1
|
Awan MJA, Farooq MA, Buzdar MI, Zia A, Ehsan A, Waqas MAB, Hensel G, Amin I, Mansoor S. Advances in gene editing-led route for hybrid breeding in crops. Biotechnol Adv 2025; 81:108569. [PMID: 40154762 DOI: 10.1016/j.biotechadv.2025.108569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 02/22/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
With the global demand for sustainable agriculture on the rise, RNA-guided nuclease technology offers transformative applications in crop breeding. Traditional hybrid breeding methods, like three-line and two-line systems, are often labor-intensive, transgenic, and economically burdensome. While chemical mutagens facilitate these systems, they not only generate weak alleles but also produce strong alleles that induce permanent sterility through random mutagenesis. In contrast, RNA-guided nuclease system, such as clustered regularly interspaced short palindromic repeats (CRISPR)- associated protein (Cas) system, facilitates more efficient hybrid production by inducing male sterility through targeted genome modifications in male sterility genes, such as MS8, MS10, MS26, and MS45 which allows precise manipulation of pollen development or pollen abortion in various crops. Moreover, this approach allows haploid induction for the rapid generation of recombinant and homozygous lines from hybrid parents by editing essential genes, like CENH3, MTL/NLD/PLA, and DMP, resulting in high-yield, transgene-free hybrids. Additionally, this system supports synthetic apomixis induction by employing the MiMe (Mitosis instead of Meiosis) strategy, coupled with parthenogenesis in hybrid plants, to create heterozygous lines and retain hybrid vigor in subsequent generations. RNA-guided nuclease-induced synthetic apomixis also enables genome stacking for autopolyploid progressive heterosis via clonal gamete production for trait maintenance to enhance crop adaptability without compromising yield. Additionally, CRISPR-Cas-mediated de novo domestication of wild relatives, along with recent advances to circumvent tissue culture- recalcitrance and -dependency through heterologous expression of morphogenic regulators, holds great promise for incorporating diversity-enriched germplasm into the breeding programs. These approaches aim to generate elite hybrids adapted to dynamic environments and address the anticipated challenges of food insecurity.
Collapse
Affiliation(s)
- Muhammad Jawad Akbar Awan
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan.
| | - Muhammad Awais Farooq
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan; Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, Italy
| | - Muhammad Ismail Buzdar
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Asma Zia
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Aiman Ehsan
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Muhammad Abu Bakar Waqas
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Goetz Hensel
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Centre for Plant Genome Engineering, Düsseldorf, Germany; Cluster of Excellence in Plant Sciences "SMART Plants for Tomorrow's Needs", Heinrich Heine University Düsseldorf, Germany.
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan.
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan; Jamil ur Rehman Center for Genome Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.
| |
Collapse
|
2
|
Tuncel A, Pan C, Clem JS, Liu D, Qi Y. CRISPR-Cas applications in agriculture and plant research. Nat Rev Mol Cell Biol 2025; 26:419-441. [PMID: 40055491 DOI: 10.1038/s41580-025-00834-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2025] [Indexed: 05/31/2025]
Abstract
Growing world population and deteriorating climate conditions necessitate the development of new crops with high yields and resilience. CRISPR-Cas-mediated genome engineering presents unparalleled opportunities to engineer crop varieties cheaper, easier and faster than ever. In this Review, we discuss how the CRISPR-Cas toolbox has rapidly expanded from Cas9 and Cas12 to include different Cas orthologues and engineered variants. We present various CRISPR-Cas-based methods, including base editing and prime editing, which are used for precise genome, epigenome and transcriptome engineering, and methods used to deliver the genome editors into plants, such as bacterial-mediated and viral-mediated transformation. We then discuss how promoter editing and chromosome engineering are used in crop breeding for trait engineering and fixation, and important applications of CRISPR-Cas in crop improvement, such as de novo domestication and enhancing tolerance to abiotic stresses. We conclude with discussing future prospects of plant genome engineering.
Collapse
Affiliation(s)
- Aytug Tuncel
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Changtian Pan
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, China
| | - Joshua S Clem
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Degao Liu
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA.
| |
Collapse
|
3
|
Mikhaylova E. Virus-Induced Genome Editing (VIGE): One Step Away from an Agricultural Revolution. Int J Mol Sci 2025; 26:4599. [PMID: 40429744 PMCID: PMC12111327 DOI: 10.3390/ijms26104599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
There is currently a worldwide trend towards deregulating the use of genome-edited plants. Virus-induced genome editing (VIGE) is a novel technique that utilizes viral vectors to transiently deliver clustered regularly interspaced short palindromic repeat (CRISPR) components into plant cells. It potentially allows us to obtain transgene-free events in any plant species in a single generation without in vitro tissue culture. This technology has great potential for agriculture and is already being applied to more than 14 plant species using more than 20 viruses. The main limitations of VIGE include insufficient vector capacity, unstable expression of CRISPR-associated (Cas) protein, plant immune reaction, host specificity, and reduced viral activity in meristem. Various solutions to these problems have been proposed, such as fusion of mobile elements, RNAi suppressors, novel miniature Cas proteins, and seed-borne viruses, but the final goal has not yet been achieved. In this review, the mechanism underlying the ability of different classes of plant viruses to transiently edit genomes is explained. It not only focuses on the latest achievements in virus-induced editing of crops but also provides suggestions for improving the technology. This review may serve as a source of new ideas for those planning to develop new approaches in VIGE.
Collapse
Affiliation(s)
- Elena Mikhaylova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| |
Collapse
|
4
|
Weiss T, Kamalu M, Shi H, Li Z, Amerasekera J, Zhong Z, Adler BA, Song MM, Vohra K, Wirnowski G, Chitkara S, Ambrose C, Steinmetz N, Sridharan A, Sahagun D, Banfield JF, Doudna JA, Jacobsen SE. Viral delivery of an RNA-guided genome editor for transgene-free germline editing in Arabidopsis. NATURE PLANTS 2025; 11:967-976. [PMID: 40263581 PMCID: PMC12095077 DOI: 10.1038/s41477-025-01989-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 03/22/2025] [Indexed: 04/24/2025]
Abstract
Genome editing is transforming plant biology by enabling precise DNA modifications. However, delivery of editing systems into plants remains challenging, often requiring slow, genotype-specific methods such as tissue culture or transformation1. Plant viruses, which naturally infect and spread to most tissues, present a promising delivery system for editing reagents. However, many viruses have limited cargo capacities, restricting their ability to carry large CRISPR-Cas systems. Here we engineered tobacco rattle virus (TRV) to carry the compact RNA-guided TnpB enzyme ISYmu1 and its guide RNA. This innovation allowed transgene-free editing of Arabidopsis thaliana in a single step, with edits inherited in the subsequent generation. By overcoming traditional reagent delivery barriers, this approach offers a novel platform for genome editing, which can greatly accelerate plant biotechnology and basic research.
Collapse
Affiliation(s)
- Trevor Weiss
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Maris Kamalu
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Honglue Shi
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Zheng Li
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jasmine Amerasekera
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Zhenhui Zhong
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Benjamin A Adler
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
| | - Michelle M Song
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Kamakshi Vohra
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
| | - Gabriel Wirnowski
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Sidharth Chitkara
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Charlie Ambrose
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Noah Steinmetz
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Ananya Sridharan
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Diego Sahagun
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
- University of Melbourne, Melbourne, Australia
| | - Jennifer A Doudna
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Li Ka Shing Center for Translational Genomics, University of California, Berkeley, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA.
- Howard Hughes Medical Institute (HHMI), University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Hu M, Liu D. Unlocking the potential of genome editing in agriculture with tissue culture-free techniques. THE NEW PHYTOLOGIST 2025; 246:1478-1484. [PMID: 40055955 DOI: 10.1111/nph.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/13/2025] [Indexed: 04/25/2025]
Abstract
Genome editing holds great promise for enhancing crop traits; however, progress has been slow due to inefficient delivery methods and reliance on tissue culture for regenerating edited plants, which are time-consuming and labor-intensive. To address these limitations, innovative tissue culture-free techniques have been developed, including meristem editing through biolistic-mediated delivery and RNA virus-mediated delivery. New methods for de novo gene-edited meristem induction and root suckering-based cut-dip-budding have also been established. While these approaches show promise, each faces challenges that must be addressed for practical application in crop improvement. We discuss the transformative potential of these techniques for crop improvement and emphasize the need for ongoing research to refine them and maximize their agricultural impact.
Collapse
Affiliation(s)
- Manman Hu
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, 79409, USA
| | - Degao Liu
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
6
|
Han X, Deng Z, Liu H, Ji X. Current Advancement and Future Prospects in Simplified Transformation-Based Plant Genome Editing. PLANTS (BASEL, SWITZERLAND) 2025; 14:889. [PMID: 40265805 PMCID: PMC11944944 DOI: 10.3390/plants14060889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/25/2025] [Accepted: 03/10/2025] [Indexed: 04/24/2025]
Abstract
Recent years have witnessed remarkable progress in plant biology, driven largely by the rapid evolution of CRISPR/Cas-based genome editing (GE) technologies. These tools, including versatile CRISPR/Cas systems and their derivatives, such as base editors and prime editors, have significantly enhanced the universality, efficiency, and convenience of plant functional genomics, genetics, and molecular breeding. However, traditional genetic transformation methods are essential for obtaining GE plants. These methods depend on tissue culture procedures, which are time-consuming, labor-intensive, genotype-dependent, and challenging to regenerate. Here, we systematically outline current advancements in simplifying plant GE, focusing on the optimization of tissue culture process through developmental regulators, the development of in planta transformation methods, and the establishment of nanomaterial- and viral vector-based delivery platforms. We also discuss critical challenges and future directions for achieving genotype-independent, tissue culture-free plant GE.
