1
|
Zhang R, Guo R, Zhi H, Tang S, Wang L, Ren Y, Ren G, Zhang S, Feng J, Diao X, Jia G. De novo creation of narrowed plant architecture via CRISPR/Cas9-mediated mutagenesis of SiLGs in foxtail millet. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:2400-2402. [PMID: 40131771 PMCID: PMC12120898 DOI: 10.1111/pbi.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Affiliation(s)
- Renliang Zhang
- State Key Laboratory of Crop Gene Resources and Breeding/Key laboratory Grain Crop Genetic Resources Evaluation and Utilization Ministry of Agriculture and Rural Affairs /Institute of Crop SciencesCAASBeijingChina
| | - Ruifeng Guo
- Crops Research Institute in Severe Cold RegionShanxi Agricultural UniversityDatongShanxiChina
| | - Hui Zhi
- State Key Laboratory of Crop Gene Resources and Breeding/Key laboratory Grain Crop Genetic Resources Evaluation and Utilization Ministry of Agriculture and Rural Affairs /Institute of Crop SciencesCAASBeijingChina
| | - Sha Tang
- State Key Laboratory of Crop Gene Resources and Breeding/Key laboratory Grain Crop Genetic Resources Evaluation and Utilization Ministry of Agriculture and Rural Affairs /Institute of Crop SciencesCAASBeijingChina
| | - Liwei Wang
- State Key Laboratory of Crop Gene Resources and Breeding/Key laboratory Grain Crop Genetic Resources Evaluation and Utilization Ministry of Agriculture and Rural Affairs /Institute of Crop SciencesCAASBeijingChina
| | - Yuemei Ren
- Crops Research Institute in Severe Cold RegionShanxi Agricultural UniversityDatongShanxiChina
| | - Guangbing Ren
- Crops Research Institute in Severe Cold RegionShanxi Agricultural UniversityDatongShanxiChina
| | - Shou Zhang
- Crops Research Institute in Severe Cold RegionShanxi Agricultural UniversityDatongShanxiChina
| | - Jing Feng
- Crops Research Institute in Severe Cold RegionShanxi Agricultural UniversityDatongShanxiChina
| | - Xianmin Diao
- State Key Laboratory of Crop Gene Resources and Breeding/Key laboratory Grain Crop Genetic Resources Evaluation and Utilization Ministry of Agriculture and Rural Affairs /Institute of Crop SciencesCAASBeijingChina
- Zhongyuan Research CenterChinese Academy of Agricultural SciencesXinxiangChina
| | - Guanqing Jia
- State Key Laboratory of Crop Gene Resources and Breeding/Key laboratory Grain Crop Genetic Resources Evaluation and Utilization Ministry of Agriculture and Rural Affairs /Institute of Crop SciencesCAASBeijingChina
- Zhongyuan Research CenterChinese Academy of Agricultural SciencesXinxiangChina
| |
Collapse
|
2
|
Li Z, Kang X, Song M, Dong X, Ma J, Yu J, Li X, Zheng Y, Sun G, Diao X, Liu X. Genome-Wide Identification and Functional Prediction of LRR-RLK Family Genes in Foxtail Millet ( Setaria italica) in Response to Stress. Int J Mol Sci 2025; 26:4576. [PMID: 40429721 PMCID: PMC12111010 DOI: 10.3390/ijms26104576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/06/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RLKs) are involved in the regulation of various biological processes, including plant growth, development, and responses to biotic and abiotic stresses. Foxtail millet (Setaria italica), an important cereal crop, has been extensively studied for its stress tolerance mechanisms. In this study, we performed a comprehensive phylogenetic analysis and chromosomal mapping of LRR-RLK genes in Setaria italica. A total of 285 SiLRR-RLK genes were identified and classified into 12 subfamilies based on phylogenetic relationships. Chromosome localization analysis revealed that SiLRR-RLK genes are unevenly distributed across the chromosomes, with certain regions showing gene clusters. Functional analysis of these genes under biotic and abiotic stress conditions suggested that several SiLRR-RLK family members are involved in key stress response pathways. Expression profiling indicated differential expression patterns of SiLRR-RLK genes in response to various stresses, including drought, salinity, and pathogen infection, highlighting their potential roles in stress adaptation. In conclusion, the phylogenetic and functional analysis of the SiLRR-RLK gene family in Setaria italica provides valuable insights into their roles in stress responses and lays the groundwork for future studies aimed at enhancing stress tolerance in foxtail millet.
