1
|
Çapan İ, Hawash M, Qaoud MT, Gülüm L, Tunoglu ENY, Çifci KU, Çevrimli BS, Sert Y, Servi S, Koca İ, Tutar Y. Synthesis of novel carbazole hydrazine-carbothioamide scaffold as potent antioxidant, anticancer and antimicrobial agents. BMC Chem 2024; 18:102. [PMID: 38773663 PMCID: PMC11110238 DOI: 10.1186/s13065-024-01207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/13/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Carbazole-based molecules containing thiosemicarbazide functional groups are recognized for their diverse biological activities, particularly in enhancing therapeutic anticancer effects through inhibiting crucial pathways. These derivatives also exhibit noteworthy antioxidant properties. OBJECTIVES This study aims to synthesize, characterize, and evaluate the antioxidant and anticancer activities of 18 novel carbazole derivatives. METHODS The radical scavenging capabilities of the compounds were assessed using the 2,2-diphenyl-1-picrylhydrazyl assay. Antiproliferative activities were evaluated on MCF-7 cancer cell lines through viability assays. Additionally, the modulation of the PI3K/Akt/mTOR pathway, apoptosis/necrosis induction, and cell cycle analysis were conducted for the most promising anticancer agents. RESULTS nine compounds showed potent antioxidant activities with IC50 values lower than the positive control acarbose, with compounds 4 h and 4y exhibiting the highest potency (IC50 values of 0.73 and 0.38 µM, respectively). Furthermore, compounds 4o and 4r displayed significant anticancer effects, with IC50 values of 2.02 and 4.99 µM, respectively. Compound 4o, in particular, exhibited promising activity by targeting the PI3K/Akt/mTOR signaling pathway, inhibiting tumor survival, inducing apoptosis, and causing cell cycle arrest in MCF-7 cell lines. Furthermore, compound 4o was showed significant antimicrobial activities against S. aureus and E. coli, and antifungal effect against C. albicans. Its potential to overcome drug resistance through this pathway inhibition highlights its promise as an anticancer agent. Molecular docking simulations supported these findings, revealing favorable binding profiles and interactions within the active sites of the enzymes PI3K, AKT1, and mTOR. Moreover, assessing the druggability of the newly synthesized thiosemicarbazide derivatives demonstrated optimal physicochemical properties, further endorsing their potential as drug candidates.
Collapse
Affiliation(s)
- İrfan Çapan
- Department of Pharmaceutical Basic Sciences, Faculty of Pharmacy, Gazi University, 06330, Ankara, Türkiye.
- Sente Kimya Research and Development Inc., 06200, Ankara, Türkiye.
| | - Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Mohammed T Qaoud
- Department of Pharmacy, Faculty of Pharmacy, Cyprus International University, Northern Cyprus, Mersin 10, 99258, Nicosia, Türkiye
| | - Levent Gülüm
- Department of Plant and Animal Production, Mudurnu Süreyya Astarcı Vocational College, Bolu Abant İzzet Baysal University, Bolu, Türkiye
| | - Ezgi Nurdan Yenilmez Tunoglu
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Demiroğlu Bilim University, Istanbul, Türkiye
| | - Kezban Uçar Çifci
- Department of Molecular Medicine, Faculty of Health Sciences, University of Health Sciences, Istanbul, Türkiye
- Division of Basic Sciences and Health, Hemp Research Institute, Yozgat Bozok University, Yozgat, Türkiye
| | - Bekir Sıtkı Çevrimli
- Department of Chemistry and Chemical Processing Technologies, Technical Sciences Vocational College, Gazi University, Ankara, Türkiye
| | - Yusuf Sert
- Sorgun Vocational College, Yozgat Bozok University, Yozgat, Türkiye
| | - Süleyman Servi
- Department of Chemistry, Faculty of Science, Fırat University, Elazığ, Türkiye
| | - İrfan Koca
- Department of Chemistry, Faculty of Art & Sciences, Yozgat Bozok University, Yozgat, Türkiye
| | - Yusuf Tutar
- Medical School, Division of Biochemistry, Recep Tayyip Erdogan University, Rize, Türkiye
- Faculty of Pharmacy, Division of Biochemistry, University of Health Sciences, Istanbul, Türkiye
| |
Collapse
|
2
|
Alam S, Karim R, Khan A, Mallick AR, Sepay N, Ghosh S. Microwave-assisted synthesis of functionalized carbazoles via palladium-catalyzed aryl C–H activation and study of their interactions with calf-thymus DNA. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2116344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Safiul Alam