Collapse
Affiliation(s)
| | | | - Huiyun Liu
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, and Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (X.H.); (Z.D.)
| | - Xiang Ji
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, and Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (X.H.); (Z.D.)
| |
Collapse
|
7
|
Wu L, Yang J, Gu Y, Wang Q, Zhang Z, Guo H, Zhao L, Zhang H, Gu L. Bamboo mosaic virus-mediated transgene-free genome editing in bamboo. THE NEW PHYTOLOGIST 2025; 245:1810-1816. [PMID: 39763115 DOI: 10.1111/nph.20386] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 12/16/2024] [Indexed: 02/07/2025]
Affiliation(s)
- Lin Wu
- College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jun Yang
- Basic Forestry and Proteomics Research Center, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuying Gu
- Basic Forestry and Proteomics Research Center, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qianyi Wang
- College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zeyu Zhang
- College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hongjue Guo
- Basic Forestry and Proteomics Research Center, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liangzhen Zhao
- Basic Forestry and Proteomics Research Center, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hangxiao Zhang
- Basic Forestry and Proteomics Research Center, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
8
|
Li J, Cao L, Zhao Y, Shen J, Wang L, Feng M, Zhu M, Ye Y, Kormelink R, Tao X, Wang X. Structural basis for the activation of plant bunyavirus replication machinery and its dual-targeted inhibition by ribavirin. NATURE PLANTS 2025; 11:518-530. [PMID: 40044941 PMCID: PMC11928317 DOI: 10.1038/s41477-025-01940-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 02/06/2025] [Indexed: 03/23/2025]
Abstract
Despite the discovery of plant viruses as a new class of pathogens over a century ago, the structure of plant virus replication machinery and antiviral pesticide remains lacking. Here we report five cryogenic electron microscopy structures of a ~330-kDa RNA-dependent RNA polymerase (RdRp) from a devastating plant bunyavirus, tomato spotted wilt orthotospovirus (TSWV), including the apo, viral-RNA-bound, base analogue ribavirin-bound and ribavirin-triphosphate-bound states. They reveal that a flexible loop of RdRp's motif F functions as 'sensor' to perceive viral RNA and further acts as an 'adaptor' to promote the formation of a complete catalytic centre. A ten-base RNA 'hook' structure is sufficient to trigger major conformational changes and activate RdRp. Chemical screening showed that ribavirin is effective against TSWV, and structural data revealed that ribavirin disrupts both hook-binding and catalytic core formation, locking polymerase in its inactive state. This work provides structural insights into the mechanisms of plant bunyavirus RdRp activation and its dual-targeted site inhibition, facilitating the development of pesticides against plant viruses.
Collapse
Affiliation(s)
- Jia Li
- State Key Laboratory of Agricultural and Forestry Biosecurity, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
- State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| | - Lei Cao
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yaqian Zhao
- State Key Laboratory of Agricultural and Forestry Biosecurity, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
- State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| | - Jinghan Shen
- State Key Laboratory of Agricultural and Forestry Biosecurity, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
- State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| | - Lei Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mingfeng Feng
- State Key Laboratory of Agricultural and Forestry Biosecurity, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
- State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| | - Min Zhu
- State Key Laboratory of Agricultural and Forestry Biosecurity, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
- State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| | - Yonghao Ye
- State Key Laboratory of Agricultural and Forestry Biosecurity, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
- State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Xiaorong Tao
- State Key Laboratory of Agricultural and Forestry Biosecurity, Nanjing Agricultural University, Nanjing, China.
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China.
- State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China.
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Belaffif MB, Brown MC, Marcial B, Baysal C, Swaminathan K. New strategies to advance plant transformation. Curr Opin Biotechnol 2025; 91:103241. [PMID: 39732097 DOI: 10.1016/j.copbio.2024.103241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/26/2024] [Indexed: 12/30/2024]
Abstract
Plants are an important source of food, energy, and bioproducts. Advances in genetics, genomics-assisted breeding, and biotechnology have facilitated the combining of desirable traits into elite cultivars. To ensure sustainable crop production in the face of climate challenges and population growth, it is essential to develop and implement techniques that increase crop yield and resilience in environments facing water scarcity, nutrient deficiencies, and other abiotic and biotic stressors. Plant transformation and genome editing are critical tools in the development of new cultivars. Here, we discuss recent advances in plant transformation technologies aimed at enhancing efficiency, throughput, and the number of transformable genotypes. These advancements include the use of morphogenic regulators, virus-mediated genetic modifications, and in planta transformation with Rhizobium rhizogenes.
Collapse
Affiliation(s)
- Mohammad B Belaffif
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA; Center for Advanced Bioenergy and Bioproducts Innovation, 1206 W. Gregory Drive (IGB), Urbana, IL 61801, USA; Agria Analytica, CIBIS NINE 11th Floor, Jl.TB Simatupang No.2, Jakarta Selatan, DKI Jakarta 12560, Indonesia
| | - Morgan C Brown
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA
| | - Brenda Marcial
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA; Center for Advanced Bioenergy and Bioproducts Innovation, 1206 W. Gregory Drive (IGB), Urbana, IL 61801, USA; University of Alabama at Huntsville, 301 Sparkman Drive, Huntsville, AL 35899, USA
| | - Can Baysal
- Center for Advanced Bioenergy and Bioproducts Innovation, 1206 W. Gregory Drive (IGB), Urbana, IL 61801, USA; Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108, USA
| | - Kankshita Swaminathan
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA; Center for Advanced Bioenergy and Bioproducts Innovation, 1206 W. Gregory Drive (IGB), Urbana, IL 61801, USA.
| |
Collapse
|
10
|
Kang GH, Ko Y, Lee JM. Enhancing virus-mediated genome editing for cultivated tomato through low temperature. PLANT CELL REPORTS 2025; 44:22. [PMID: 39762363 DOI: 10.1007/s00299-024-03392-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/27/2024] [Indexed: 01/28/2025]
Abstract
KEY MESSAGE Viral vector-mediated gene editing is enhanced for cultivated tomato under low temperature conditions, enabling higher mutation rates, heritable, and virus-free gene editing for efficient breeding. The CRISPR/Cas system, a versatile gene-editing tool, has revolutionized plant breeding by enabling precise genetic modifications. The development of robust and efficient genome-editing tools for crops is crucial for their application in plant breeding. In this study, we highly improved virus-induced genome-editing (VIGE) system for cultivated tomato. Vectors of tobacco rattle virus (TRV) and potato virus X (PVX) were used to deliver sgRNA targeting phytoene desaturase (SlPDS), along with mobile RNA sequences of tFT or tRNAIleu, into Cas9-overexpressing cultivated tomato (S. lycopersicum cv. Moneymaker). Our results demonstrate that low temperature significantly enhanced viral vector-mediated gene editing efficiency in both cotyledons and systemic upper leaves. However, no mutant progeny was obtained from TRV- and PVX301-infected MM-Cas9 plants. To address this challenge, we employed tissue culture techniques and found that low-temperature incubations at the initiation stage of tissue culture lead to enhanced editing efficiency in both vectors, resulting in a higher mutation rate (> 70%) of SlPDS in regenerated plants. Heritable gene-edited and virus-free progenies were successfully identified. This study presents a straightforward approach to enhance VIGE efficiency and the expeditious production of gene-edited lines in tomato breeding.
Collapse
Affiliation(s)
- Ga Hui Kang
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Yujung Ko
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Je Min Lee
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
11
|
Quiroz LF, Khan M, Gondalia N, Lai L, McKeown PC, Brychkova G, Spillane C. Tissue culture-independent approaches to revolutionizing plant transformation and gene editing. HORTICULTURE RESEARCH 2025; 12:uhae292. [PMID: 39906168 PMCID: PMC11789523 DOI: 10.1093/hr/uhae292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/06/2024] [Indexed: 02/06/2025]
Abstract
Despite the transformative power of gene editing for crop improvement, its widespread application across species and varieties is limited by the transformation bottleneck that exists for many crops. The genetic transformation of plants is hindered by a general reliance on in vitro regeneration through plant tissue culture. Tissue culture requires empirically determined conditions and aseptic techniques, and cannot easily be translated to recalcitrant species and genotypes. Both Agrobacterium-mediated and alternative transformation protocols are limited by a dependency on in vitro regeneration, which also limits their use by non-experts and hinders research into non-model species such as those of possible novel biopharmaceutical or nutraceutical use, as well as novel ornamental varieties. Hence, there is significant interest in developing tissue culture-independent plant transformation and gene editing approaches that can circumvent the bottlenecks associated with in vitro plant regeneration recalcitrance. Compared to tissue culture-based transformations, tissue culture-independent approaches offer advantages such as avoidance of somaclonal variation effects, with more streamlined and expeditious methodological processes. The ease of use, dependability, and accessibility of tissue culture-independent procedures can make them attractive to non-experts, outperforming classic tissue culture-dependent systems. This review explores the diversity of tissue culture-independent transformation approaches and compares them to traditional tissue culture-dependent transformation strategies. We highlight their simplicity and provide examples of recent successful transformations accomplished using these systems. Our review also addresses current limitations and explores future perspectives, highlighting the significance of these techniques for advancing plant research and crop improvement.
Collapse
Affiliation(s)
- Luis Felipe Quiroz
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway H91 REW4, Ireland
| | - Moman Khan
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway H91 REW4, Ireland
| | - Nikita Gondalia
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway H91 REW4, Ireland
| | - Linyi Lai
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway H91 REW4, Ireland
| | - Peter C McKeown
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway H91 REW4, Ireland
| | - Galina Brychkova
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway H91 REW4, Ireland
| | - Charles Spillane
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway H91 REW4, Ireland
| |
Collapse
|
12
|
Baysal C, Kausch AP, Cody JP, Altpeter F, Voytas DF. Rapid and efficient in planta genome editing in sorghum using foxtail mosaic virus-mediated sgRNA delivery. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17196. [PMID: 39661735 PMCID: PMC11771572 DOI: 10.1111/tpj.17196] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 12/13/2024]
Abstract
The requirement of in vitro tissue culture for the delivery of gene editing reagents limits the application of gene editing to commercially relevant varieties of many crop species. To overcome this bottleneck, plant RNA viruses have been deployed as versatile tools for in planta delivery of recombinant RNA. Viral delivery of single-guide RNAs (sgRNAs) to transgenic plants that stably express CRISPR-associated (Cas) endonuclease has been successfully used for targeted mutagenesis in several dicotyledonous and few monocotyledonous plants. Progress with this approach in monocotyledonous plants is limited so far by the availability of effective viral vectors. We engineered a set of foxtail mosaic virus (FoMV) and barley stripe mosaic virus (BSMV) vectors to deliver the fluorescent protein AmCyan to track viral infection and movement in Sorghum bicolor. We further used these viruses to deliver and express sgRNAs to Cas9 and Green Fluorescent Protein (GFP) expressing transgenic sorghum lines, targeting Phytoene desaturase (PDS), Magnesium-chelatase subunit I (MgCh), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase, orthologs of maize Lemon white1 (Lw1) or GFP. The recombinant BSMV did neither infect sorghum nor deliver or express AmCyan and sgRNAs. In contrast, the recombinant FoMV systemically spread throughout sorghum plants and induced somatic mutations with frequencies reaching up to 60%. This mutagenesis led to visible phenotypic changes, demonstrating the potential of FoMV for in planta gene editing and functional genomics studies in sorghum.