Collapse
Affiliation(s)
- Zhijiang Li
- Heilongjiang Provincial Key Laboratory for Genetic Improvement of Minor Grain Crops, Institute of Crop Resources, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Z.L.); (X.D.); (J.M.); (J.Y.); (X.L.); (Y.Z.); (G.S.)
| | - Xinmiao Kang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (X.K.); (M.S.)
| | - Miaomiao Song
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (X.K.); (M.S.)
| | - Xiaojie Dong
- Heilongjiang Provincial Key Laboratory for Genetic Improvement of Minor Grain Crops, Institute of Crop Resources, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Z.L.); (X.D.); (J.M.); (J.Y.); (X.L.); (Y.Z.); (G.S.)
| | - Jinfeng Ma
- Heilongjiang Provincial Key Laboratory for Genetic Improvement of Minor Grain Crops, Institute of Crop Resources, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Z.L.); (X.D.); (J.M.); (J.Y.); (X.L.); (Y.Z.); (G.S.)
| | - Jinhai Yu
- Heilongjiang Provincial Key Laboratory for Genetic Improvement of Minor Grain Crops, Institute of Crop Resources, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Z.L.); (X.D.); (J.M.); (J.Y.); (X.L.); (Y.Z.); (G.S.)
| | - Xiangyu Li
- Heilongjiang Provincial Key Laboratory for Genetic Improvement of Minor Grain Crops, Institute of Crop Resources, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Z.L.); (X.D.); (J.M.); (J.Y.); (X.L.); (Y.Z.); (G.S.)
| | - Yalu Zheng
- Heilongjiang Provincial Key Laboratory for Genetic Improvement of Minor Grain Crops, Institute of Crop Resources, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Z.L.); (X.D.); (J.M.); (J.Y.); (X.L.); (Y.Z.); (G.S.)
| | - Guangquan Sun
- Heilongjiang Provincial Key Laboratory for Genetic Improvement of Minor Grain Crops, Institute of Crop Resources, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Z.L.); (X.D.); (J.M.); (J.Y.); (X.L.); (Y.Z.); (G.S.)
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaotong Liu
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (X.K.); (M.S.)
| |
Collapse
|
3
|
Zhang Q, Yu X, Wu Y, Wang R, Zhang Y, Shi F, Zhao H, Yu P, Wang Y, Chen M, Chang J, Li Y, He G, Yang G. TaPP2C-a5 fine-tunes wheat seed dormancy and germination with a Triticeae-specific, alternatively spliced transcript. J Adv Res 2025:S2090-1232(25)00300-5. [PMID: 40345647 DOI: 10.1016/j.jare.2025.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025] Open
Abstract
INTRODUCTION The sessile plants often experience environmental conditions not ideal for growth, and therefore have evolved strategies to survive and adapt to stress conditions. Abscisic acid (ABA) regulates plant development and abiotic stress response. Clade A type 2C protein phosphatases (PP2Cs), act as co-receptors of ABA, negatively regulate ABA signalling. However, the biological function and detailed molecular mechanism of clade A PP2Cs in ABA signalling pathway remain to be elucidated in wheat. OBJECTIVES To analyze the mechanisms of stress response and development mediated by ABA signal precisely regulated by TaPP2C-a5 at the post-transcriptional level in wheat, providing candidate genes for wheat improvement. METHODS Based on our previous results of TaPP2Cs gene family analysis, the function and detailed regulation mechanisms of TaPP2C-a5 gene in seed dormancy and germination as well as drought response mediated by ABA signaling pathway were explored through reverse genetics technology. RESULTS We found that class A TaPP2C-a5 underwent alternative splicing (AS) to produce two transcripts encoding TaPP2C-a5.1 and TaPP2C-a5.2, respectively. Both TaPP2C-a5.1 and TaPP2C-a5.2 were highly expressed in mature seeds, and were upregulated by exogenous ABA in seedlings. Overexpression of TaPP2C-a5.1 and TaPP2C-a5.2 coordinately negatively regulated seed dormancy and ABA-mediated seed germination as well as post-germination developmental arrest in wheat. TaPP2C-a5.1 negatively regulated drought stress response, while TaPP2C-a5.2 did not participate in drought stress response. The homologous genes of TaPP2C-a5 underwent the same AS as TaPP2C-a5 in tetraploid wheat, but not in rice. CONCLUSION Our results revealed that TaPP2C-a5 gene underwent AS and was involved in the regulation of seed dormancy and germination, as well as drought stress response mediated by the ABA signaling at the post-transcriptional level. Our work not only provide a potential target gene to improve PHS resistance, but also emphasize alternative splicing as a strategy with evolution contexts to fine-tune ABA signaling and its involvement in certain biological process.
Collapse
Affiliation(s)
- Qian Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaofen Yu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Ya'nan Wu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ruibin Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yufan Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fu Shi
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongyan Zhao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Puju Yu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuesheng Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
4
|
Li R, Lei C, Zhang Q, Guo X, Cui X, Wang X, Li X, Gao J. Pan-Genome-Based Characterization of the SRS Transcription Factor Family in Foxtail Millet. PLANTS (BASEL, SWITZERLAND) 2025; 14:1257. [PMID: 40284145 PMCID: PMC12030303 DOI: 10.3390/plants14081257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/05/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
The Short Internodes-Related Sequence (SRS) family, a class of plant-specific transcription factors crucial for diverse biological processes, was systematically investigated in foxtail millet using pan-genome data from 110 core germplasm resources as well as two high-quality genomes (xm and Yu1). We identified SRS members and analyzed their intra-species distribution patterns, including copy number variation (CNV) and interchromosomal translocations. A novel standardized nomenclature (Accession_SiSRSN[.n]_xDy or xTy) was proposed to unify gene family nomenclature, enabling the direct visualization of member number variation across germplasms and the identification of core/variable members while highlighting chromosomal translocations. Focusing on the two high-quality genomes, both harboring six core SRS members, we performed whole-genome collinearity analysis with Arabidopsis, rice, maize, soybean, and green foxtail. Ka/Ks analysis of collinear gene pairs revealed purifying selection acting on SiSRS genes. Promoter analysis identified abundant stress-responsive cis-elements. Among core members, the xm_SiSRS5 gene exhibited the highest expression during vegetative growth but showed significant downregulation under drought and salt stress, suggesting its role as a key negative regulator in abiotic stress responses. This study demonstrates the utility of pan-genomics in resolving gene family dynamics and establishes SiSRS5 as a critical target for stress tolerance engineering in foxtail millet.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xukai Li
- Shanxi Hou Ji Laboratory, College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (R.L.); (C.L.); (Q.Z.); (X.G.); (X.C.); (X.W.)
