI: 10.1016/j.xplc.2024.101005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/09/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Certain plant species within the Apiales order accumulate triterpenoid saponins that feature a distinctive glucose-glucose-rhamnose (G-G-R) sugar chain attached at the C-28 position of the pentacyclic triterpene skeleton. Until recently, the genomic basis underlying the biosynthesis and evolution of this sugar chain has remained elusive. In this study, we identified two novel glycoside glycosyltransferases (GGTs) that can sequentially install the sugar chain's second D-glucose and third L-rhamnose during the biosynthesis of asiaticoside and madecassoside, two representative G-G-R sugar chain-containing triterpenoid saponins produced by Centella asiatica. Enzymatic assays revealed the remarkable substrate promiscuity of the two GGTs and the key residues crucial for sugar-donor selectivity of the glucosyltransferase and rhamnosyltransferase. We further identified syntenic tandem gene duplicates of the two GGTs in the Apiaceae and Araliaceae families, suggesting a well-conserved genomic basis underlying sugar chain assembly that likely has evolved in the early ancestors of the Apiales order. Moreover, expression patterns of the two GGTs in pierced leaves of C. asiatica were found to be correlated with the production of asiaticoside and madecassoside, implying their involvement in host defense against herbivores and pathogens. Our work sheds light on the biosynthesis and evolution of complex saponin sugars, paving the way for future engineering of diverse bioactive triterpenoids with unique glycoforms.
Collapse
Affiliation(s)
- Xiaoyang Han
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Jingyi Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Hong Zhou
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuan Zhou
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zixin Deng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhenhua Liu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yi Yu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China.
| |
Collapse
|
11
|
Li T, Borg AJE, Krammer L, Weber H, Breinbauer R, Nidetzky B. Discovery, characterization, and comparative analysis of new UGT72 and UGT84 family glycosyltransferases. Commun Chem 2024; 7:147. [PMID: 38942997 PMCID: PMC11213884 DOI: 10.1038/s42004-024-01231-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024] Open
Abstract
Glycosylated derivatives of natural product polyphenols display a spectrum of biological activities, rendering them critical for both nutritional and pharmacological applications. Their enzymatic synthesis by glycosyltransferases is frequently constrained by the limited repertoire of characterized enzyme-catalyzed transformations. Here, we explore the glycosylation capabilities and substrate preferences of newly identified plant uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs) within the UGT72 and UGT84 families, with particular focus on natural polyphenol glycosylation from UDP-glucose. Four UGTs are classified according to their phylogenetic relationships and reaction products, identifying them as biocatalysts for either glucoside (UGT72 enzymes) or glucose ester (UGT84 members) formation from selected phenylpropanoid compounds. Detailed kinetic evaluations expose the unique attributes of these enzymes, including their specific activities and regio-selectivities towards diverse polyphenolic substrates, with product characterizations validating the capacity of UGT84 family members to perform di-O-glycosylation on flavones. Sequence analysis coupled with structural predictions through AlphaFold reveal an unexpected absence of a conserved threonine residue across all four enzymes, a trait previously linked to pentosyltransferases. This comparative analysis broadens the understood substrate specificity range for UGT72 and UGT84 enzymes, enhancing our understanding of their utility in the production of natural phenolic glycosides. The findings from this in-depth characterization provide valuable insights into the functional versatility of UGT-mediated reactions.
Collapse
Affiliation(s)
- Tuo Li
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/1, 8010, Graz, Austria
| | - Annika J E Borg
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/1, 8010, Graz, Austria
| | - Leo Krammer
- Institute of Organic Chemistry, Graz University of Technology, NAWI Graz, Stremayrgasse 9, 8010, Graz, Austria
| | - Hansjörg Weber
- Institute of Organic Chemistry, Graz University of Technology, NAWI Graz, Stremayrgasse 9, 8010, Graz, Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology, NAWI Graz, Stremayrgasse 9, 8010, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/1, 8010, Graz, Austria.
- Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, 8010, Graz, Austria.
| |
Collapse
|
12
|
Tian C, Li J, Wu Y, Wang G, Zhang Y, Zhang X, Sun Y, Wang Y. An integrative database and its application for plant synthetic biology research. PLANT COMMUNICATIONS 2024; 5:100827. [PMID: 38297840 PMCID: PMC11121754 DOI: 10.1016/j.xplc.2024.100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/27/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
Plant synthetic biology research requires diverse bioparts that facilitate the redesign and construction of new-to-nature biological devices or systems in plants. Limited by few well-characterized bioparts for plant chassis, the development of plant synthetic biology lags behind that of its microbial counterpart. Here, we constructed a web-based Plant Synthetic BioDatabase (PSBD), which currently categorizes 1677 catalytic bioparts and 384 regulatory elements and provides information on 309 species and 850 chemicals. Online bioinformatics tools including local BLAST, chem similarity, phylogenetic analysis, and visual strength are provided to assist with the rational design of genetic circuits for manipulation of gene expression in planta. We demonstrated the utility of the PSBD by functionally characterizing taxadiene synthase 2 and its quantitative regulation in tobacco leaves. More powerful synthetic devices were then assembled to amplify the transcriptional signals, enabling enhanced expression of flavivirus non-structure 1 proteins in plants. The PSBD is expected to be an integrative and user-centered platform that provides a one-stop service for diverse applications in plant synthetic biology research.
Collapse
Affiliation(s)
- Chenfei Tian
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jianhua Li
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuhan Wu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Guangyi Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yixin Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Xiaowei Zhang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuwei Sun
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Yong Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
13
|
Yuan X, Li R, He W, Xu W, Xu W, Yan G, Xu S, Chen L, Feng Y, Li H. Progress in Identification of UDP-Glycosyltransferases for Ginsenoside Biosynthesis. JOURNAL OF NATURAL PRODUCTS 2024; 87:1246-1267. [PMID: 38449105 DOI: 10.1021/acs.jnatprod.3c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Ginsenosides, the primary pharmacologically active constituents of the Panax genus, have demonstrated a variety of medicinal properties, including anticardiovascular disease, cytotoxic, antiaging, and antidiabetes effects. However, the low concentration of ginsenosides in plants and the challenges associated with their extraction impede the advancement and application of ginsenosides. Heterologous biosynthesis represents a promising strategy for the targeted production of these natural active compounds. As representative triterpenoids, the biosynthetic pathway of the aglycone skeletons of ginsenosides has been successfully decoded. While the sugar moiety is vital for the structural diversity and pharmacological activity of ginsenosides, the mining of uridine diphosphate-dependent glycosyltransferases (UGTs) involved in ginsenoside biosynthesis has attracted a lot of attention and made great progress in recent years. In this paper, we summarize the identification and functional study of UGTs responsible for ginsenoside synthesis in both plants, such as Panax ginseng and Gynostemma pentaphyllum, and microorganisms including Bacillus subtilis and Saccharomyces cerevisiae. The UGT-related microbial cell factories for large-scale ginsenoside production are also mentioned. Additionally, we delve into strategies for UGT mining, particularly potential rapid screening or identification methods, providing insights and prospects. This review provides insights into the study of other unknown glycosyltransferases as candidate genetic elements for the heterologous biosynthesis of rare ginsenosides.