Collapse
Affiliation(s)
- Can Baysal
- DOE Center for Advanced Bioenergy and Bioproducts InnovationSt. PaulMinnesota55108USA
- Department of Genetics, Cell Biology and DevelopmentUniversity of MinnesotaSt. PaulMinnesota55108USA
- Center for Precision Plant GenomicsUniversity of MinnesotaSt. PaulMinnesota55108USA
| | - Albert P. Kausch
- Department of Cell and Molecular BiologyUniversity of Rhode IslandSouth KingstownRhode Island02881USA
| | - Jon P. Cody
- Department of Genetics, Cell Biology and DevelopmentUniversity of MinnesotaSt. PaulMinnesota55108USA
- Center for Precision Plant GenomicsUniversity of MinnesotaSt. PaulMinnesota55108USA
| | - Fredy Altpeter
- Agronomy Department, Plant Molecular and Cellular Biology ProgramGenetics InstituteUniversity of Florida, IFASGainesvilleFloridaUSA
- DOE Center for Advanced Bioenergy and Bioproducts InnovationGainesvilleFlorida32611USA
| | - Daniel F. Voytas
- DOE Center for Advanced Bioenergy and Bioproducts InnovationSt. PaulMinnesota55108USA
- Department of Genetics, Cell Biology and DevelopmentUniversity of MinnesotaSt. PaulMinnesota55108USA
- Center for Precision Plant GenomicsUniversity of MinnesotaSt. PaulMinnesota55108USA
| |
Collapse
|
13
|
Qiao N, Liu H, Chen Y, Zhang D, Liu J, Sun H, Liu Y, Zhu X, Sun X. N Protein of Tomato Spotted Wilt Virus Proven to Be Antagonistic Against Tomato Yellow Leaf Curl Virus in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2025; 26:e70046. [PMID: 39740810 DOI: 10.1111/mpp.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/13/2024] [Accepted: 12/07/2024] [Indexed: 01/02/2025]
Abstract
Two phylogenetically unrelated viruses transmitted by different insect vectors, tomato spotted wilt virus (TSWV) and tomato yellow leaf curl virus (TYLCV), are major threats to tomato and other vegetable production. Although co-infections of TSWV and TYLCV on the same host plant have been reported on numerous occasions, there is still lack of research attempting to elucidate the mechanisms underlying the relationship between two viruses when they coexist in the same tomato or other plants. After assessing the effect of four TSWV-coded proteins on suppressing TYLCV in TSWV N transgenic Nicotiana benthamiana seedlings, the TSWV N protein proved to be effective in reducing TYLCV quantity and viral symptoms. Western blot analysis indicated that TSWV N was involved in down-regulating the expression level of the V1, C3, and C4 proteins of TYLCV, among which V1 was the most significantly suppressed one. Moreover, TSWV N was confirmed to reduce TYLCV V1 within both nucleus and cytoplasm, but a greater suppression was observed in cytoplasm. The co-immunoprecipitation and mass spectrometry identified 244 differential proteins from the TYLCV-infected TSWV N transgenic N. benthamiana seedling. These proteins pertaining to energy metabolism pathways were enriched, suggesting that TSWV N could inhibit TYLCV through competing for energy or regulating energy-related metabolism. The evidence presented here offers a novel perspective that will facilitate a comprehensive understanding of virus-virus and virus-host interactions, as well as a potential strategy for plant virus control through using TSWV N in the near future.
Collapse
Affiliation(s)
- Ning Qiao
- Facility Horticultural Laboratory of Universities in Shandong, Weifang University of Science and Technology, Shouguang, Shandong, China
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Hongmei Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yuxing Chen
- Facility Horticultural Laboratory of Universities in Shandong, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Dezhen Zhang
- Facility Horticultural Laboratory of Universities in Shandong, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Jie Liu
- Facility Horticultural Laboratory of Universities in Shandong, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Hanru Sun
- Facility Horticultural Laboratory of Universities in Shandong, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Yongguang Liu
- Facility Horticultural Laboratory of Universities in Shandong, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Xiaoping Zhu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiaoan Sun
- Facility Horticultural Laboratory of Universities in Shandong, Weifang University of Science and Technology, Shouguang, Shandong, China
- Division of Plant Industry, Florida Department of Agriculture and Consumer Services, Gainesville, Florida, USA
| |
Collapse
|
14
|
Lou H, Xiang H, Zeng W, Jiang J, Zhang J, Xu L, Zhao C, Gao Q, Li Z. Protocol for transformation-free genome editing in plants using RNA virus vectors for CRISPR-Cas delivery. STAR Protoc 2024; 5:103437. [PMID: 39504248 PMCID: PMC11577223 DOI: 10.1016/j.xpro.2024.103437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/17/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Plant virus vectors have emerged as promising tools for CRISPR-Cas reagent delivery. Here, we present a protocol for DNA-free plant genome editing using an engineered RNA virus vector for the transient delivery of CRISPR-Cas components. We describe steps for viral vector construction, viral vector recovery through agroinoculation of Nicotiana benthamiana, mechanical inoculation of target plant hosts, analysis of somatic mutagenesis frequency, and regeneration of mutant plants. The method achieves high editing efficiency and eliminates the need for stable plant transformation. For complete details on the use and execution of this protocol, please refer to Liu et al.1.
Collapse
Affiliation(s)
- Huanhuan Lou
- Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Haiying Xiang
- Yunnan Academy of Tobacco Science, Kunming, Yunnan 650106, China
| | - Wanli Zeng
- Yunnan Academy of Tobacco Science, Kunming, Yunnan 650106, China
| | - Jiarui Jiang
- Yunnan Academy of Tobacco Science, Kunming, Yunnan 650106, China
| | - Jianduo Zhang
- Yunnan Academy of Tobacco Science, Kunming, Yunnan 650106, China
| | - Li Xu
- Yunnan Academy of Tobacco Science, Kunming, Yunnan 650106, China
| | - Chenglu Zhao
- Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qian Gao
- Yunnan Academy of Tobacco Science, Kunming, Yunnan 650106, China.
| | - Zhenghe Li
- Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
15
|
Yoshida T, Ishikawa M, Toki S, Ishibashi K. Heritable Tissue-Culture-Free Gene Editing in Nicotiana benthamiana through Viral Delivery of SpCas9 and sgRNA. PLANT & CELL PHYSIOLOGY 2024; 65:1743-1750. [PMID: 39215594 PMCID: PMC11631083 DOI: 10.1093/pcp/pcae100] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Conventional plant gene editing requires laborious tissue-culture-mediated transformation, which restricts the range of applicable plant species. In this study, we developed a heritable and tissue-culture-free gene editing method in Nicotiana benthamiana using tobacco ringspot virus (TRSV) as a vector for in planta delivery of Cas9 and single-guide RNA (sgRNA) to shoot apical meristems. Agrobacterium-mediated inoculation of the TRSV vector induced systemic and heritable gene editing in Nicotiana benthamiana PHYTOENE DESATURASE. Transient downregulation of RNA silencing enhanced gene editing efficiency, resulting in an order of magnitude increase (0.8-13.2%) in the frequency of transgenerational gene editing. While the TRSV system had a preference for certain sgRNA sequences, co-inoculation of a TRSV vector carrying only Cas9 and a tobacco rattle virus vector carrying sgRNA successfully introduced systemic mutations with all five tested sgRNAs. Extensively gene-edited lateral shoots occasionally grew from plants inoculated with the virus vectors, the transgenerational gene editing frequency of which ranged up to 100%. This virus-mediated heritable gene editing method makes plant gene editing easy, requiring only the inoculation of non-transgenic plants with a virus vector(s) to obtain gene-edited individuals.
Collapse
Affiliation(s)
- Tetsuya Yoshida
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Masayuki Ishikawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Seiichi Toki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan
| | - Kazuhiro Ishibashi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| |
Collapse
|
16
|
Xiang H, Chen B, Wang S, Zeng W, Jiang J, Kong W, Huang H, Mi Q, Ni S, Gao Q, Li Z. Development of an RNA virus vector for non-transgenic genome editing in tobacco and generation of berberine bridge enzyme-like mutants with reduced nicotine content. ABIOTECH 2024; 5:449-464. [PMID: 39650142 PMCID: PMC11624166 DOI: 10.1007/s42994-024-00188-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/22/2024] [Indexed: 12/11/2024]
Abstract
Tobacco (Nicotiana tabacum) plants synthesize the psychoactive pyridine alkaloid nicotine, which has sparked growing interest in reducing nicotine levels through genome editing aiming at inactivating key biosynthetic genes. Although stable transformation-mediated genome editing is effective in tobacco, its polyploid nature complicates the complete knockout of genes and the segregation of transgenes from edited plants. In this study, we developed a non-transgenic genome editing method in tobacco by delivering the CRISPR/Cas machinery via an engineered negative-strand RNA rhabdovirus vector, followed by the regeneration of mutant plants through tissue culture. Using this method, we targeted six berberine bridge enzyme-like protein (BBL) family genes for mutagenesis, which are implicated in the last steps of pyridine alkaloid biosynthesis, in the commercial tobacco cultivar Hongda. We generated a panel of 16 mutant lines that were homozygous for mutations in various combinations of BBL genes. Alkaloid profiling revealed that lines homozygous for BBLa and BBLb mutations exhibited drastically reduced nicotine levels, while other BBL members played a minor role in nicotine synthesis. The decline of nicotine content in these lines was accompanied by reductions in anatabine and cotinine levels but increases in nornicotine and its derivative myosmine. Preliminary agronomic evaluation identified two low-nicotine lines with growth phenotypes comparable to those of wild-type plants under greenhouse and field conditions. Our work provides potentially valuable genetic materials for breeding low-nicotine tobacco and enhances our understanding of alkaloid biosynthesis. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-024-00188-y.
Collapse
Affiliation(s)
- Haiying Xiang
- Yunnan Academy of Tobacco Science, Kunming, 650106 China
| | - Binhuan Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058 China
| | - Shuo Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058 China
| | - Wanli Zeng
- Yunnan Academy of Tobacco Science, Kunming, 650106 China
| | - Jiarui Jiang
- Yunnan Academy of Tobacco Science, Kunming, 650106 China
| | - Weisong Kong
- Yunnan Academy of Tobacco Science, Kunming, 650106 China
| | - Haitao Huang
- Yunnan Academy of Tobacco Science, Kunming, 650106 China
| | - Qili Mi
- Yunnan Academy of Tobacco Science, Kunming, 650106 China
| | - Shuang Ni
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058 China
| | - Qian Gao
- Yunnan Academy of Tobacco Science, Kunming, 650106 China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
17
|
Huang W, Zhang Y, Xiao N, Zhao W, Shi Y, Fang R. Trans-complementation of the viral movement protein mediates efficient expression of large target genes via a tobacco mosaic virus vector. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2957-2970. [PMID: 38923265 PMCID: PMC11500985 DOI: 10.1111/pbi.14418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/17/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
The development of plant virus-based expression systems has expanded rapidly owing to their potential applications in gene functional and disease resistance research, and industrial production of pharmaceutical proteins. However, the low yield of certain proteins, especially high-molecular-mass proteins, restricts the production scale. In this study, we observed that the tobacco mosaic virus (TMV)-mediated expression of a foreign protein was correlated with the amount of the movement protein (MP) and developed a TMV-derived pAT-transMP vector system incorporating trans-complementation expression of MP. The system is capable of efficient expression of exogenous proteins, in particular those with a high molecular mass, and enables simultaneous expression of two target molecules. Furthermore, viral expression of competent CRISPR-Cas9 protein and construction of CRISPR-Cas9-mediated gene-editing system in a single pAT-transMP construct was achieved. The results demonstrated a novel role for TMV-MP in enhancing the accumulation of a foreign protein produced from the viral vector or a binary expression system. Further investigation of the mechanism underlying this role will be beneficial for optimization of plant viral vectors with broad applications.