| | - Jianhua Gao
- Shanxi Hou Ji Laboratory, College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (R.L.); (C.L.); (Q.Z.); (X.G.); (X.C.); (X.W.)
| |
Collapse
|
5
|
Yuan X, Bai X, Yu J, Jia Z, Wang C. Genome-Wide Identification of the BREVIS RADIX Gene Family in Foxtail Millet: Function, Evolution, and Expression. Genes (Basel) 2025; 16:374. [PMID: 40282334 PMCID: PMC12027087 DOI: 10.3390/genes16040374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Foxtail millet (Setaria italica), domesticated from green foxtail (Setaria viridis), is crucial for global food security. Given increasing environmental challenges, exploring its stress-resistance mechanisms via researching the BREVIS RADIX (BRX) gene family is urgent. METHODS The study combines advanced bioinformatics and experimental validation. It uses phylogenetic, motif, domain, synteny analyses, miRNA prediction, and quantitative expression profiling under stress. RESULTS Phylogenetic analysis reveals new sub-clades and trajectories. Motif and domain analyses find new conserved elements. Statistical models show unique selective forces. Synteny analysis identifies genomic architecture and new blocks. miRNA prediction reveals gene-miRNA interactions, and expression profiling shows new patterns. CONCLUSIONS The research offers new insights into the BRX family's role in foxtail millet's growth and stress responses, laying a foundation for crop genetic improvement and enhancing stress resilience for global food security.
Collapse
Affiliation(s)
- Xiaorui Yuan
- Maize Research Institute, Shanxi Agricultural University, Xinzhou 034000, China; (X.Y.); (X.B.); (J.Y.); (Z.J.)
| | - Xionghui Bai
- Maize Research Institute, Shanxi Agricultural University, Xinzhou 034000, China; (X.Y.); (X.B.); (J.Y.); (Z.J.)
| | - Jin Yu
- Maize Research Institute, Shanxi Agricultural University, Xinzhou 034000, China; (X.Y.); (X.B.); (J.Y.); (Z.J.)
| | - Zhijie Jia
- Maize Research Institute, Shanxi Agricultural University, Xinzhou 034000, China; (X.Y.); (X.B.); (J.Y.); (Z.J.)
| | - Chenyu Wang
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs (MARA), Beijing 100176, China
| |
Collapse
|
6
|
Zhou W, Cao X, Li H, Cui X, Diao X, Qiao Z. Genomic Analysis of Hexokinase Genes in Foxtail Millet ( Setaria italica): Haplotypes and Expression Patterns Under Abiotic Stresses. Int J Mol Sci 2025; 26:1962. [PMID: 40076588 PMCID: PMC11900577 DOI: 10.3390/ijms26051962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Hexokinases (HXKs) in plants are multifunctional enzymes that not only phosphorylate hexose but also function as glucose sensors, integrating nutrient, light, and hormone signaling networks to regulate cell metabolism and signaling pathways, thereby controlling growth and development in response to environmental changes. To date, limited information is available regarding the HXKs of foxtail millet (Setaria italica L.). In this study, six HXK genes were identified and characterized in foxtail millet. Phylogenetic analysis revealed that the foxtail millet hexokinases were classified into three subfamilies, corresponding to the two types (B-type and C-type) of hexokinases in plants. Gene structure and conserved motif analysis showed that the SiHXKs exhibited varying numbers of introns and exons, with proteins in each subfamily showing similar motif organization. Evolutionary divergence analysis indicated that the foxtail millet HXK and green foxtail HXK genes families underwent both positive and negative selection and experienced a large-scale duplication event approximately 1.18-154.84 million years ago. Expression analysis revealed that these genes are widely expressed in roots, stems, leaves, panicles, anthers, and seeds, with most genes showing significantly increased expression in roots under abiotic stress conditions, including 20% PEG 6000 (drought stress), 200 μmol/L NaCl (salt stress), and 1 μmol/L BR (brassinosteroid-mediated stress response). These results suggest that these genes may play a pivotal role in enhancing stress tolerance. Subcellular localization assay showed that SiHXK5 and SiHXK6 were predominantly localized in mitochondria. Haplotype analysis revealed that SiHXK3-H1 was associated with higher plant height and grain yield. These findings provide valuable insights into the functional characteristics of HXK genes, especially in the context of marker-assisted selection and the pyramiding of advantageous haplotypes in foxtail millet breeding programs.