Collapse
Affiliation(s)
- Xiaoxuan Yuan
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Ruiqiong Li
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Weishen He
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Wei Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Wen Xu
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Guohong Yan
- Pharmacy Department, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, China
| | - Shaohua Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Lixia Chen
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yaqian Feng
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Hua Li
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| |
Collapse
|
14
|
Rates ADB, Cesarino I. Pour some sugar on me: The diverse functions of phenylpropanoid glycosylation. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154138. [PMID: 38006622 DOI: 10.1016/j.jplph.2023.154138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023]
Abstract
The phenylpropanoid metabolism is the source of a vast array of specialized metabolites that play diverse functions in plant growth and development and contribute to all aspects of plant interactions with their surrounding environment. These compounds protect plants from damaging ultraviolet radiation and reactive oxygen species, provide mechanical support for the plants to stand upright, and mediate plant-plant and plant-microorganism communications. The enormous metabolic diversity of phenylpropanoids is further expanded by chemical modifications known as "decorative reactions", including hydroxylation, methylation, glycosylation, and acylation. Among these modifications, glycosylation is the major driving force of phenylpropanoid structural diversification, also contributing to the expansion of their properties. Phenylpropanoid glycosylation is catalyzed by regioselective uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs), whereas glycosyl hydrolases known as β-glucosidases are the major players in deglycosylation. In this article, we review how the glycosylation process affects key physicochemical properties of phenylpropanoids, such as molecular stability and solubility, as well as metabolite compartmentalization/storage and biological activity/toxicity. We also summarize the recent knowledge on the functional implications of glycosylation of different classes of phenylpropanoid compounds. A balance of glycosylation/deglycosylation might represent an essential molecular mechanism to regulate phenylpropanoid homeostasis, allowing plants to dynamically respond to diverse environmental signals.
Collapse
Affiliation(s)
- Arthur de Barros Rates
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil; Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues 370, 05508-020, São Paulo, Brazil.
| |
Collapse
|
15
|
Oda-Yamamizo C, Mitsuda N, Milkowski C, Ito H, Ezura K, Tahara K. Heterologous gene expression system for the production of hydrolyzable tannin intermediates in herbaceous model plants. JOURNAL OF PLANT RESEARCH 2023; 136:891-905. [PMID: 37526750 PMCID: PMC10587339 DOI: 10.1007/s10265-023-01484-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023]
Abstract
Aluminum toxicity is the main factor limiting the elongation of plant roots in acidic soil. The tree species Eucalyptus camaldulensis is considerably more resistant to aluminum than herbaceous model plants and crops. Hydrolyzable tannins (HTs) accumulating in E. camaldulensis roots can bind and detoxify the aluminum taken up by the roots. However, in herbaceous model plants, HTs do not accumulate and the genes involved in the HT biosynthetic pathway are largely unknown. The aim of this study was to establish a method for reconstituting the HT biosynthetic pathway in the HT non-accumulating model plant Nicotiana benthamiana. Four E. camaldulensis enzymes were transiently expressed in N. benthamiana leaves via Agrobacterium tumefaciens-mediated transformation. These enzymes included dehydroquinate dehydratase/shikimate dehydrogenases (EcDQD/SDH2 and EcDQD/SDH3), which catalyze the synthesis of gallic acid, the first intermediate of the HT biosynthetic pathway that branches off from the shikimate pathway. The others were UDP-glycosyltransferases (UGT84A25 and UGT84A26), which catalyze the conversion of gallic acid to β-glucogallin, the second intermediate. The co-expression of the EcDQD/SDHs in transgenic N. benthamiana leaf regions promoted the synthesis of gallic acid. Moreover, the co-expression of the UGT84As in addition to the EcDQD/SDHs resulted in the biosynthesis of β-glucogallin, the universal metabolic precursor of HTs. Thus, we successfully reconstituted a portion of the HT biosynthetic pathway in HT non-accumulating N. benthamiana plants. This heterologous gene expression system will be useful for co-expressing candidate genes involved in downstream reactions in the HT biosynthetic pathway and for clarifying their in planta functions.