Collapse
Affiliation(s)
- Weikuo Huang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of Sciences, and National Plant Gene Research CenterBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yuman Zhang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of Sciences, and National Plant Gene Research CenterBeijingChina
| | - Na Xiao
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of Sciences, and National Plant Gene Research CenterBeijingChina
| | - Wenhui Zhao
- College of Veterinary Medicine, and College of AgronomyShanxi Agricultural UniversityJinzhongChina
| | - Ying Shi
- College of Veterinary Medicine, and College of AgronomyShanxi Agricultural UniversityJinzhongChina
| | - Rongxiang Fang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of Sciences, and National Plant Gene Research CenterBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
18
|
Uranga M, Martín-Hernández AM, De Storme N, Pasin F. CRISPR-Cas systems and applications for crop bioengineering. Front Bioeng Biotechnol 2024; 12:1483857. [PMID: 39479297 PMCID: PMC11521923 DOI: 10.3389/fbioe.2024.1483857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Abstract
CRISPR-Cas technologies contribute to enhancing our understanding of plant gene functions, and to the precise breeding of crop traits. Here, we review the latest progress in plant genome editing, focusing on emerging CRISPR-Cas systems, DNA-free delivery methods, and advanced editing approaches. By illustrating CRISPR-Cas applications for improving crop performance and food quality, we highlight the potential of genome-edited crops to contribute to sustainable agriculture and food security.
Collapse
Affiliation(s)
- Mireia Uranga
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
- Centre for Research in Agricultural Genomics (CRAG), Barcelona, Spain
| | - Ana Montserrat Martín-Hernández
- Centre for Research in Agricultural Genomics (CRAG), Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
| | - Nico De Storme
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | - Fabio Pasin
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), Valencia, Spain
- Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
19
|
Zhao C, Lou H, Liu Q, Pei S, Liao Q, Li Z. Efficient and transformation-free genome editing in pepper enabled by RNA virus-mediated delivery of CRISPR/Cas9. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2079-2082. [PMID: 38984692 DOI: 10.1111/jipb.13741] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Tomato spotted wilt virus-mediated delivery of CRISPR/Cas9 bypasses the need for stable transformation and permits efficient, DNA-free genome editing in pepper. Remarkably, up to 77.9% of regenerated pepper plants contained heritable edits. This method has been validated with two pepper varieties and is compatible with existing tissue culture protocols.
Collapse
Affiliation(s)
- Chenglu Zhao
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Huanhuan Lou
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Qian Liu
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Siqi Pei
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Qiansheng Liao
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
20
|
Wu M, Chen A, Li X, Li X, Hou X, Liu X. Advancements in delivery strategies and non-tissue culture regeneration systems for plant genetic transformation. ADVANCED BIOTECHNOLOGY 2024; 2:34. [PMID: 39883316 PMCID: PMC11709142 DOI: 10.1007/s44307-024-00041-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 01/31/2025]
Abstract
Plant genetic transformation is a pivotal and essential step in modifying important agronomic traits using biotechnological tools, which primarily depend on the efficacy of transgene delivery and the plant regeneration system. Over the years, advancements in the development of delivery methods and regeneration systems have contributed to plant engineering and molecular breeding. Recent studies have demonstrated that the efficiency of plant transformation can be improved by simultaneously delivering meristem-developmental regulators, utilizing virus-mediated gene editing, and executing non-sterile in planta manipulations. Efficient genetic delivery and non-tissue culture regeneration systems are gradually being developed. This review summarizes diverse delivery strategies and in planta regeneration techniques aimed at improving the efficiency of plant genetic transformation. We also emphasize the integration and utilization of these emerging transgenic approaches for expediting future crop engineering.
Collapse
Affiliation(s)
- Minyi Wu
- Guangdong Provincial Key Laboratory of Applied Botany, South China, Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Ao Chen
- Guangdong Provincial Key Laboratory of Applied Botany, South China, Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaomeng Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Xiaoyun Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Xingliang Hou
- Guangdong Provincial Key Laboratory of Applied Botany, South China, Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
- University of the Chinese Academy of Sciences, Beijing, China.
| | - Xu Liu
- Guangdong Provincial Key Laboratory of Applied Botany, South China, Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
- University of the Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
21
|
Chen F, Chen L, Yan Z, Xu J, Feng L, He N, Guo M, Zhao J, Chen Z, Chen H, Yao G, Liu C. Recent advances of CRISPR-based genome editing for enhancing staple crops. FRONTIERS IN PLANT SCIENCE 2024; 15:1478398. [PMID: 39376239 PMCID: PMC11456538 DOI: 10.3389/fpls.2024.1478398] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024]
Abstract
An increasing population, climate change, and diminishing natural resources present severe threats to global food security, with traditional breeding and genetic engineering methods often falling short in addressing these rapidly evolving challenges. CRISPR/Cas systems have emerged as revolutionary tools for precise genetic modifications in crops, offering significant advancements in resilience, yield, and nutritional value, particularly in staple crops like rice and maize. This review highlights the transformative potential of CRISPR/Cas technology, emphasizing recent innovations such as prime and base editing, and the development of novel CRISPR-associated proteins, which have significantly improved the specificity, efficiency, and scope of genome editing in agriculture. These advancements enable targeted genetic modifications that enhance tolerance to abiotic stresses as well as biotic stresses. Additionally, CRISPR/Cas plays a crucial role in improving crop yield and quality by enhancing photosynthetic efficiency, nutrient uptake, and resistance to lodging, while also improving taste, texture, shelf life, and nutritional content through biofortification. Despite challenges such as off-target effects, the need for more efficient delivery methods, and ethical and regulatory concerns, the review underscores the importance of CRISPR/Cas in addressing global food security and sustainability challenges. It calls for continued research and integration of CRISPR with other emerging technologies like nanotechnology, synthetic biology, and machine learning to fully realize its potential in developing resilient, productive, and sustainable agricultural systems.
Collapse
Affiliation(s)
- Feng Chen
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Suzhou, Jiangsu, China
| | - Lu Chen
- Pharma Technology A/S, Køge, Denmark
| | - Zhao Yan
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Suzhou, Jiangsu, China
| | - Jingyuan Xu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Suzhou, Jiangsu, China
| | - Luoluo Feng
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Suzhou, Jiangsu, China
| | - Na He
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Suzhou, Jiangsu, China
| | - Mingli Guo
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiaxiong Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhijun Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiqi Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gengzhen Yao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chunping Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong, China
| |
Collapse
|
22
|
Ishibashi K, Sukegawa S, Endo M, Hara N, Nureki O, Saika H, Toki S. Systemic delivery of engineered compact AsCas12f by a positive-strand RNA virus vector enables highly efficient targeted mutagenesis in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1454554. [PMID: 39323536 PMCID: PMC11423357 DOI: 10.3389/fpls.2024.1454554] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/19/2024] [Indexed: 09/27/2024]
Abstract
Because virus vectors can spread systemically autonomously, they are powerful vehicles with which to deliver genome-editing tools into plant cells. Indeed, a vector based on a positive-strand RNA virus, potato virus X (PVX), harboring SpCas9 and its single guide RNA (sgRNA), achieved targeted mutagenesis in inoculated leaves of Nicotiana benthamiana. However, the large size of the SpCas9 gene makes it unstable in the PVX vector, hampering the introduction of mutations in systemic leaves. Smaller Cas variants are promising tools for virus vector-mediated genome editing; however, they exhibit far lower nuclease activity than SpCas9. Recently, AsCas12f, one of the smallest known Cas proteins so far (one-third the size of SpCas9), was engineered to improve genome-editing activity dramatically. Here, we first confirmed that engineered AsCas12f variants including I123Y/D195K/D208R/V232A exhibited enhanced genome-editing frequencies in rice. Then, a PVX vector harboring this AsCas12f variant was inoculated into N. benthamiana leaves by agroinfiltration. Remarkably, and unlike with PVX-SpCas9, highly efficient genome editing was achieved, not only in PVX-AsCas12f-inoculated leaves but also in leaves above the inoculated leaf (fourth to sixth upper leaves). Moreover, genome-edited shoots regenerated from systemic leaves were obtained at a rate of >60%, enabling foreign DNA-free genome editing. Taken together, our results demonstrate that AsCas12f is small enough to be maintained in the PVX vector during systemic infection in N. benthamiana and that engineered AsCas12f offers advantages over SpCas9 for plant genome editing using virus vectors.
Collapse
Affiliation(s)
- Kazuhiro Ishibashi
- Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Satoru Sukegawa
- Division of Crop Genome Editing Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Masaki Endo
- Division of Crop Genome Editing Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Naho Hara
- Division of Crop Genome Editing Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Japan
| | - Hiroaki Saika
- Division of Crop Genome Editing Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Seiichi Toki
- Division of Crop Genome Editing Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- Department of Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| |
Collapse
|
23
|
Razzaq MK, Babur MN, Awan MJA, Raza G, Mobeen M, Aslam A, Siddique KHM. Revolutionizing soybean genomics: How CRISPR and advanced sequencing are unlocking new potential. Funct Integr Genomics 2024; 24:153. [PMID: 39223394 DOI: 10.1007/s10142-024-01435-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Soybean Glycine max L., paleopolyploid genome, poses challenges to its genetic improvement. However, the development of reference genome assemblies and genome sequencing has completely changed the field of soybean genomics, allowing for more accurate and successful breeding techniques as well as research. During the single-cell revolution, one of the most advanced sequencing tools for examining the transcriptome landscape is single-cell RNA sequencing (scRNA-seq). Comprehensive resources for genetic improvement of soybeans may be found in the SoyBase and other genomics databases. CRISPR-Cas9 genome editing technology provides promising prospects for precise genetic modifications in soybean. This method has enhanced several soybean traits, including as yield, nutritional value, and resistance to both biotic and abiotic stresses. With base editing techniques that allow for precise DNA modifications, the use of CRISPR-Cas9 is further increased. With the availability of the reference genome for soybeans and the following assembly of wild and cultivated soybeans, significant chromosomal rearrangements and gene duplication events have been identified, offering new perspectives on the complex genomic structure of soybeans. Furthermore, major single nucleotide polymorphisms (SNPs) linked to stachyose and sucrose content have been found through genome-wide association studies (GWAS), providing important tools for enhancing soybean carbohydrate profiles. In order to open up new avenues for soybean genetic improvement, future research approaches include investigating transcriptional divergence processes, enhancing genetic resources, and incorporating CRISPR-Cas9 technologies.