- Department of Chemistry, Aliah University, Kolkata, India
| | - Rejaul Karim
- Department of Chemistry, Aliah University, Kolkata, India
| | - Aminur Khan
- Department of Chemistry, Aliah University, Kolkata, India
| | | | - Nayim Sepay
- Department of Chemistry, Lady Brabourne College, Kolkata, India
| | - Soumen Ghosh
- Department of Chemistry, Aliah University, Kolkata, India
| |
Collapse
|
3
|
Müller D, Saha P, Panda D, Dash J, Schwalbe H. Insights from Binding on Quadruplex Selective Carbazole Ligands. Chemistry 2021; 27:12726-12736. [PMID: 34138492 PMCID: PMC8518889 DOI: 10.1002/chem.202101866] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 01/11/2023]
Abstract
Polymorphic G-quadruplex (G4) secondary DNA structures have received increasing attention in medicinal chemistry owing to their key involvement in the regulation of the maintenance of genomic stability, telomere length homeostasis and transcription of important proto-oncogenes. Different classes of G4 ligands have been developed for the potential treatment of several human diseases. Among them, the carbazole scaffold with appropriate side chain appendages has attracted much interest for designing G4 ligands. Because of its large and rigid π-conjugation system and ease of functionalization at three different positions, a variety of carbazole derivatives have been synthesized from various natural or synthetic sources for potential applications in G4-based therapeutics and biosensors. Herein, we provide an updated close-up of the literatures on carbazole-based G4 ligands with particular focus given on their detailed binding insights studied by NMR spectroscopy. The structure-activity relationships and the opportunities and challenges of their potential applications as biosensors and therapeutics are also discussed. This review will provide an overall picture of carbazole ligands with remarkable G4 topological preference, fluorescence properties and significant bioactivity; portraying carbazole as a very promising scaffold for assembling G4 ligands with a range of novel functional applications.
Collapse
Affiliation(s)
- Diana Müller
- Institute of Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue Strasse 7Frankfurt am Main60438Germany
| | - Puja Saha
- School of Chemical SciencesIndian Association for the Cultivation of ScienceJadavpurKolkata-700032India
| | - Deepanjan Panda
- School of Chemical SciencesIndian Association for the Cultivation of ScienceJadavpurKolkata-700032India
| | - Jyotirmayee Dash
- School of Chemical SciencesIndian Association for the Cultivation of ScienceJadavpurKolkata-700032India
| | - Harald Schwalbe
- Institute of Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue Strasse 7Frankfurt am Main60438Germany
| |
Collapse
|
4
|
Chaudhuri R, Fatma K, Dash J. Regulation of gene expression by targeting DNA secondary structures. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01898-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Studies on interactions of carbazole derivatives with DNA, cell image, and cytotoxicity. Bioorg Med Chem 2018; 26:285-294. [DOI: 10.1016/j.bmc.2017.11.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/26/2017] [Accepted: 11/29/2017] [Indexed: 11/19/2022]
|
6
|
Lin S, Long H, Zhou J, Yuan G. Study of G-quadruplexes in the STAT3 gene using electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30 Suppl 1:173-178. [PMID: 27539434 DOI: 10.1002/rcm.7640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
RATIONALE As a key signal transducer and transcription activator, STAT3 plays a very important role in many cell processes. We found that there were many G-rich sequences existing in the STAT3 gene including its promoter, intron, exon and 3'-flanking regions. These G-rich tracts can form G-quadruplexes under near physiological conditions. In this research, we systemically studied the G-quadruplexes in the STAT3 gene at a whole gene scale for the first time. METHODS In this research, the formation of G-quadruplexes in the STAT3 gene was probed by electrospray ionization mass spectrometry (ESI-MS) and circular dichroism (CD). Their structures were constructed