Collapse
Affiliation(s)
- Chihiro Oda-Yamamizo
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
| | - Carsten Milkowski
- AGRIPOLY: International Graduate School in Agricultural and Polymer Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Straße 3, 06120, Halle, Germany
| | - Hideyuki Ito
- Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Kentaro Ezura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Ko Tahara
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan.
| |
Collapse
|
16
|
Dinday S, Ghosh S. Recent advances in triterpenoid pathway elucidation and engineering. Biotechnol Adv 2023; 68:108214. [PMID: 37478981 DOI: 10.1016/j.biotechadv.2023.108214] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Triterpenoids are among the most assorted class of specialized metabolites found in all the taxa of living organisms. Triterpenoids are the leading active ingredients sourced from plant species and are utilized in pharmaceutical and cosmetic industries. The triterpenoid precursor 2,3-oxidosqualene, which is biosynthesized via the mevalonate (MVA) pathway is structurally diversified by the oxidosqualene cyclases (OSCs) and other scaffold-decorating enzymes such as cytochrome P450 monooxygenases (P450s), UDP-glycosyltransferases (UGTs) and acyltransferases (ATs). A majority of the bioactive triterpenoids are harvested from the native hosts using the traditional methods of extraction and occasionally semi-synthesized. These methods of supply are time-consuming and do not often align with sustainability goals. Recent advancements in metabolic engineering and synthetic biology have shown prospects for the green routes of triterpenoid pathway reconstruction in heterologous hosts such as Escherichia coli, Saccharomyces cerevisiae and Nicotiana benthamiana, which appear to be quite promising and might lead to the development of alternative source of triterpenoids. The present review describes the biotechnological strategies used to elucidate complex biosynthetic pathways and to understand their regulation and also discusses how the advances in triterpenoid pathway engineering might aid in the scale-up of triterpenoid production in engineered hosts.
Collapse
Affiliation(s)
- Sandeep Dinday
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, Punjab, India
| | - Sumit Ghosh
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
17
|
Wang HT, Wang ZL, Chen K, Yao MJ, Zhang M, Wang RS, Zhang JH, Ågren H, Li FD, Li J, Qiao X, Ye M. Insights into the missing apiosylation step in flavonoid apiosides biosynthesis of Leguminosae plants. Nat Commun 2023; 14:6658. [PMID: 37863881 PMCID: PMC10589286 DOI: 10.1038/s41467-023-42393-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023] Open
Abstract
Apiose is a natural pentose containing an unusual branched-chain structure. Apiosides are bioactive natural products widely present in the plant kingdom. However, little is known on the key apiosylation reaction in the biosynthetic pathways of apiosides. In this work, we discover an apiosyltransferase GuApiGT from Glycyrrhiza uralensis. GuApiGT could efficiently catalyze 2″-O-apiosylation of flavonoid glycosides, and exhibits strict selectivity towards UDP-apiose. We further solve the crystal structure of GuApiGT, determine a key sugar-binding motif (RLGSDH) through structural analysis and theoretical calculations, and obtain mutants with altered sugar selectivity through protein engineering. Moreover, we discover 121 candidate apiosyltransferase genes from Leguminosae plants, and identify the functions of 4 enzymes. Finally, we introduce GuApiGT and its upstream genes into Nicotiana benthamiana, and complete de novo biosynthesis of a series of flavonoid apiosides. This work reports an efficient phenolic apiosyltransferase, and reveals mechanisms for its sugar donor selectivity.
Collapse
Affiliation(s)
- Hao-Tian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Zi-Long Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Kuan Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Ming-Ju Yao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Rong-Shen Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Jia-He Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Fu-Dong Li
- National Science Center for Physical Sciences at Microscale Division of Molecular & Cell Biophysics and School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Junhao Li
- Department of Physics and Astronomy, Uppsala University, SE-751 20, Uppsala, Sweden.
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
| |
Collapse
|
18
|
Zou J, Li H, Wang Z, Ye M. Functional characterization of two efficient glycosyltransferases catalysing the formation of rutin from Sophora japonica L. Org Biomol Chem 2023; 21:7913-7916. [PMID: 37752877 DOI: 10.1039/d3ob01281f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Two efficient and selective glycosyltransferases were identified from Sophora japonica L. Sj3GT could regio-selectively catalyse 3-O-glucosylation of quercetin to produce isoquercitrin, and Sj6''RhaT could further catalyse its 6''-O-rhamnosylation to generate rutin. It is particularly noteworthy that Sj6''RhaT shows high sugar donor selectivity towards UDP-rhamnose.