Collapse
Affiliation(s)
| | | | - Muhammad Jawad Akbar Awan
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences Jhang Road, Faisalabad, Pakistan
| | - Ghulam Raza
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS) PK, Faisalabad, Pakistan
| | - Mehwish Mobeen
- Institute of Pure and Applied Biology, Zoology Division, Bahauddin Zakariya University, Multan, Pakistan
| | - Ali Aslam
- Faculty of Agriculture and Veterinary Sciences, Superior University, Lahore, Pakistan
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia.
| |
Collapse
|
24
|
Zhang R, Chai N, Liu T, Zheng Z, Lin Q, Xie X, Wen J, Yang Z, Liu YG, Zhu Q. The type V effectors for CRISPR/Cas-mediated genome engineering in plants. Biotechnol Adv 2024; 74:108382. [PMID: 38801866 DOI: 10.1016/j.biotechadv.2024.108382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/07/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
A plethora of CRISPR effectors, such as Cas3, Cas9, and Cas12a, are commonly employed as gene editing tools. Among these, Cas12 effectors developed based on Class II type V proteins exhibit distinct characteristics compared to Class II type VI and type II effectors, such as their ability to generate non-allelic DNA double-strand breaks, their compact structures, and the presence of a single RuvC-like nuclease domain. Capitalizing on these advantages, Cas12 family proteins have been increasingly explored and utilized in recent years. However, the characteristics and applications of different subfamilies within the type V protein family have not been systematically summarized. In this review, we focus on the characteristics of type V effector (CRISPR/Cas12) proteins and the current methods used to discover new effector proteins. We also summarize recent modifications based on engineering of type V effectors. In addition, we introduce the applications of type V effectors for gene editing in animals and plants, including the development of base editors, tools for regulating gene expression, methods for gene targeting, and biosensors. We emphasize the prospects for development and application of CRISPR/Cas12 effectors with the goal of better utilizing toolkits based on this protein family for crop improvement and enhanced agricultural production.
Collapse
Affiliation(s)
- Ruixiang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Nan Chai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Taoli Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhiye Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiupeng Lin
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zi Yang
- College of Natural & Agricultural Sciences, University of California, Riverside, 900 University Ave, Riverside, CA 92507, USA
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
25
|
Li B, Sun C, Li J, Gao C. Targeted genome-modification tools and their advanced applications in crop breeding. Nat Rev Genet 2024; 25:603-622. [PMID: 38658741 DOI: 10.1038/s41576-024-00720-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 04/26/2024]
Abstract
Crop improvement by genome editing involves the targeted alteration of genes to improve plant traits, such as stress tolerance, disease resistance or nutritional content. Techniques for the targeted modification of genomes have evolved from generating random mutations to precise base substitutions, followed by insertions, substitutions and deletions of small DNA fragments, and are finally starting to achieve precision manipulation of large DNA segments. Recent developments in base editing, prime editing and other CRISPR-associated systems have laid a solid technological foundation to enable plant basic research and precise molecular breeding. In this Review, we systematically outline the technological principles underlying precise and targeted genome-modification methods. We also review methods for the delivery of genome-editing reagents in plants and outline emerging crop-breeding strategies based on targeted genome modification. Finally, we consider potential future developments in precise genome-editing technologies, delivery methods and crop-breeding approaches, as well as regulatory policies for genome-editing products.
Collapse
Affiliation(s)
- Boshu Li
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Sun
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiayang Li
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Caixia Gao
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
26
|
Su H, Wang Y, Xu J, Omar AA, Grosser JW, Wang N. Cas12a RNP-mediated co-transformation enables transgene-free multiplex genome editing, long deletions, and inversions in citrus chromosome. FRONTIERS IN PLANT SCIENCE 2024; 15:1448807. [PMID: 39148610 PMCID: PMC11324552 DOI: 10.3389/fpls.2024.1448807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
Introduction Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is a devastating disease worldwide. Previously, we successfully generated canker-resistant Citrus sinensis cv. Hamlin lines in the T0 generation. This was achieved through the transformation of embryogenic protoplasts using the ribonucleoprotein (RNP) containing Cas12a and one crRNA to edit the canker susceptibility gene, CsLOB1, which led to small indels. Methods Here, we transformed embryogenic protoplasts of Hamlin with RNP containing Cas12a and three crRNAs. Results Among the 10 transgene-free genome-edited lines, long deletions were obtained in five lines. Additionally, inversions were observed in three of the five edited lines with long deletions, but not in any edited lines with short indel mutations, suggesting long deletions maybe required for inversions. Biallelic mutations were observed for each of the three target sites in four of the 10 edited lines when three crRNAs were used, demonstrating that transformation of embryogenic citrus protoplasts with Cas12a and three crRNAs RNP can be very efficient for multiplex editing. Our analysis revealed the absence of off-target mutations in the edited lines. These cslob1 mutant lines were canker- resistant and no canker symptoms were observed after inoculation with Xcc and Xcc growth was significantly reduced in the cslob1 mutant lines compared to the wild type plants. Discussion Taken together, RNP (Cas12a and three crRNAs) transformation of embryogenic protoplasts of citrus provides a promising solution for transgene-free multiplex genome editing with high efficiency and for deletion of long fragments.
Collapse
Affiliation(s)
- Hang Su
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Yuanchun Wang
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Jin Xu
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Ahmad A Omar
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Department of Horticultural Sciences, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Jude W Grosser
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Department of Horticultural Sciences, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Nian Wang
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| |
Collapse
|
27
|
Boerjan W, Strauss SH. Social and biological innovations are essential to deliver transformative forest biotechnologies. THE NEW PHYTOLOGIST 2024; 243:526-536. [PMID: 38803120 DOI: 10.1111/nph.19855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Forests make immense contributions to societies in the form of ecological services and sustainable industrial products. However, they face major challenges to their viability and economic use due to climate change and growing biotic and economic threats, for which recombinant DNA (rDNA) technology can sometimes provide solutions. But the application of rDNA technologies to forest trees faces major social and biological obstacles that make its societal acceptance a 'wicked' problem without straightforward solutions. We discuss the nature of these problems, and the social and biological innovations that we consider essential for progress. As case studies of biological challenges, we focus on studies of modifications in wood chemistry and transformation efficiency. We call for major innovations in regulations, and the dissolution of method-based market barriers, that together could lead to greater research investments, enable wide use of field studies, and facilitate the integration of rDNA-modified trees into conventional breeding programs. Without near-term adoption of such innovations, rDNA-based solutions will be largely unavailable to help forests adapt to the growing stresses from climate change and the proliferation of forest pests, nor will they be available to provide economic and environmental benefits from expanded use of wood and related bioproducts as part of an expanding bioeconomy.
Collapse
Affiliation(s)
- Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 71, 9052, Ghent, Belgium
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
28
|
Chen C, Hu Y, Ikeuchi M, Jiao Y, Prasad K, Su YH, Xiao J, Xu L, Yang W, Zhao Z, Zhou W, Zhou Y, Gao J, Wang JW. Plant regeneration in the new era: from molecular mechanisms to biotechnology applications. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1338-1367. [PMID: 38833085 DOI: 10.1007/s11427-024-2581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/26/2024] [Indexed: 06/06/2024]
Abstract
Plants or tissues can be regenerated through various pathways. Like animal regeneration, cell totipotency and pluripotency are the molecular basis of plant regeneration. Detailed systematic studies on Arabidopsis thaliana gradually unravel the fundamental mechanisms and principles underlying plant regeneration. Specifically, plant hormones, cell division, epigenetic remodeling, and transcription factors play crucial roles in reprogramming somatic cells and reestablishing meristematic cells. Recent research on basal non-vascular plants and monocot crops has revealed that plant regeneration differs among species, with various plant species using distinct mechanisms and displaying significant differences in regenerative capacity. Conducting multi-omics studies at the single-cell level, tracking plant regeneration processes in real-time, and deciphering the natural variation in regenerative capacity will ultimately help understand the essence of plant regeneration, improve crop regeneration efficiency, and contribute to future crop design.
Collapse
Affiliation(s)
- Chunli Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences (CAS), China National Botanical Garden, Beijing, 100093, China.
| | - Momoko Ikeuchi
- Division of Biological Sciences, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan.
| | - Yuling Jiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Kalika Prasad
- Indian Institute of Science Education and Research, Pune, 411008, India.
- , Thiruvananthapuram, 695551, India.
| | - Ying Hua Su
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
- Sino-German Joint Research Center on Agricultural Biology, Shandong Agricultural University, Tai'an, 271018, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology (IGDB), CAS, Beijing, 100101, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), IGDB, CAS, Beijing, 100101, China.
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
| | - Weibing Yang
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
- CEPAMS, SIPPE, CAS, Shanghai, 200032, China.
| | - Zhong Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, CEMPS, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Wenkun Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Yun Zhou
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, 47907, USA.
| | - Jian Gao
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai, 200032, China.
- New Cornerstone Science Laboratory, Shanghai, 200032, China.
| |
Collapse
|
29
|
Goralogia GS, Andreatta IM, Conrad V, Xiong Q, Vining KJ, Strauss SH. Rare but diverse off-target and somatic mutations found in field and greenhouse grown trees expressing CRISPR/Cas9. Front Bioeng Biotechnol 2024; 12:1412927. [PMID: 38974658 PMCID: PMC11224489 DOI: 10.3389/fbioe.2024.1412927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/15/2024] [Indexed: 07/09/2024] Open
Abstract
Introduction: CRISPR gene editing, while highly efficient in creating desired mutations, also has the potential to cause off-target mutations. This risk is especially high in clonally propagated plants, where editing reagents may remain in the genome for long periods of time or in perpetuity. We studied a diverse population of Populus and Eucalyptus trees that had CRISPR/Cas9-containing transgenes that targeted one or two types of floral development genes, homologs of LEAFY and AGAMOUS. Methods: Using a targeted sequence approach, we studied approximately 20,000 genomic sites with degenerate sequence homology of up to five base pairs relative to guide RNA (gRNA) target sites. We analyzed those sites in 96 individual tree samples that represented 37 independent insertion events containing one or multiples of six unique gRNAs. Results: We found low rates of off-target mutations, with rates of 1.2 × 10-9 in poplar and 3.1 × 10-10 in eucalypts, respectively, comparable to that expected due to sexual reproduction. The rates of mutation were highly idiosyncratic among sites and not predicted by sequence similarity to the target sites; a subset of two gRNAs showed off-target editing of four unique genomic sites with up to five mismatches relative to the true target sites, reaching fixation in some gene insertion events and clonal ramets. The location of off-target mutations relative to the PAM site were essentially identical to that seen with on-target CRISPR mutations. Discussion: The low rates observed support many other studies in plants that suggest that the rates of off-target mutagenesis from CRISPR/Cas9 transgenes are negligible; our study extends this conclusion to trees and other long-lived plants where CRISPR/Cas9 transgenes were present in the genome for approximately four years.