Collapse
Affiliation(s)
- Wei Zhou
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.Z.); (H.L.)
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan 030031, China
| | - Xiaoning Cao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China;
- Key Laboratory of Crop Genetic Resources and Germplasm Development in Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan 030031, China
| | - Hangyu Li
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.Z.); (H.L.)
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China;
| | - Xiaokuo Cui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Zhijun Qiao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China;
- Key Laboratory of Crop Genetic Resources and Germplasm Development in Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan 030031, China
| |
Collapse
|
7
|
Hu H, Zhao J, Thomas WJW, Batley J, Edwards D. The role of pangenomics in orphan crop improvement. Nat Commun 2025; 16:118. [PMID: 39746989 PMCID: PMC11696220 DOI: 10.1038/s41467-024-55260-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
Global food security depends heavily on a few staple crops, while orphan crops, despite being less studied, offer the potential benefits of environmental adaptation and enhanced nutritional traits, especially in a changing climate. Major crops have benefited from genomics-based breeding, initially using single genomes and later pangenomes. Recent advances in DNA sequencing have enabled pangenome construction for several orphan crops, offering a more comprehensive understanding of genetic diversity. Orphan crop research has now entered the pangenomics era and applying these pangenomes with advanced selection methods and genome editing technologies can transform these neglected species into crops of broader agricultural significance.
Collapse
Affiliation(s)
- Haifei Hu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of Rice Science and Technology, Guangzhou, China
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of Rice Science and Technology, Guangzhou, China
| | - William J W Thomas
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia.
- Centre for Applied Bioinformatics, University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
8
|
Gong L, Lu Y, Wang Y, He F, Zhu T, Xue B. Comparative analysis of the JRL gene family in the whole-genome of five gramineous plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1501975. [PMID: 39781187 PMCID: PMC11707655 DOI: 10.3389/fpls.2024.1501975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/20/2024] [Indexed: 01/12/2025]
Abstract
The Jacalin-related lectins (JRLs) gene family play a crucial role in regulating plant development and responding to environmental stress. However, a systematic bioinformatics analysis of the JRL gene family in Gramineae plants has been lacking. In this study, we identified 101 JRL proteins from five Gramineae species and classified them into eight distinct clades. Most of the AtJRL proteins clustered in the same group and were differentiated from the Gramineae JRL proteins. The analysis of protein motifs, gene structures and protein domain revealed that the JRL genes play diverse functions in Gramineae plants. Duplication events indicated that tandem duplication significantly contributed to the expansion of the JRL family, with most JRL members underwent purifying selection. Tissue expression profile analysis showed that most OsJRL genes were highly expressed in the roots, while ZmJRL genes exhibited high expression in inflorescences. Furthermore, the expression level of OsJRL and ZmJRL genes were influenced by drought, cold, heat and salt stresses, respectively, implying that these genes play important roles in response to various abiotic stresses. RT-qPCR results demonstrated that OsJRL4 was up-regulated under PEG6000 and NaCl stresses, while OsJRL12 and OsJRL26 were down-regulated under PEG6000. These findings provide comprehensive insights into the JRL gene family in Gramineae plants and will facilitate further functional characterization of JRLs.
Collapse
Affiliation(s)
- Luping Gong
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Yitong Lu
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Yujie Wang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Furu He
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Tao Zhu
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Baoping Xue
- Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Sun M, Li Y, Chen Y, Chen DY, Wang H, Ren J, Guo M, Dong S, Li X, Yang G, Gao L, Chu X, Wang JG, Yuan X. Combined transcriptome and physiological analysis reveals exogenous sucrose enhances photosynthesis and source capacity in foxtail millet. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109189. [PMID: 39406001 DOI: 10.1016/j.plaphy.2024.109189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/23/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024]
Abstract
Foxtail millet (Setaria italica (L.) P. Beauv.) is an environmentally friendly crop that meets the current requirements of international food security and is widely accepted as a photosynthesis research model. However, whether exogenous sucrose treatment has a positive effect on foxtail millet growth remains unknown. Here, we employed physiological and molecular approaches to identify photosynthesis and source capacity associated with exogenous sucrose during the growth of Jingu 21 seedlings. RNA-seq analysis showed that some differentially expressed genes (DEGs) related to photosynthesis and carotenoid biosynthesis were induced by exogenous sucrose and that most of these genes were up-regulated. An increase in gas exchange parameters, chlorophyll content, and chlorophyll fluorescence of Jingu 21 was noted after exogenous sucrose addition. Furthermore, exogenous sucrose up-regulated genes encoding sucrose and hexose transporters and enhanced starch and sucrose metabolism. More DEGs were up-regulated by sucrose, the nonstructural carbohydrate (NSC) content in the leaves increased and energy metabolism and sucrose loading subsequently improved, ultimately enhancing photosynthesis under normal and dark conditions. Further analysis revealed that WRKYs, ERFs, HY5, RAP2, and ABI5 could be key transcription factors involved in growth regulation. These results indicate that exogenous sucrose affects the normal photosynthetic performance of foxtail millet by increasing NSC transport and loading. They improve our understanding of the molecular mechanisms of the effects of exogenous sucrose on photosynthesis in foxtail millet, providing an effective measure to enhance source-sink relationships and improve yield.