and refined by a molecular modeling method. We also used ESI-MS to study the recognition of the G-quadruplexes in the promoter of the STAT3 gene by flexible molecules which do not have a planar core like the other common quadruplex ligands. RESULTS The results based on ESI-MS suggested that the G-quadruplexes in the promoter of the STAT3 gene formed and were further recognized by some small molecules. CONCLUSION Our research proved that the G-rich sequences in the STAT3 gene could form G-quadruplexes under near physiological conditions. This provides a promising target to study the regulation of cell signal transduction in vivo and drug design that aims to target STAT3 G-quadruplexes. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sen Lin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing National Day School, Beijing, 100871, China
| | - Haitao Long
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jiang Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Gu Yuan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
7
|
Zhou JK, Yang DY, Sheu SY. The molecular mechanism of ligand unbinding from the human telomeric G-quadruplex by steered molecular dynamics and umbrella sampling simulations. Phys Chem Chem Phys 2016; 17:12857-69. [PMID: 25908641 DOI: 10.1039/c5cp00378d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
G-quadruplexes are attractive drug targets in cancer therapy. Understanding the mechanisms of the binding-unbinding processes involving biomolecules and molecular recognition is essential for designing new drugs of G-quadruplexes. We performed steered molecular dynamics and umbrella sampling simulations to investigate the molecular mechanism and kinetics of ligand unbinding processes of the basket, propeller and hybrid G-quadruplex structures. Our studies of the ligand charge effect showed that Coulomb interaction plays a significant role in stabilizing the G-quadruplex structure in the unbinding process. The free energy profiles were carried out and the free energy changes associated with the unbinding process were computed quantitatively, whereas these results could help to identify accessible binding sites and transient interactions. The dynamics of the hydration shell water molecules around the G-quadruplex exhibits an abnormal Brownian motion, and the thickness and free energy of the hydration shell were estimated. A two-step relaxation scheme was theoretically developed to describe the kinetic reaction of BMVC and G-quadruplex interactions. Our computed results fall in a reasonable range of experimental data. The present investigation could be helpful in the structure-based drug design.
Collapse
Affiliation(s)
- Jia-Kai Zhou
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan.
| | | | | |
Collapse
|
8
|
Maji B, Kumar K, Kaulage M, Muniyappa K, Bhattacharya S. Design and Synthesis of New Benzimidazole–Carbazole Conjugates for the Stabilization of Human Telomeric DNA, Telomerase Inhibition, and Their Selective Action on Cancer Cells. J Med Chem 2014; 57:6973-88. [DOI: 10.1021/jm500427n] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Basudeb Maji
- Department of Organic
Chemistry, Indian Institute of Science, Bangalore, Karnataka 560 012, India
| | - Krishan Kumar
- Department of Organic
Chemistry, Indian Institute of Science, Bangalore, Karnataka 560 012, India
| | - Mangesh Kaulage
- Department of Organic
Chemistry, Indian Institute of Science, Bangalore, Karnataka 560 012, India
- Department
of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560 012, India
| | - K. Muniyappa
- Department
of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560 012, India
| | - Santanu Bhattacharya
- Department of Organic
Chemistry, Indian Institute of Science, Bangalore, Karnataka 560 012, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka 560 012, India
| |
Collapse
|
9
|
Zheng YC, Zheng ML, Chen S, Zhao ZS, Duan XM. Biscarbazolylmethane-based cyanine: a two-photon excited fluorescent probe for DNA and selective cell imaging. J Mater Chem B 2014; 2:2301-2310. [DOI: 10.1039/c3tb21860k] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a novel biscarbazole-based cyanine with a large Stokes shift and TPA cross-section as a light-up probe for DNA and selective TPEF cell imaging.