Collapse
Affiliation(s)
- Greg S. Goralogia
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
| | - Isabella M. Andreatta
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
| | - Victoria Conrad
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
| | - Qin Xiong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing, China
| | - Kelly J. Vining
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| | - Steven H. Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
30
|
Shen Y, Ye T, Li Z, Kimutai TH, Song H, Dong X, Wan J. Exploiting viral vectors to deliver genome editing reagents in plants. ABIOTECH 2024; 5:247-261. [PMID: 38974861 PMCID: PMC11224180 DOI: 10.1007/s42994-024-00147-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/02/2024] [Indexed: 07/09/2024]
Abstract
Genome editing holds great promise for the molecular breeding of plants, yet its application is hindered by the shortage of simple and effective means of delivering genome editing reagents into plants. Conventional plant transformation-based methods for delivery of genome editing reagents into plants often involve prolonged tissue culture, a labor-intensive and technically challenging process for many elite crop cultivars. In this review, we describe various virus-based methods that have been employed to deliver genome editing reagents, including components of the CRISPR/Cas machinery and donor DNA for precision editing in plants. We update the progress in these methods with recent successful examples of genome editing achieved through virus-based delivery in different plant species, highlight the advantages and limitations of these delivery approaches, and discuss the remaining challenges.
Collapse
Affiliation(s)
- Yilin Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Tao Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Zihan Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Torotwa Herman Kimutai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Hao Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Xiaoou Dong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
- Hainan Seed Industry Laboratory, Sanya, 572025 China
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
- Hainan Seed Industry Laboratory, Sanya, 572025 China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
31
|
Pfotenhauer AC, Lenaghan SC. Phytosensors: harnessing plants to understand the world around us. Curr Opin Biotechnol 2024; 87:103134. [PMID: 38705091 DOI: 10.1016/j.copbio.2024.103134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
Although plants are sessile, their ubiquitous distribution, ability to harness energy from the sun, and ability to sense above and belowground signals make them ideal candidates for biosensor development. Synthetic biology has allowed scientists to reimagine biosensors as engineered devices that are focused on accomplishing novel tasks. As such, a new wave of plant-based sensors, phytosensors, are being engineered as multi-component sense-and-report devices that can alert human operators to a variety of hazards. While phytosensors are intrinsically tied to agriculture, a new generation of phytosensors has been envisioned to function in the built environment and even in austere environments, such as space. In this review, we will explore the current state of the art with regard to phytosensor engineering.
Collapse
Affiliation(s)
| | - Scott C Lenaghan
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, USA; Department of Food Science, University of Tennessee, Knoxville, USA.
| |
Collapse
|
32
|
Sun K, Fu K, Hu T, Shentu X, Yu X. Leveraging insect viruses and genetic manipulation for sustainable agricultural pest control. PEST MANAGEMENT SCIENCE 2024; 80:2515-2527. [PMID: 37948321 DOI: 10.1002/ps.7878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/16/2023] [Accepted: 11/11/2023] [Indexed: 11/12/2023]
Abstract
The potential of insect viruses in the biological control of agricultural pests is well-recognized, yet their practical application faces obstacles such as host specificity, variable virulence, and resource scarcity. High-throughput sequencing (HTS) technologies have significantly advanced our capabilities in discovering and identifying new insect viruses, thereby enriching the arsenal for pest management. Concurrently, progress in reverse genetics has facilitated the development of versatile viral expression vectors. These vectors have enhanced the specificity and effectiveness of insect viruses in targeting specific pests, offering a more precise approach to pest control. This review provides a comprehensive examination of the methodologies employed in the identification of insect viruses using HTS. Additionally, it explores the domain of genetically modified insect viruses and their associated challenges in pest management. The adoption of these cutting-edge approaches holds great promise for developing environmentally sustainable and effective pest control solutions. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kai Sun
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Kang Fu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Tao Hu
- Zhejinag Seed Industry Group Xinchuang Bio-breeding Co., Ltd., Hangzhou, China
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
33
|
Jia H, Omar AA, Xu J, Dalmendray J, Wang Y, Feng Y, Wang W, Hu Z, Grosser JW, Wang N. Generation of transgene-free canker-resistant Citrus sinensis cv. Hamlin in the T0 generation through Cas12a/CBE co-editing. FRONTIERS IN PLANT SCIENCE 2024; 15:1385768. [PMID: 38595767 PMCID: PMC11002166 DOI: 10.3389/fpls.2024.1385768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Citrus canker disease affects citrus production. This disease is caused by Xanthomonas citri subsp. citri (Xcc). Previous studies confirmed that during Xcc infection, PthA4, a transcriptional activator like effector (TALE), is translocated from the pathogen to host plant cells. PthA4 binds to the effector binding elements (EBEs) in the promoter region of canker susceptibility gene LOB1 (EBEPthA4-LOBP) to activate its expression and subsequently cause canker symptoms. Previously, the Cas12a/CBE co-editing method was employed to disrupt EBEPthA4-LOBP of pummelo, which is highly homozygous. However, most commercial citrus cultivars are heterozygous hybrids and more difficult to generate homozygous/biallelic mutants. Here, we employed Cas12a/CBE co-editing method to edit EBEPthA4-LOBP of Hamlin (Citrus sinensis), a commercial heterozygous hybrid citrus cultivar grown worldwide. Binary vector GFP-p1380N-ttLbCas12a:LOBP1-mPBE:ALS2:ALS1 was constructed and shown to be functional via Xcc-facilitated agroinfiltration in Hamlin leaves. This construct allows the selection of transgene-free regenerants via GFP, edits ALS to generate chlorsulfuron-resistant regenerants as a selection marker for genome editing resulting from transient expression of the T-DNA via nCas9-mPBE:ALS2:ALS1, and edits gene(s) of interest (i.e., EBEPthA4-LOBP in this study) through ttLbCas12a, thus creating transgene-free citrus. Totally, 77 plantlets were produced. Among them, 8 plantlets were transgenic plants (#HamGFP1 - #HamGFP8), 4 plantlets were transgene-free (#HamNoGFP1 - #HamNoGFP4), and the rest were wild type. Among 4 transgene-free plantlets, three lines (#HamNoGFP1, #HamNoGFP2 and #HamNoGFP3) contained biallelic mutations in EBEpthA4, and one line (#HamNoGFP4) had homozygous mutations in EBEpthA4. We achieved 5.2% transgene-free homozygous/biallelic mutation efficiency for EBEPthA4-LOBP in C. sinensis cv. Hamlin, compared to 1.9% mutation efficiency for pummelo in a previous study. Importantly, the four transgene-free plantlets and 3 transgenic plantlets that survived were resistant against citrus canker. Taken together, Cas12a/CBE co-editing method has been successfully used to generate transgene-free canker-resistant C. sinensis cv. Hamlin in the T0 generation via biallelic/homozygous editing of EBEpthA4 of the canker susceptibility gene LOB1.
Collapse
Affiliation(s)
- Hongge Jia
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Ahmad A. Omar
- Citrus Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Jin Xu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Javier Dalmendray
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Yuanchun Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Yu Feng
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Wenting Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Zhuyuan Hu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Jude W. Grosser
- Citrus Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| |
Collapse
|
34
|
Hwarari D, Radani Y, Ke Y, Chen J, Yang L. CRISPR/Cas genome editing in plants: mechanisms, applications, and overcoming bottlenecks. Funct Integr Genomics 2024; 24:50. [PMID: 38441816 DOI: 10.1007/s10142-024-01314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
The CRISPR/Cas systems have emerged as transformative tools for precisely manipulating plant genomes and enhancement. It has provided unparalleled applications from modifying the plant genomes to resistant enhancement. This review manuscript summarises the mechanism, application, and current challenges in the CRISPR/Cas genome editing technology. It addresses the molecular mechanisms of different Cas genes, elucidating their applications in various plants through crop improvement, disease resistance, and trait improvement. The advent of the CRISPR/Cas systems has enabled researchers to precisely modify plant genomes through gene knockouts, knock-ins, and gene expression modulation. Despite these successes, the CRISPR/Cas technology faces challenges, including off-target effects, Cas toxicity, and efficiency. In this manuscript, we also discuss these challenges and outline ongoing strategies employed to overcome these challenges, including the development of novel CRISPR/Cas variants with improved specificity and specific delivery methods for different plant species. The manuscript will conclude by addressing the future perspectives of the CRISPR/Cas technology in plants. Although this review manuscript is not conclusive, it aims to provide immense insights into the current state and future potential of CRISPR/Cas in sustainable and secure plant production.
Collapse
Affiliation(s)
- Delight Hwarari
- State Key Laboratory of Tree Genetics and Breeding, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Yasmina Radani
- State Key Laboratory of Tree Genetics and Breeding, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Yongchao Ke
- State Key Laboratory of Tree Genetics and Breeding, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinhui Chen
- State Key Laboratory of Tree Genetics and Breeding, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China.
| | - Liming Yang
- State Key Laboratory of Tree Genetics and Breeding, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
35
|
Wu J, Zhang Y, Li F, Zhang X, Ye J, Wei T, Li Z, Tao X, Cui F, Wang X, Zhang L, Yan F, Li S, Liu Y, Li D, Zhou X, Li Y. Plant virology in the 21st century in China: Recent advances and future directions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:579-622. [PMID: 37924266 DOI: 10.1111/jipb.13580] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023]
Abstract
Plant viruses are a group of intracellular pathogens that persistently threaten global food security. Significant advances in plant virology have been achieved by Chinese scientists over the last 20 years, including basic research and technologies for preventing and controlling plant viral diseases. Here, we review these milestones and advances, including the identification of new crop-infecting viruses, dissection of pathogenic mechanisms of multiple viruses, examination of multilayered interactions among viruses, their host plants, and virus-transmitting arthropod vectors, and in-depth interrogation of plant-encoded resistance and susceptibility determinants. Notably, various plant virus-based vectors have also been successfully developed for gene function studies and target gene expression in plants. We also recommend future plant virology studies in China.
