1
|
Wu K, Yang N, Ren J, Liu S, Wang K, Dai S, Lu Y, An Y, Tian F, Gao Z, Yang Z, Zhang Y, Yu W, Li N. Cytosolic WPRa4 and Plastoskeletal PMI4 Proteins Mediate Touch Response in a Model Organism Arabidopsis. Mol Cell Proteomics 2025:101015. [PMID: 40513778 DOI: 10.1016/j.mcpro.2025.101015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 06/08/2025] [Accepted: 06/10/2025] [Indexed: 06/16/2025] Open
Abstract
To elucidate the early signaling components involved in thigmomorphogenesis in Arabidopsis thaliana, we combined microscopy and proximity-labeling (PL)-based quantitative biotinylproteomics to characterize the touch-responsive putative cytoskeleton-interacting protein WPRa4. Our findings revealed that WPRa4 localizes near plastids and interacts with cytosolic Plastid Movement-Impaired (PMI) proteins and a plastidic translocon component, suggesting a cytoskeleton-plastid network in mechanosensing. Bioinformatic analysis of PL and cross-linking mass spectrometry (XL-MS) data identified PMI4 as a key mediator, with pmi4 mutants lacking touch-induced bolting delay, rosette size reduction, and Ca2+ oscillations. Transcriptomics further showed that PMI4 regulates touch-responsive and jasmonic acid (JA)-associated genes, such as LOX2. We propose a molecular model where interconnected Cytoskeleton-Plastoskeleton Continuum (CPC) proteins act as early mechanosensors, integrating the touch responses of plant aerial organs with calcium signaling and transcriptional reprogramming in Arabidopsis.
Collapse
Affiliation(s)
- Kebin Wu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Nan Yang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Jia Ren
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Shichang Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Kai Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Shuaijian Dai
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yinglin Lu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510316, China
| | - Yuxing An
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510316, China
| | - Fuyun Tian
- Zhongshan Institute of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, Guangdong 528437, China
| | - Zhaobing Gao
- Zhongshan Institute of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, Guangdong 528437, China
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yage Zhang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 51805, China
| | - Weichuan Yu
- Department of Electric and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ning Li
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China; Guoke-Ningbo Life Science and Health Industry Research Institute, Zhejiang Province, China.
| |
Collapse
|
2
|
Lee S, Seo YE, Choi J, Yan X, Kim T, Choi D, Lee JH. Nucleolar actions in plant development and stress responses. PLANT, CELL & ENVIRONMENT 2024; 47:5189-5204. [PMID: 39169813 DOI: 10.1111/pce.15099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
The nucleolus is conventionally acknowledged for its role in ribosomal RNA (rRNA) synthesis and ribosome biogenesis. Recent research has revealed its multifaceted involvement in plant biology, encompassing regulation of the cell cycle, development, and responses to environmental stresses. This comprehensive review explores the diverse roles of the nucleolus in plant growth and responses to environmental stresses. The introduction delves into its traditional functions in rRNA synthesis and potential participation in nuclear liquid-liquid phase separation. By examining the multifaceted roles of nucleolar proteins in plant development, we highlight the impacts of various nucleolar mutants on growth, development, and embryogenesis. Additionally, we reviewed the involvement of nucleoli in responses to abiotic and biotic stresses. Under abiotic stress conditions, the nucleolar structure undergoes morphological changes. In the context of biotic stress, the nucleolus emerges as a common target for effectors of pathogens for manipulation of host immunity to enhance pathogenicity. The detailed exploration of how pathogens interact with nucleoli and manipulate host responses provides valuable insights into plant stress responses as well as plant growth and development. Understanding these processes may pave the way for promising strategies to enhance crop resilience and mitigate the impact of biotic and abiotic stresses in agricultural systems.