Collapse
Affiliation(s)
- Mengmeng Sun
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Yongchao Li
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Yunhao Chen
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Dan-Ying Chen
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Haiyu Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Jianhong Ren
- College of Life Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Meijun Guo
- College of Biology Science and Technology, Jinzhong University, Jinzhong, 030600, China
| | - Shuqi Dong
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaorui Li
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Guanghui Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Lulu Gao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaoqian Chu
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Jia-Gang Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China; Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taigu, 030801, China.
| | - Xiangyang Yuan
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
10
|
Zhu C, Zhao L, Zhao S, Niu X, Li L, Gao H, Liu J, Wang L, Zhang T, Cheng R, Shi Z, Zhang H, Wang G. Utilizing machine learning and bioinformatics analysis to identify drought-responsive genes affecting yield in foxtail millet. Int J Biol Macromol 2024; 277:134288. [PMID: 39079238 DOI: 10.1016/j.ijbiomac.2024.134288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024]
Abstract
Drought stress is a major constraint on crop development, potentially causing huge yield losses and threatening global food security. Improving Crop's stress tolerance is usually associated with a yield penalty. One way to balance yield and stress tolerance is modification specific gene by emerging precision genome editing technology. However, our knowledge of yield-related drought-tolerant genes is still limited. Foxtail millet (Setaria italica) has a remarkable tolerance to drought and is considered to be a model C4 crop that is easy to engineer. Here, we have identified 46 drought-responsive candidate genes by performing a machine learning-based transcriptome study on two drought-tolerant and two drought-sensitive foxtail millet cultivars. A total of 12 important drought-responsive genes were screened out by principal component analysis and confirmed experimentally by qPCR. Significantly, by investigating the haplotype of these genes based on 1844 germplasm resources, we found two genes (Seita.5G251300 and Seita.8G036300) exhibiting drought-tolerant haplotypes that possess an apparent advantage in 1000 grain weight and main panicle grain weight without penalty in grain weight per plant. These results demonstrate the potential of Seita.5G251300 and Seita.8G036300 for breeding drought-tolerant high-yielding foxtail millet. It provides important insights for the breeding of drought-tolerant high-yielding crop cultivars through genetic manipulation technology.
Collapse
Affiliation(s)
- Chunhui Zhu
- College of Physics, Hebei Normal University, Shijiazhuang 050024, China.
| | - Ling Zhao
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Shaoxing Zhao
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Xingfang Niu
- College of Physics, Hebei Normal University, Shijiazhuang 050024, China; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Lin Li
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Hui Gao
- Hebei Key Laboratory of Crop Stress Biology, Department of Life Science and Technology, College of Marine Resources and Environment, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Jiaxin Liu
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China; Hebei Key Laboratory of Crop Stress Biology, Department of Life Science and Technology, College of Marine Resources and Environment, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Litao Wang
- College of Physics, Hebei Normal University, Shijiazhuang 050024, China; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Ting Zhang
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Ruhong Cheng
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Zhigang Shi
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Haoshan Zhang
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China.
| | - Genping Wang
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China.
| |
Collapse
|
11
|
Wang L, Liu Y, Song X, Wang S, Zhang M, Lu J, Xu S, Wang H. Ozone stress-induced DNA methylation variations and their transgenerational inheritance in foxtail millet. FRONTIERS IN PLANT SCIENCE 2024; 15:1463584. [PMID: 39385991 PMCID: PMC11461238 DOI: 10.3389/fpls.2024.1463584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024]
Abstract
Elevated near-surface ozone (O3) concentrations have surpassed the tolerance limits of plants, significantly impacting crop growth and yield. To mitigate ozone pollution, plants must evolve a rapid and effective defense mechanism to alleviate ozone-induced damage. DNA methylation, as one of the most crucial epigenetic modifications, plays a pivotal role in maintaining gene stability, regulating gene expression, and enhancing plant resilience to environmental stressors. However, the epigenetic response of plants to O3 stress, particularly DNA methylation variations and their intergenerational transmission, remains poorly understood. This study aims to explore the epigenetic mechanisms underlying plant responses to ozone stress across generations and to identify potential epigenetic modification sites or genes crucial in response to ozone stress. Using Open Top Chambers (OTCs), we simulated ozone conditions and subjected foxtail millet to continuous ozone stress at 200 nmol mol-1 for two consecutive generations (S0 and S1). Results revealed that under high-concentration ozone stress, foxtail millet leaves exhibited symptoms ranging from yellowing and curling to desiccation, but the damage in the S1 generation was not more severe than that in the S0 generation. Methylation Sensitive Amplified Polymorphism (MSAP) analysis of the two generations indicated that ozone stress-induced methylation variations ranging from 10.82% to 13.59%, with demethylation events ranged from 0.52% to 5.58%, while hypermethylation occurred between 0.35% and 2.76%. Reproductive growth stages were more sensitive to ozone than vegetative stages. Notably, the S1 generation exhibited widespread demethylation variations, primarily at CNG sites, compared to S0 under similar stress conditions. The inheritance pattern between S0 and S1 generations was mainly of the A-A-B-A type. By recovering and sequencing methylation variant bands, we identified six stress-related differential amplification sequences, implicating these variants in various biological processes. These findings underscore the potential significance of DNA methylation variations as a critical mechanism in plants' response to ozone stress, providing theoretical insights and references for a comprehensive understanding of plant adaptation mechanisms to ozone stress and the epigenetic role of DNA methylation in abiotic stress regulation.