Collapse
Affiliation(s)
- Yong-Chao Zheng
- Laboratory of Organic NanoPhotonics and Key Laboratory of Functional Crystals and Laser Technology
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190, P. R. China
- University of Chinese Academy of Sciences
| | - Mei-Ling Zheng
- Laboratory of Organic NanoPhotonics and Key Laboratory of Functional Crystals and Laser Technology
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190, P. R. China
| | - Shu Chen
- Laboratory of Organic NanoPhotonics and Key Laboratory of Functional Crystals and Laser Technology
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190, P. R. China
- University of Chinese Academy of Sciences
| | - Zhen-Sheng Zhao
- Laboratory of Organic NanoPhotonics and Key Laboratory of Functional Crystals and Laser Technology
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190, P. R. China
| | - Xuan-Ming Duan
- Laboratory of Organic NanoPhotonics and Key Laboratory of Functional Crystals and Laser Technology
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190, P. R. China
- Chongqing Institute of Green and Intelligent Technology
| |
Collapse
|
10
|
Jia T, Xiang J, Wang J, Guo P, Yu J. Interactions of newly designed dicationic carbazole derivatives with double-stranded DNA: syntheses, binding studies and AFM imaging. Org Biomol Chem 2013; 11:5512-20. [DOI: 10.1039/c3ob40799c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Gai W, Yang Q, Xiang J, Jiang W, Li Q, Sun H, Guan A, Shang Q, Zhang H, Tang Y. A dual-site simultaneous binding mode in the interaction between parallel-stranded G-quadruplex [d(TGGGGT)]4 and cyanine dye 2,2'-diethyl-9-methyl-selenacarbocyanine bromide. Nucleic Acids Res 2012; 41:2709-22. [PMID: 23275573 PMCID: PMC3575849 DOI: 10.1093/nar/gks1328] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
G-quadruplexes have attracted growing attention as a potential cancer-associated target for both treatment and detection in recent years. For detection purpose, high specificity is one of the most important factors to be considered in G-quadruplex probe design. It is well known that end stacking and groove binding are two dominated quadruplex-ligand binding modes, and currently most reported G-quadruplex probes are designed based on the former, which has been proven to show good selectivity between quadruplexes and non-quadruplexes. Because groove of G-quadruplex also has some unique chemical properties, it could be inferred that probes that can interact with both the groove and G-tetrad site of certain G-quadruplexes simultaneously might possess higher specificity in aspects of discriminating different quadruplexes. In this article, we report a cyanine dye as a potential novel probe scaffold that could occupy both the 5'-end external G-tetrad and the corresponding groove of the G-quadruplex simultaneously. By using various spectrum and nuclear magnetic resonance techniques, we give a detailed binding characterization for this dual-site simultaneous binding mode. A preliminary result suggests that this mode might provide highly specific recognition to a parallel-stranded G-quadruplex. These findings and the structural elucidation might give some clues in aspects of developing highly specific G-quadruplex probes.
Collapse
Affiliation(s)
- Wei Gai
- Beijing National Laboratory for Molecular Sciences (BNLMS), Center for Molecular Sciences, State Key Laboratory for Structural Chemistry for Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, PR China and Department of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ji X, Sun H, Zhou H, Xiang J, Tang Y, Zhao C. The interaction of telomeric DNA and C-myc22 G-quadruplex with 11 natural alkaloids. Nucleic Acid Ther 2012; 22:127-36. [PMID: 22480315 DOI: 10.1089/nat.2012.0342] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Telomeric DNA and C-myc22 are DNA G-quadruplex (G4)-forming sequences associated with tumorigenesis. Ligands that can facilitate the formation and increase the stabilization of G4 can halt tumor cell proliferation and have been regarded as potential anti-cancer drugs. In the present study, we have investigated the interaction of 11 natural alkaloids with G4 formed by telomeric DNA and C-myc22 sequences. Our results indicated that sanguinarine (San), palmatine (Pal), and berberine (Beb) of the first series (S1) can induce the formation of G4 as well as increase the stabilization ability. Daurisoline (S2-1), O-methyldauricine (S2-2), O-diacetyldaurisoline (S2-3), daurinoline (S2-4), dauricinoline (S2-5), N,N'-dimethyldauricine iodide (S2-6), and N,N'-dimethyldaurisoline iodide (S2-7) of the second series (S2) showed similar stabilization ability. We found that unsaturated ring C, N(+) positively charged centers, and conjugated aromatic rings are key factors to increase the stabilization ability of S1, and we gave some advice on structure modification to S2 through structure-activity study. Besides, we found San and Pal to be cell cycle blocker in G(1). San was speculated to bind to G4 through intercalation or end stacking.