Collapse
Affiliation(s)
- Soeui Lee
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Ye-Eun Seo
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Jeen Choi
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Xin Yan
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Taewon Kim
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Doil Choi
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Joo Hyun Lee
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
3
|
Lai S, Zhao P, Zhou C, Li N, Yu W. PIPI2: Sensitive Tag-Based Database Search to Identify Peptides with Multiple Post-translational Modifications. J Proteome Res 2024; 23:1960-1969. [PMID: 38770571 DOI: 10.1021/acs.jproteome.3c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Peptide identification is important in bottom-up proteomics. Post-translational modifications (PTMs) are crucial in regulating cellular activities. Many database search methods have been developed to identify peptides with PTMs and characterize the PTM patterns. However, the PTMs on peptides hinder the peptide identification rate and the PTM characterization precision, especially for peptides with multiple PTMs. To address this issue, we present a sensitive open search engine, PIPI2, with much better performance on peptides with multiple PTMs than other methods. With a greedy approach, we simplify the PTM characterization problem into a linear one, which enables characterizing multiple PTMs on one peptide. On the simulation data sets with up to four PTMs per peptide, PIPI2 identified over 90% of the spectra, at least 56% more than five other competitors. PIPI2 also characterized these PTM patterns with the highest precision of 77%, demonstrating a significant advantage in handling peptides with multiple PTMs. In the real applications, PIPI2 identified 30% to 88% more peptides with PTMs than its competitors.
Collapse
Affiliation(s)
- Shengzhi Lai
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong, China
| | - Peize Zhao
- Interdisciplinary Programs Office, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong, China
| | - Chen Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong, China
| | - Ning Li
- Shenzhen-Hong Kong Collaborative Innovation Research Institute, HKUST, Futian, Shenzhen 518000, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong, China
| | - Weichuan Yu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong, China
- Shenzhen-Hong Kong Collaborative Innovation Research Institute, HKUST, Futian, Shenzhen 518000, China
| |
Collapse
|
4
|
Yang N, Ren J, Dai S, Wang K, Leung M, Lu Y, An Y, Burlingame A, Xu S, Wang Z, Yu W, Li N. The Quantitative Biotinylproteomics Studies Reveal a WInd-Related Kinase 1 (Raf-Like Kinase 36) Functioning as an Early Signaling Component in Wind-Induced Thigmomorphogenesis and Gravitropism. Mol Cell Proteomics 2024; 23:100738. [PMID: 38364992 PMCID: PMC10951710 DOI: 10.1016/j.mcpro.2024.100738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
Wind is one of the most prevalent environmental forces entraining plants to develop various mechano-responses, collectively called thigmomorphogenesis. Largely unknown is how plants transduce these versatile wind force signals downstream to nuclear events and to the development of thigmomorphogenic phenotype or anemotropic response. To identify molecular components at the early steps of the wind force signaling, two mechanical signaling-related phosphoproteins, identified from our previous phosphoproteomic study of Arabidopsis touch response, mitogen-activated protein kinase kinase 1 (MKK1) and 2 (MKK2), were selected for performing in planta TurboID (ID)-based quantitative proximity-labeling (PL) proteomics. This quantitative biotinylproteomics was separately performed on MKK1-ID and MKK2-ID transgenic plants, respectively, using the genetically engineered TurboID biotin ligase expression transgenics as a universal control. This unique PTM proteomics successfully identified 11 and 71 MKK1 and MKK2 putative interactors, respectively. Biotin occupancy ratio (BOR) was found to be an alternative parameter to measure the extent of proximity and specificity between the proximal target proteins and the bait fusion protein. Bioinformatics analysis of these biotinylprotein data also found that TurboID biotin ligase favorably labels the loop region of target proteins. A WInd-Related Kinase 1 (WIRK1), previously known as rapidly accelerated fibrosarcoma (Raf)-like kinase 36 (RAF36), was found to be a putative common interactor for both MKK1 and MKK2 and preferentially interacts with MKK2. Further molecular biology studies of the Arabidopsis RAF36 kinase found that it plays a role in wind regulation of the touch-responsive TCH3 and CML38 gene expression and the phosphorylation of a touch-regulated PATL3 phosphoprotein. Measurement of leaf morphology and shoot gravitropic response of wirk1 (raf36) mutant revealed that the WIRK1 gene is involved in both wind-triggered rosette thigmomorphogenesis and gravitropism of Arabidopsis stems, suggesting that the WIRK1 (RAF36) protein probably functioning upstream of both MKK1 and MKK2 and that it may serve as the crosstalk point among multiple mechano-signal transduction pathways mediating both wind mechano-response and gravitropism.
Collapse
Affiliation(s)
- Nan Yang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Jia Ren
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Shuaijian Dai
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Kai Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Manhin Leung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yinglin Lu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Yuxing An
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Al Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Shouling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
| | - Zhiyong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
| | - Weichuan Yu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Ning Li
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China; Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|