Collapse
Affiliation(s)
- Long Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang, China
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, China
| | - Yang Liu
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang, China
- Institute of Broomcorn Millet, Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou, China
| | - Xiaohan Song
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang, China
| | - Shiji Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang, China
| | - Meichun Zhang
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang, China
| | - Jiayi Lu
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang, China
| | - Sheng Xu
- Chinese Academy of Sciences (CAS) Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, China
| | - Hongyan Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang, China
| |
Collapse
|
12
|
Zhang H, Luo Y, Wang Y, Zhao J, Wang Y, Li Y, Pu Y, Wang X, Ren X, Zhao B. Genome-Wide Identification and Characterization of Alternative Oxidase ( AOX) Genes in Foxtail Millet ( Setaria italica): Insights into Their Abiotic Stress Response. PLANTS (BASEL, SWITZERLAND) 2024; 13:2565. [PMID: 39339540 PMCID: PMC11434880 DOI: 10.3390/plants13182565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Alternative oxidase (AOX) serves as a critical terminal oxidase within the plant respiratory pathway, playing a significant role in cellular responses to various stresses. Foxtail millet (Setaria italica), a crop extensively cultivated across Asia, is renowned for its remarkable tolerance to abiotic stresses and minimal requirement for fertilizer. In this study, we conducted a comprehensive genome-wide identification of AOX genes in foxtail millet genome, discovering a total of five SiAOX genes. Phylogenetic analysis categorized these SiAOX members into two subgroups. Prediction of cis-elements within the promoter regions, coupled with co-expression network analysis, intimated that SiAOX proteins are likely involved in the plant's adaptive response to abiotic stresses. Employing RNA sequencing (RNA-seq) and real-time quantitative PCR (RT-qPCR), we scrutinized the expression patterns of the SiAOX genes across a variety of tissues and under multiple abiotic stress conditions. Specifically, our analysis uncovered that SiAOX1, SiAOX2, SiAOX4, and SiAOX5 display distinct tissue-specific expression profiles. Furthermore, SiAOX2, SiAOX3, SiAOX4, and SiAOX5 exhibit responsive expression patterns under abiotic stress conditions, with significant differences in expression levels observed between the shoot and root tissues of foxtail millet seedlings. Haplotype analysis of SiAOX4 and SiAOX5 revealed that these genes are in linkage disequilibrium, with Hap_2 being the superior haplotype for both, potentially conferring enhanced cold stress tolerance in the cultivar group. These findings suggest that both SiAOX4 and SiAOX5 may be targeted for selection in future breeding programs aimed at improving foxtail millet's resilience to cold stress.
Collapse
Affiliation(s)
- Hui Zhang
- Houji Laboratory in Shanxi Province, College of Life Sciences, Shanxi Agricultural University, Taiyuan 030031, China
| | - Yidan Luo
- Houji Laboratory in Shanxi Province, College of Life Sciences, Shanxi Agricultural University, Taiyuan 030031, China
| | - Yujing Wang
- Houji Laboratory in Shanxi Province, College of Life Sciences, Shanxi Agricultural University, Taiyuan 030031, China
| | - Juan Zhao
- Department of Basic Sciences, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yueyue Wang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yajun Li
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yihao Pu
- Houji Laboratory in Shanxi Province, College of Life Sciences, Shanxi Agricultural University, Taiyuan 030031, China
| | - Xingchun Wang
- Houji Laboratory in Shanxi Province, College of Life Sciences, Shanxi Agricultural University, Taiyuan 030031, China
| | - Xuemei Ren
- Houji Laboratory in Shanxi Province, College of Life Sciences, Shanxi Agricultural University, Taiyuan 030031, China
| | - Bo Zhao
- Houji Laboratory in Shanxi Province, College of Life Sciences, Shanxi Agricultural University, Taiyuan 030031, China
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
13
|
Wu H, Zhang R, Diao X. Genome-Wide Characterization and Haplotypic Variation Analysis of the IDD Gene Family in Foxtail Millet ( Setaria italica). Int J Mol Sci 2024; 25:8804. [PMID: 39201492 PMCID: PMC11354513 DOI: 10.3390/ijms25168804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 09/02/2024] Open
Abstract
The indeterminate domain proteins (IDD proteins) play essential roles in the growth and development of various plant tissues and organs across different developmental stages, but members of this gene family have not yet been characterized in foxtail millet (Setaria italica). To have a comprehensive understanding of the IDD gene family in foxtail millet, we performed a genome-wide characterization and haplotypic variation analysis of the IDD gene family in foxtail millet. In this study, sixteen IDD genes were identified across the reference genome of Yugu1, a foxtail millet cultivar. Phylogenetic analysis revealed that the Setaria italica IDD (SiIDD) proteins were clustered into four groups together with IDD proteins from Arabidopsis thaliana (dicot) and Oryza sativa (monocot). Conserved protein motif and gene structure analyses revealed that the closely clustered SiIDD genes were highly conserved within each subgroup. Furthermore, chromosomal location analysis showed that the SiIDD genes were unevenly distributed on nine chromosomes of foxtail millet and shared collinear relationships with IDD genes of other grass species. Transcriptional analysis revealed that the SiIDD genes differed greatly in their expression patterns, and paralogous genes shared similar expression patterns. In addition, superior haplotypes for two SiIDD genes (SiIDD8 and SiIDD14) were identified to correlate with traits of early heading date, and high thousand seed weight and molecular markers were designed for SiIDD8 and SiIDD14 to distinguish different haplotypes for breeding. Taken together, the results of this study provide useful information for further functional investigation of SiIDD genes, and the superior haplotypes of SiIDD8 and SiIDD14 will be particularly beneficial for improving heading date and yield of foxtail millet in breeding programs.