Collapse
Affiliation(s)
- Xiaohui Ji
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Key Laboratory of Gene Engineering Drugs and Biological Technology College of Life Science, Beijing Normal University, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
13
|
Shi HP, Dai JX, Shi LW, Xu L, Zhou ZB, Zhang Y, Zhou W, Dong C. Synthesis, photophysical and electrochemical properties of a carbazole dimer-based derivative with benzothiazole units. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 93:19-25. [PMID: 22459937 DOI: 10.1016/j.saa.2012.02.087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 02/13/2012] [Accepted: 02/22/2012] [Indexed: 05/31/2023]
Abstract
A novel A-π-D-π-D-π-A type compound, containing two benzothiazole rings as electron acceptors and two N-ethylcarbazole groups as electron donors, (E)-1,2-bis(3-(benzothiazol-2-yl)-9-ethylcarbazol-6-yl)ethene (BBECE), was synthesized and characterized by elemental analysis, NMR, MS and thermogravimetric analysis. Electrochemical property of compound BBECE was studied by cyclic voltammetry analysis. The absorption and emission spectra of BBECE was experimentally determined in several solvents and simultaneously computed using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The calculated absorption and emission wavelengths are coincident with the measured data. The lowest-lying absorption spectra can be mainly attributed to intramolecular charge transfer (ICT), and the fluorescence spectra can be mainly described as originating from an excited state with intramolecular charge transfer (ICT) character. The molecular orbitals (HOMO and LUMO), the ionization potential (IP), the electron affinity (EA) and reorganization energy of compound BBECE were also investigated using density functional theory (DFT). The results show that compound BBECE exhibited excellent thermal stability and electrochemical stability as well as high fluorescence quantum yield, indicating its potential applications as an excellent optoelectronic material in optical fields.
Collapse
Affiliation(s)
- He-Ping Shi
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Visualizing the Quadruplex: From Fluorescent Ligands to Light-Up Probes. Top Curr Chem (Cham) 2012; 330:111-77. [DOI: 10.1007/128_2012_346] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Shi HP, Xu L, Cheng Y, He JY, Dai JX, Xing LW, Chen BQ, Fang L. Experimental and theoretical study of three new benzothiazole-fused carbazole derivatives. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 81:730-738. [PMID: 21795100 DOI: 10.1016/j.saa.2011.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/28/2011] [Accepted: 07/03/2011] [Indexed: 05/31/2023]
Abstract
Three new D-π-A type compounds, each containing one benzothiazole ring as an electron acceptor and one N-ethylcarbazole group as electron donor, were synthesized and characterized by elemental analysis, NMR, MS and thermogravimetric analysis. The absorption and emission spectra of three compounds were experimentally determined in several solvents and were simultaneously computed using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The calculated reorganization energy for hole and electron indicates that three compounds are in favor of hole transport than electron transport. The calculated absorption and emission wavelengths are well coincident with the measured data. The calculated lowest-lying absorption spectra can be mainly attributed to intramolecular charge transfer (ICT). And the calculated fluorescence spectra can be mainly described as originating from an excited state with intramolecular charge transfer (ICT) character. The results show that three compounds exhibited excellent thermal stability and high fluorescence quantum yields, indicating their potential applications as excellent optoelectronic material in optical field.
Collapse
Affiliation(s)
- He-ping Shi
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
N-phenyl-carbazole-based two-photon fluorescent probes: strong sequence dependence of the duplex vs quadruplex selectivity. Biochimie 2011; 93:1209-18. [PMID: 21672604 DOI: 10.1016/j.biochi.2011.05.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 05/31/2011] [Indexed: 11/23/2022]
Abstract
Herein we report on the synthesis and DNA recognition properties of a series of three N-phenyl carbazole-based light-up probes initially designed for two-photon absorption. The vinylic derivatives (Cbz-2Py, Cbz-3Py) display strong fluorescence enhancement when bound to various duplex- and quadruplex-forming oligonucleotides whereas the oxazole derivative is not fluorescent in DNA. Determination of affinity constants by fluorimetric titrations evidenced that Cbz-2Py has a clear preference for AT-rich duplex structures. Circular Dichroism (CD) measurements confirmed the sequence-dependent binding of this compound and suggest insertion in the minor groove as shown by a strong induced CD (ICD) signal and further supported by molecular modeling. Altogether the data indicate that duplex vs quadruplex selectivity of the dyes is strongly dependent on the sequence of the duplex. Finally, the dyes exhibit high two-photon absorption cross-sections (up to 540GM in glycerol) and allow a fine and bright staining of nuclear DNA with low background fluorescence as shown by one and two-photon confocal microscopy imaging of fixed cells.
Collapse
|