Collapse
Affiliation(s)
- Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Ye
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Taiyun Wei
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorong Tao
- Department of Plant Pathology, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianbing Wang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lili Zhang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yi Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
36
|
Wang S, Chen B, Ni S, Liang Y, Li Z. Efficient generation of recombinant eggplant mottled dwarf virus and expression of foreign proteins in solanaceous hosts. Virology 2024; 591:109980. [PMID: 38215560 DOI: 10.1016/j.virol.2024.109980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
Reverse genetics systems have only been successfully developed for a few plant rhabdoviruses. Additional systems are needed for molecular virology studies of these diverse viruses and development of viral vectors for biotechnological applications. Eggplant mottled dwarf virus (EMDV) is responsible for significant agricultural losses in various crops throughout the Mediterranean region and the Middle East. In this study, we report efficient recovery of infectious EMDV from cloned DNAs and engineering of EMDV-based vectors for the expression of foreign proteins in tobacco, eggplant, pepper, and potato plants. Furthermore, we show that the EMDV-based vectors are capable of simultaneously expressing multiple foreign proteins. The developed EMDV reverse genetics system offers a versatile tool for studying virus pathology and plant-virus interactions and for expressing foreign proteins in a range of solanaceous crops.
Collapse
Affiliation(s)
- Shuo Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Binhuan Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuang Ni
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Liang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China.
| |
Collapse
|
37
|
Leastro MO, Kitajima EW, Pallás V, Sánchez-Navarro JÁ. Rescue of a Cilevirus from infectious cDNA clones. Virus Res 2024; 339:199264. [PMID: 37944757 PMCID: PMC10682248 DOI: 10.1016/j.virusres.2023.199264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Reverse genetics systems represent an important tool for studying the molecular and functional processes of viral infection. Citrus leprosis virus C (CiLV-C) (genus Cilevirus, family Kitaviridae) is the main pathogen responsible for the citrus leprosis (CL) disease in Latin America, one of the most economically important diseases of the citrus industry. Molecular studies of this pathosystem are limited due to the lack of infectious clones. Here, we report the construction and validation of a CiLV-C infectious cDNA clone based on an agroinfection system. The two viral RNA segments (RNA1 and RNA2) were assembled into two binary vectors (pJL89 and pLXAS). Agroinfiltrated Nicotiana benthamiana plants showed a response similar to that observed in the natural infection process with the formation of localized lesions restricted to the inoculated leaves. The virus recovered from the plant tissue infected with the infectious clones can be mechanically transmitted between N. benthamiana plants. Detection of CiLV-C subgenomic RNAs (sgRNAs) from agroinfiltrated and mechanically inoculated leaves further confirmed the infectivity of the clones. Finally, partial particle-purification preparations or sections of CiLV-C-infected tissue followed by transmission electron microscopy (TEM) analysis showed the formation of CiLV-C virions rescued by the infectious clone. The CiLV-C reverse genetic system now provides a powerful molecular tool to unravel the peculiarities of the CL pathosystem.
Collapse
Affiliation(s)
- Mikhail Oliveira Leastro
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Valencia, Spain.
| | - Elliot Watanabe Kitajima
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Valencia, Spain
| | - Jesús Ángel Sánchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Valencia, Spain.
| |
Collapse
|
38
|
Uranga M, Aragonés V, García A, Mirabel S, Gianoglio S, Presa S, Granell A, Pasin F, Daròs JA. RNA virus-mediated gene editing for tomato trait breeding. HORTICULTURE RESEARCH 2024; 11:uhad279. [PMID: 38895601 PMCID: PMC11184526 DOI: 10.1093/hr/uhad279] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/10/2023] [Indexed: 06/21/2024]
Abstract
Virus-induced genome editing (VIGE) leverages viral vectors to deliver CRISPR-Cas components into plants for robust and flexible trait engineering. We describe here a VIGE approach applying an RNA viral vector based on potato virus X (PVX) for genome editing of tomato, a mayor horticultural crop. Viral delivery of single-guide RNA into Cas9-expressing lines resulted in efficient somatic editing with indel frequencies up to 58%. By proof-of-concept VIGE of PHYTOENE DESATURASE (PDS) and plant regeneration from edited somatic tissue, we recovered loss-of-function pds mutant progeny displaying an albino phenotype. VIGE of STAYGREEN 1 (SGR1), a gene involved in fruit color variation, generated sgr1 mutant lines with recolored red-brown fruits and high chlorophyll levels. The obtained editing events were heritable, overall confirming the successful breeding of fruit color. Altogether, our VIGE approach offers great potential for accelerated functional genomics of tomato variation, as well as for precision breeding of novel tomato traits.
Collapse
Affiliation(s)
- Mireia Uranga
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Verónica Aragonés
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Arcadio García
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Sophie Mirabel
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Silvia Gianoglio
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Silvia Presa
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Fabio Pasin
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
39
|
Wu X, Zhang Y, Jiang X, Ma T, Guo Y, Wu X, Guo Y, Cheng X. Considerations in engineering viral vectors for genome editing in plants. Virology 2024; 589:109922. [PMID: 37924727 DOI: 10.1016/j.virol.2023.109922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Plant viruses have been engineered to express proteins and induce gene silencing for decades. Recently, plant viruses have also been used to deliver components into plant cells for genome editing, a technique called virus-induced genome editing (VIGE). Although more than a dozen plant viruses have been engineered into VIGE vectors and VIGE has been successfully accomplished in some plant species, application of VIGE to crops that are difficult to tissue culture and/or have low regeneration efficiency is still tough. This paper discusses factors to consider for an ideal VIGE vector, including insertion capacity for foreign DNA, vertical transmission ability, expression level of the target gene, stability of foreign DNA insertion, and biosafety. We also proposed a step-by-step schedule for excavating the suitable viral vector for VIGE.
Collapse
Affiliation(s)
- Xiaoyun Wu
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Xue Jiang
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Tingshuai Ma
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Yating Guo
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Xiaoxia Wu
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yushuang Guo
- Key Laboratory of Molecular Genetics, Guizhou Academy of Tobacco Science, Guiyang, 550081, Guizhou, PR China.
| | - Xiaofei Cheng
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
40
|
Lee SY, Kang B, Venkatesh J, Lee JH, Lee S, Kim JM, Back S, Kwon JK, Kang BC. Development of virus-induced genome editing methods in Solanaceous crops. HORTICULTURE RESEARCH 2024; 11:uhad233. [PMID: 38222822 PMCID: PMC10782499 DOI: 10.1093/hr/uhad233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/01/2023] [Indexed: 01/16/2024]
Abstract
Genome editing (GE) using CRISPR/Cas systems has revolutionized plant mutagenesis. However, conventional transgene-mediated GE methods have limitations due to the time-consuming generation of stable transgenic lines expressing the Cas9/single guide RNA (sgRNA) module through tissue cultures. Virus-induced genome editing (VIGE) systems have been successfully employed in model plants, such as Arabidopsis thaliana and Nicotiana spp. In this study, we developed two VIGE methods for Solanaceous plants. First, we used the tobacco rattle virus (TRV) vector to deliver sgRNAs into a transgenic tomato (Solanum lycopersicum) line of cultivar Micro-Tom expressing Cas9. Second, we devised a transgene-free GE method based on a potato virus X (PVX) vector to deliver Cas9 and sgRNAs. We designed and cloned sgRNAs targeting Phytoene desaturase in the VIGE vectors and determined optimal conditions for VIGE. We evaluated VIGE efficiency through deep sequencing of the target gene after viral vector inoculation, detecting 40.3% and 36.5% mutation rates for TRV- and PVX-mediated GE, respectively. To improve editing efficiency, we applied a 37°C heat treatment, which increased the editing efficiency by 33% to 46% and 56% to 76% for TRV- and PVX-mediated VIGE, respectively. To obtain edited plants, we subjected inoculated cotyledons to tissue culture, yielding successful editing events. We also demonstrated that PVX-mediated GE can be applied to other Solanaceous crops, such as potato (Solanum tuberosum) and eggplant (Solanum melongena). These simple and highly efficient VIGE methods have great potential for generating genome-edited plants in Solanaceous crops.
Collapse
Affiliation(s)
- Seo-Young Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Bomi Kang
- Interdisciplinary Program in Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jelli Venkatesh
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Joung-Ho Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Seyoung Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung-Min Kim
- Interdisciplinary Program in Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungki Back
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin-Kyung Kwon
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Byoung-Cheorl Kang
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
41
|
Liang Y, Zhang X, Wu B, Wang S, Kang L, Deng Y, Xie L, Li Z. Actomyosin-driven motility and coalescence of phase-separated viral inclusion bodies are required for efficient replication of a plant rhabdovirus. THE NEW PHYTOLOGIST 2023; 240:1990-2006. [PMID: 37735952 DOI: 10.1111/nph.19255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
Phase separation has emerged as a fundamental principle for organizing viral and cellular membraneless organelles. Although these subcellular compartments have been recognized for decades, their biogenesis and mechanisms of regulation are poorly understood. Here, we investigate the formation of membraneless inclusion bodies (IBs) induced during the infection of a plant rhabdovirus, tomato yellow mottle-associated virus (TYMaV). We generated recombinant TYMaV encoding a fluorescently labeled IB constituent protein and employed live-cell imaging to characterize the intracellular dynamics and maturation of viral IBs in infected Nicotiana benthamiana cells. We show that TYMaV IBs are phase-separated biomolecular condensates and that viral nucleoprotein and phosphoprotein are minimally required for IB formation in vivo and in vitro. TYMaV IBs move along the microfilaments, likely through the anchoring of viral phosphoprotein to myosin XIs. Furthermore, pharmacological disruption of microfilaments or inhibition of myosin XI functions suppresses IB motility, resulting in arrested IB growth and inefficient virus replication. Our study establishes phase separation as a process driving the formation of liquid viral factories and emphasizes the role of the cytoskeletal system in regulating the dynamics of condensate maturation.
Collapse
Affiliation(s)
- Yan Liang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyan Zhang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Binyan Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shuo Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Lihua Kang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Yinlu Deng
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Li Xie
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
42
|
Shahriari Z, Su X, Zheng K, Zhang Z. Advances and Prospects of Virus-Resistant Breeding in Tomatoes. Int J Mol Sci 2023; 24:15448. [PMID: 37895127 PMCID: PMC10607384 DOI: 10.3390/ijms242015448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Plant viruses are the main pathogens which cause significant quality and yield losses in tomato crops. The important viruses that infect tomatoes worldwide belong to five genera: Begomovirus, Orthotospovirus, Tobamovirus, Potyvirus, and Crinivirus. Tomato resistance genes against viruses, including Ty gene resistance against begomoviruses, Sw gene resistance against orthotospoviruses, Tm gene resistance against tobamoviruses, and Pot 1 gene resistance against potyviruses, have been identified from wild germplasm and introduced into cultivated cultivars via hybrid breeding. However, these resistance genes mainly exhibit qualitative resistance mediated by single genes, which cannot protect against virus mutations, recombination, mixed-infection, or emerging viruses, thus posing a great challenge to tomato antiviral breeding. Based on the epidemic characteristics of tomato viruses, we propose that future studies on tomato virus resistance breeding should focus on rapidly, safely, and efficiently creating broad-spectrum germplasm materials resistant to multiple viruses. Accordingly, we summarized and analyzed the advantages and characteristics of the three tomato antiviral breeding strategies, including marker-assisted selection (MAS)-based hybrid breeding, RNA interference (RNAi)-based transgenic breeding, and CRISPR/Cas-based gene editing. Finally, we highlighted the challenges and provided suggestions for improving tomato antiviral breeding in the future using the three breeding strategies.