Collapse
Affiliation(s)
- Hongpo Wu
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utlization of Ministry of Agriculture and Rural Affairs and State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.W.); (R.Z.)
| | - Renliang Zhang
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utlization of Ministry of Agriculture and Rural Affairs and State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.W.); (R.Z.)
| | - Xianmin Diao
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utlization of Ministry of Agriculture and Rural Affairs and State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.W.); (R.Z.)
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| |
Collapse
|
14
|
Matías J, Rodríguez MJ, Carrillo-Vico A, Casals J, Fondevilla S, Haros CM, Pedroche J, Aparicio N, Fernández-García N, Aguiló-Aguayo I, Soler-Rivas C, Caballero PA, Morte A, Rico D, Reguera M. From 'Farm to Fork': Exploring the Potential of Nutrient-Rich and Stress-Resilient Emergent Crops for Sustainable and Healthy Food in the Mediterranean Region in the Face of Climate Change Challenges. PLANTS (BASEL, SWITZERLAND) 2024; 13:1914. [PMID: 39065441 PMCID: PMC11281201 DOI: 10.3390/plants13141914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/08/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
In the dynamic landscape of agriculture and food science, incorporating emergent crops appears as a pioneering solution for diversifying agriculture, unlocking possibilities for sustainable cultivation and nutritional bolstering food security, and creating economic prospects amid evolving environmental and market conditions with positive impacts on human health. This review explores the potential of utilizing emergent crops in Mediterranean environments under current climate scenarios, emphasizing the manifold benefits of agricultural and food system diversification and assessing the impact of environmental factors on their quality and consumer health. Through a deep exploration of the resilience, nutritional value, and health impacts of neglected and underutilized species (NUS) such as quinoa, amaranth, chia, moringa, buckwheat, millet, teff, hemp, or desert truffles, their capacity to thrive in the changing Mediterranean climate is highlighted, offering novel opportunities for agriculture and functional food development. By analysing how promoting agricultural diversification can enhance food system adaptability to evolving environmental conditions, fostering sustainability and resilience, we discuss recent findings that underscore the main benefits and limitations of these crops from agricultural, food science, and health perspectives, all crucial for responsible and sustainable adoption. Thus, by using a sustainable and holistic approach, this revision analyses how the integration of NUS crops into Mediterranean agrifood systems can enhance agriculture resilience and food quality addressing environmental, nutritional, biomedical, economic, and cultural dimensions, thereby mitigating the risks associated with monoculture practices and bolstering local economies and livelihoods under new climate scenarios.