Collapse
Affiliation(s)
- Jianlin Zou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Hongye Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Zilong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
19
|
Ding K, Jia Z, Rui P, Fang X, Zheng H, Chen J, Yan F, Wu G. Proteomics Identified UDP-Glycosyltransferase Family Members as Pro-Viral Factors for Turnip Mosaic Virus Infection in Nicotiana benthamiana. Viruses 2023; 15:1401. [PMID: 37376700 DOI: 10.3390/v15061401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Viruses encounter numerous host factors that facilitate or suppress viral infection. Although some host factors manipulated by viruses were uncovered, we have limited knowledge of the pathways hijacked to promote viral replication and activate host defense responses. Turnip mosaic virus (TuMV) is one of the most prevalent viral pathogens in many regions of the world. Here, we employed an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomics approach to characterize cellular protein changes in the early stages of infection of Nicotiana benthamiana by wild type and replication-defective TuMV. A total of 225 differentially accumulated proteins (DAPs) were identified (182 increased and 43 decreased). Bioinformatics analysis showed that a few biological pathways were associated with TuMV infection. Four upregulated DAPs belonging to uridine diphosphate-glycosyltransferase (UGT) family members were validated by their mRNA expression profiles and their effects on TuMV infection. NbUGT91C1 or NbUGT74F1 knockdown impaired TuMV replication and increased reactive oxygen species production, whereas overexpression of either promoted TuMV replication. Overall, this comparative proteomics analysis delineates the cellular protein changes during early TuMV infection and provides new insights into the role of UGTs in the context of plant viral infection.
Collapse
Affiliation(s)
- Kaida Ding
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhaoxing Jia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Penghuan Rui
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xinxin Fang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
20
|
Zhang S, Wang Y, Cui Z, Li Q, Kong L, Luo J. Functional characterization of a Flavonol 3-O-rhamnosyltransferase and two UDP-rhamnose synthases from Hypericum monogynum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107643. [PMID: 36989989 DOI: 10.1016/j.plaphy.2023.107643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/27/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Rhamnosyltransferase (RT) and rhamnose synthase (Rhs) are the key enzymes that are responsible for the biosynthesis of rhamnosides and UDP-l-rhamnose (UDP-Rha) in plants, respectively. How to discover such enzymes efficiently for use is still a problem to be solved. Here, we identified HmF3RT, HmRhs1, and HmRhs2 from Hypericum monogynum, which is abundant in flavonol rhamnosides, with the help of a full-length and high throughput transcriptome sequencing platform. HmF3RT could regiospecifically transfer the rhamnose moiety of UDP-Rha onto the 3-OH position of flavonols and has weakly catalytic for UDP-xylose (UDP-Xyl) and UDP-glucose (UDP-Glc). HmF3RT showed well quercetin substrate affinity and high catalytic efficiency with Km of 5.14 μM and kcat/Km of 2.21 × 105 S-1 M-1, respectively. Docking, dynamic simulation, and mutagenesis studies revealed that V129, D372, and N373 are critical residues for the activity and sugar donor recognition of HmF3RT, mutant V129A, and V129T greatly enhance the conversion rate of catalytic flavonol glucosides. HmRhs1 and HmRhs2 convert UDP-Glc to UDP-Rha, which could be further used by HmF3RT. The HmF3RT and HmRhs1 co-expressed strain RTS1 could produce quercetin 3-O-rhamnoside (quercitrin), kaempferol 3-O-rhamnoside (afzelin), and myricetin 3-O-rhamnoside (myricitrin) at yields of 85.1, 110.7, and 77.6 mg L-1, respectively. It would provide a valuable reference for establishing a better and more efficient biocatalyst for preparing bioactive flavonol rhamnosides by identifying HmF3RT and HmRhs.
Collapse
Affiliation(s)
- Shuai Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China
| | - Yingying Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China
| | - Zhirong Cui
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China
| | - Qianqian Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China.
| | - Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China.
| |
Collapse
|