Collapse
Affiliation(s)
- Zolfaghar Shahriari
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
- Crop and Horticultural Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz 617-71555, Iran
| | - Xiaoxia Su
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
| | - Kuanyu Zheng
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
| | - Zhongkai Zhang
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
| |
Collapse
|
43
|
Awan MJA, Akram A, Amin I, Mansoor S. Viral vectors as carriers of genome-editing reagents. TRENDS IN PLANT SCIENCE 2023; 28:981-983. [PMID: 37236860 DOI: 10.1016/j.tplants.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
The presence of a transgene in the genome of plants is a regulatory challenge. Recently, Liu et al. reported an engineered tomato spotted wilt virus (TSWV) that can carry large clustered regularly interspaced palindromic repeats (CRISPR)/Cas reagents for targeted genome editing in various crops without the integration of the transgene into the genome.
Collapse
Affiliation(s)
- Muhammad Jawad Akbar Awan
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Afzal Akram
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan; International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.
| |
Collapse
|
44
|
Mahmood MA, Naqvi RZ, Mansoor S. WeiTsing: A guard of the stele. MOLECULAR PLANT 2023; 16:1237-1239. [PMID: 37480228 DOI: 10.1016/j.molp.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Affiliation(s)
- Muhammad Arslan Mahmood
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia.
| | - Rubab Zahra Naqvi
- National Institute for Biotechnology and Genetic Engineering (NIBGE) College of Pakistan Institute of Engineering and Applied Science (PIEAS), Faisalabad, Pakistan
| | - Shahid Mansoor
- International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, Pakistan
| |
Collapse
|
45
|
Tuo D, Yao Y, Yan P, Chen X, Qu F, Xue W, Liu J, Kong H, Guo J, Cui H, Dai Z, Shen W. Development of cassava common mosaic virus-based vector for protein expression and gene editing in cassava. PLANT METHODS 2023; 19:78. [PMID: 37537660 PMCID: PMC10399001 DOI: 10.1186/s13007-023-01055-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/15/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Plant virus vectors designed for virus-mediated protein overexpression (VOX), virus-induced gene silencing (VIGS), and genome editing (VIGE) provide rapid and cost-effective tools for functional genomics studies, biotechnology applications and genome modification in plants. We previously reported that a cassava common mosaic virus (CsCMV, genus Potexvirus)-based VIGS vector was used for rapid gene function analysis in cassava. However, there are no VOX and VIGE vectors available in cassava. RESULTS In this study, we developed an efficient VOX vector (CsCMV2-NC) for cassava by modifying the CsCMV-based VIGS vector. Specifically, the length of the duplicated putative subgenomic promoter (SGP1) of the CsCMV CP gene was increased to improve heterologous protein expression in cassava plants. The modified CsCMV2-NC-based VOX vector was engineered to express genes encoding green fluorescent protein (GFP), bacterial phytoene synthase (crtB), and Xanthomonas axonopodis pv. manihotis (Xam) type III effector XopAO1 for viral infection tracking, carotenoid biofortification and Xam virulence effector identification in cassava. In addition, we used CsCMV2-NC to deliver single guide RNAs (gMePDS1/2) targeting two loci of the cassava phytoene desaturase gene (MePDS) in Cas9-overexpressing transgenic cassava lines. The CsCMV-gMePDS1/2 efficiently induced deletion mutations of the targeted MePDS with the albino phenotypes in systemically infected cassava leaves. CONCLUSIONS Our results provide a useful tool for rapid and efficient heterologous protein expression and guide RNA delivery in cassava. This expands the potential applications of CsCMV-based vector in gene function studies, biotechnology research, and precision breeding for cassava.
Collapse
Affiliation(s)
- Decai Tuo
- National Key Laboratory for Tropical Crops Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops (Ministry of Agriculture and Rural Affairs), Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou & Sanya, Hainan, China
| | - Yuan Yao
- National Key Laboratory for Tropical Crops Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops (Ministry of Agriculture and Rural Affairs), Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou & Sanya, Hainan, China
| | - Pu Yan
- National Key Laboratory for Tropical Crops Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops (Ministry of Agriculture and Rural Affairs), Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou & Sanya, Hainan, China
| | - Xin Chen
- National Key Laboratory for Tropical Crops Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops (Ministry of Agriculture and Rural Affairs), Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou & Sanya, Hainan, China
| | - Feihong Qu
- School of Tropical Agriculture and Forestry, Sanya Nanfan Research Institute, Hainan University, Haikou & Sanya, Hainan, China
| | - Weiqian Xue
- School of Tropical Agriculture and Forestry, Sanya Nanfan Research Institute, Hainan University, Haikou & Sanya, Hainan, China
| | - Jinping Liu
- School of Tropical Agriculture and Forestry, Sanya Nanfan Research Institute, Hainan University, Haikou & Sanya, Hainan, China
| | - Hua Kong
- National Key Laboratory for Tropical Crops Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops (Ministry of Agriculture and Rural Affairs), Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou & Sanya, Hainan, China
| | - Jianchun Guo
- National Key Laboratory for Tropical Crops Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops (Ministry of Agriculture and Rural Affairs), Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou & Sanya, Hainan, China
| | - Hongguang Cui
- School of Tropical Agriculture and Forestry, Sanya Nanfan Research Institute, Hainan University, Haikou & Sanya, Hainan, China
| | - Zhaoji Dai
- School of Tropical Agriculture and Forestry, Sanya Nanfan Research Institute, Hainan University, Haikou & Sanya, Hainan, China
| | - Wentao Shen
- National Key Laboratory for Tropical Crops Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops (Ministry of Agriculture and Rural Affairs), Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou & Sanya, Hainan, China.
| |
Collapse
|
46
|
Kocsisova Z, Coneva V. Strategies for delivery of CRISPR/Cas-mediated genome editing to obtain edited plants directly without transgene integration. Front Genome Ed 2023; 5:1209586. [PMID: 37545761 PMCID: PMC10398581 DOI: 10.3389/fgeed.2023.1209586] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
Increased understanding of plant genetics and the development of powerful and easier-to-use gene editing tools over the past century have revolutionized humankind's ability to deliver precise genotypes in crops. Plant transformation techniques are well developed for making transgenic varieties in certain crops and model organisms, yet reagent delivery and plant regeneration remain key bottlenecks to applying the technology of gene editing to most crops. Typical plant transformation protocols to produce transgenic, genetically modified (GM) varieties rely on transgenes, chemical selection, and tissue culture. Typical protocols to make gene edited (GE) varieties also use transgenes, even though these may be undesirable in the final crop product. In some crops, the transgenes are routinely segregated away during meiosis by performing crosses, and thus only a minor concern. In other crops, particularly those propagated vegetatively, complex hybrids, or crops with long generation times, such crosses are impractical or impossible. This review highlights diverse strategies to deliver CRISPR/Cas gene editing reagents to regenerable plant cells and to recover edited plants without unwanted integration of transgenes. Some examples include delivering DNA-free gene editing reagents such as ribonucleoproteins or mRNA, relying on reagent expression from non-integrated DNA, using novel delivery mechanisms such as viruses or nanoparticles, using unconventional selection methods to avoid integration of transgenes, and/or avoiding tissue culture altogether. These methods are advancing rapidly and already enabling crop scientists to make use of the precision of CRISPR gene editing tools.
Collapse
|
47
|
Daròs JA, Pasin F, Merwaiss F. CRISPR-Cas-based plant genome engineering goes viral. MOLECULAR PLANT 2023; 16:660-661. [PMID: 36950734 DOI: 10.1016/j.molp.2023.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/19/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Affiliation(s)
- José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universitat Politècnica de València), 46022 Valencia, Spain.
| | - Fabio Pasin
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universitat Politècnica de València), 46022 Valencia, Spain
| | - Fernando Merwaiss
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universitat Politècnica de València), 46022 Valencia, Spain
| |
Collapse
|
48
|
Kong Q, Li J, Wang S, Feng X, Shou H. Combination of Hairy Root and Whole-Plant Transformation Protocols to Achieve Efficient CRISPR/Cas9 Genome Editing in Soybean. PLANTS (BASEL, SWITZERLAND) 2023; 12:1017. [PMID: 36903878 PMCID: PMC10005656 DOI: 10.3390/plants12051017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The new gene-editing technology CRISPR/Cas system has been widely used for genome engineering in various organisms. Since the CRISPR/Cas gene-editing system has a certain possibility of low efficiency and the whole plant transformation of soybean is time-consuming and laborious, it is important to evaluate the editing efficiency of designed CRISPR constructs before the stable whole plant transformation process starts. Here, we provide a modified protocol for generating transgenic hairy soybean roots to assess the efficiency of guide RNA (gRNA) sequences of the CRISPR/Cas constructs within 14 days. The cost- and space-effective protocol was first tested in transgenic soybean harboring the GUS reporter gene for the efficiency of different gRNA sequences. Targeted DNA mutations were detected in 71.43-97.62% of the transgenic hairy roots analyzed as evident by GUS staining and DNA sequencing of the target region. Among the four designed gene-editing sites, the highest editing efficiency occurred at the 3' terminal of the GUS gene. In addition to the reporter gene, the protocol was tested for the gene-editing of 26 soybean genes. Among the gRNAs selected for stable transformation, the editing efficiency of hairy root transformation and stable transformation ranged from 5% to 88.8% and 2.7% to 80%, respectively. The editing efficiencies of stable transformation were positively correlated with those of hairy root transformation with a Pearson correlation coefficient (r) of 0.83. Our results demonstrated that soybean hairy root transformation could rapidly assess the efficiency of designed gRNA sequences on genome editing. This method can not only be directly applied to the functional study of root-specific genes, but more importantly, it can be applied to the pre-screening of gRNA in CRISPR/Cas gene editing.
Collapse
Affiliation(s)
- Qihui Kong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Lab, Hangzhou 310012, China
| | - Jie Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shoudong Wang
- Zhejiang Lab, Hangzhou 310012, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xianzhong Feng
- Zhejiang Lab, Hangzhou 310012, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Lab, Hangzhou 310012, China
| |
Collapse
|