Collapse
Affiliation(s)
- Javier Matías
- Agrarian Research Institute “La Orden-Valdesequera” of Extremadura (CICYTEX), 06187 Guadajira (Badajoz), Spain;
| | - María José Rodríguez
- Technological Institute of Food and Agriculture of Extremadura (INTAEX-CICYTEX), Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain;
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain;
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Joan Casals
- Fundació Miquel Agustí/HorPTA, Department of Agri-Food Engineering and Biotechnology, Universitat Politècnica de Catalunya (UPC)-BarcelonaTech, 08860 Castelldefels, Spain;
| | - Sara Fondevilla
- Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain;
| | - Claudia Mónika Haros
- Cereal Group, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino 7, Parque Científico, 46980 Valencia, Spain;
| | - Justo Pedroche
- Group of Plant Proteins, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013 Seville, Spain;
| | - Nieves Aparicio
- Agro-Technological Institute of Castilla y León (ITACyL), Ctra. Burgos Km. 119, 47071 Valladolid, Spain;
| | - Nieves Fernández-García
- Department of Abiotic Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CSIC), Campus Universitario de Espinardo, 30100 Murcia, Spain;
| | - Ingrid Aguiló-Aguayo
- Postharvest Programme, Institute of Agrifood Research and Technology (IRTA), Parc Agrobiotech Lleida, Parc de Gardeny, Edifici Fruitcentre, 25003 Lleida, Spain;
| | - Cristina Soler-Rivas
- Departamento de Producción y Caracterización de Nuevos Alimentos, Institute of Food Science Research-CIAL (UAM+CSIC), Campus de Cantoblanco, Universidad Autónoma de Madrid, C/Nicolas Cabrera 9, 28049 Madrid, Spain;
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Pedro A. Caballero
- Food Technology, Department of Agriculture and Forestry Engineering, Universidad de Valladolid, 34004 Palencia, Spain;
| | - Asunción Morte
- Departamento Biología Vegetal, Facultad de Biología, Campus Universitario de Espinardo, Universidad de Murcia, 30100 Murcia, Spain;
| | - Daniel Rico
- Department of Medicine, Dermatology and Toxicology, Universidad de Valladolid, Av. Ramón y Cajal, 7, 47005 Valladolid, Spain;
| | - María Reguera
- Departamento de Biología, Campus de Cantoblanco, Universidad Autónoma de Madrid, C/Darwin 2, 28049 Madrid, Spain
| |
Collapse
|
15
|
Nan L, Li Y, Ma C, Meng X, Han Y, Li H, Huang M, Qin Y, Ren X. Identification and Expression Analysis of the WOX Transcription Factor Family in Foxtail Millet ( Setaria italica L.). Genes (Basel) 2024; 15:476. [PMID: 38674410 PMCID: PMC11050393 DOI: 10.3390/genes15040476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
WUSCHEL-related homeobox (WOX) transcription factors are unique to plants and play pivotal roles in plant development and stress responses. In this investigation, we acquired protein sequences of foxtail millet WOX gene family members through homologous sequence alignment and a hidden Markov model (HMM) search. Utilizing conserved domain prediction, we identified 13 foxtail millet WOX genes, which were classified into ancient, intermediate, and modern clades. Multiple sequence alignment results revealed that all WOX proteins possess a homeodomain (HD). The SiWOX genes, clustered together in the phylogenetic tree, exhibited analogous protein spatial structures, gene structures, and conserved motifs. The foxtail millet WOX genes are distributed across 7 chromosomes, featuring 3 pairs of tandem repeats: SiWOX1 and SiWOX13, SiWOX4 and SiWOX5, and SiWOX11 and SiWOX12. Collinearity analysis demonstrated that WOX genes in foxtail millet exhibit the highest collinearity with green foxtail, followed by maize. The SiWOX genes primarily harbor two categories of cis-acting regulatory elements: Stress response and plant hormone response. Notably, prominent hormones triggering responses include methyl jasmonate, abscisic acid, gibberellin, auxin, and salicylic acid. Analysis of SiWOX expression patterns and hormone responses unveiled potential functional diversity among different SiWOX genes in foxtail millet. These findings lay a solid foundation for further elucidating the functions and evolution of SiWOX genes.
Collapse
Affiliation(s)
- Lizhang Nan
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Yajun Li
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Cui Ma
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Xiaowei Meng
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Yuanhuai Han
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Hongying Li
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Mingjing Huang
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Yingying Qin
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| | - Xuemei Ren
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| |
Collapse
|
16
|
Xie L, Gong X, Yang K, Huang Y, Zhang S, Shen L, Sun Y, Wu D, Ye C, Zhu QH, Fan L. Technology-enabled great leap in deciphering plant genomes. NATURE PLANTS 2024; 10:551-566. [PMID: 38509222 DOI: 10.1038/s41477-024-01655-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
Plant genomes provide essential and vital basic resources for studying many aspects of plant biology and applications (for example, breeding). From 2000 to 2020, 1,144 genomes of 782 plant species were sequenced. In the past three years (2021-2023), 2,373 genomes of 1,031 plant species, including 793 newly sequenced species, have been assembled, representing a great leap. The 2,373 newly assembled genomes, of which 63 are telomere-to-telomere assemblies and 921 have been generated in pan-genome projects, cover the major phylogenetic clades. Substantial advances in read length, throughput, accuracy and cost-effectiveness have notably simplified the achievement of high-quality assemblies. Moreover, the development of multiple software tools using different algorithms offers the opportunity to generate more complete and complex assemblies. A database named N3: plants, genomes, technologies has been developed to accommodate the metadata associated with the 3,517 genomes that have been sequenced from 1,575 plant species since 2000. We also provide an outlook for emerging opportunities in plant genome sequencing.
Collapse
Affiliation(s)
- Lingjuan Xie
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Yazhou Bay, Shanya, China
| | - Xiaojiao Gong
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Kun Yang
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Yujie Huang
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Shiyu Zhang
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Leti Shen
- Hainan Institute of Zhejiang University, Yazhou Bay, Shanya, China
| | - Yanqing Sun
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Dongya Wu
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Chuyu Ye
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, Black Mountain Laboratories, Canberra, Australia
| | - Longjiang Fan
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China.
- Hainan Institute of Zhejiang University, Yazhou Bay, Shanya, China.
| |
Collapse
|