1
|
Mekala S, Sukumar G, Chawla S, Geesala R, Prashanth J, Reddy BJM, Mainkar P, Das A. Therapeutic Potential of Benzimidazoisoquinoline Derivatives in Alleviating Murine Hepatic Fibrosis. Chem Biodivers 2024; 21:e202301429. [PMID: 38221801 DOI: 10.1002/cbdv.202301429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Short Title: Benzimidazoisoquinoline derivatives as potent antifibrotics Hepatic fibrosis is a pathological condition of liver disease with an increasing number of cases worldwide. Therapeutic strategies are warranted to target the activated hepatic stellate cells (HSCs), the collagen-producing cells, an effective strategy for controlling the disease progression. Benzimidazoisoquinoline derivatives were synthesized as hybrid molecules by the combination of benzimidazoles and isoquinolines to evaluate their anti-fibrotic potential using an in-vitro and in-vivo model of hepatic fibrosis. A small library of benzimidazoisoquinoline derivatives (1-17 and 18-21) was synthesized from 2-aryl benzimidazole and acetylene functionalities through C-H and N-H activation. Compounds (10 and its recently synthesized derivatives 18-21) depicted a significant decrease in PDGF-BB and/or TGFβ-induced proliferation (1.7-1.9 -fold), migration (3.5-5.0 -fold), and fibrosis-related gene expressions in HSCs. These compounds could revert the hepatic damage caused by chronic exposure to hepatotoxicants, ethanol, and/or carbon tetrachloride as evident from the histological, biochemical, and molecular analysis. Anti-fibrotic effect of the compounds was supported by the decrease in the malondialdehyde level, collagen deposition, and gene expression levels of fibrosis-related markers such as α-SMA, COL1α1, PDGFRβ, and TGFRIIβ in the preclinical models of hepatic fibrosis. In conclusion, the synthesized benzimidazoisoquinoline derivatives (compounds 18, 19, 20, and 21) possess anti-fibrotic therapeutic potential against liver fibrosis.
Collapse
Affiliation(s)
- Sowmya Mekala
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
| | - Genji Sukumar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500007, INDIA
- Department of Chemistry, Adikavi Nannaya University, Rajamahendravaram, AP-533 296, INDIA
| | - Shilpa Chawla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
| | - Ramasatyaveni Geesala
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
| | - Jupally Prashanth
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
- Centre for X-ray Crystallography, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
| | - B Jagan Mohan Reddy
- Department of Chemistry, Adikavi Nannaya University, Rajamahendravaram, AP-533 296, INDIA
| | - Prathama Mainkar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500007, INDIA
| | - Amitava Das
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
| |
Collapse
|
2
|
Anichina K, Georgiev N, Lumov N, Vuchev D, Popova-Daskalova G, Momekov G, Cherneva E, Mihaylova R, Mavrova A, Atanasova-Vladimirova S, Piroeva I, Yancheva D. Fused Triazinobenzimidazoles Bearing Heterocyclic Moiety: Synthesis, Structure Investigations, and In Silico and In Vitro Biological Activity. Molecules 2023; 28:5034. [PMID: 37446695 DOI: 10.3390/molecules28135034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
[1,3,5]Triazino[1,2-a]benzimidazole-2-amines bearing heterocyclic moiety in 4-position were synthesized. The compounds were characterized by elemental analysis, IR, 1H-NMR, 13C-NMR, and HRMS spectroscopy. The molecular geometry and electron structure of these molecules were theoretically studied using density functional theory (DFT) methods. The molecular structure of the synthesized fused triazinobenzimidazole was confirmed to correspond to the 3,4-dihydrotriazinobenzimidazole structure through the analysis of spectroscopic NMR data and DFT calculations. The antinematodic activity was evaluated in vitro on isolated encapsulated muscle larvae (ML) of Trichinella spiralis. The results showed that the tested triazinobenzimidazoles exhibit significantly higher efficiency than the conventional drug used to treat trichinosis, albendazole, at a concentration of 50 μg/mL. The compound 3c substituted with a thiophen-2-yl moiety exhibited the highest anthelmintic activity, with a larvicidal effect of 58.41% at a concentration of 50 μg/mL after 24 h of incubation. Following closely behind, the pyrrole analog 3f demonstrated 49.90% effectiveness at the same concentration. The preliminary structure-anti-T. spiralis activity relationship (SAR) of the analogues in the series was discussed. The cytotoxicity of the benzimidazole derivatives against two normal fibroblast cells (3T3 and CCL-1) and two cancer human cell lines (MCF-7 breast cancer cells and chronic myeloid leukemia cells AR-230) was evaluated using the MTT-dye reduction assay. The screening results indicated that the compounds showed no cytotoxicity against the tested cell lines. An in silico study of the physicochemical and pharmacokinetic characteristics of the novel synthesized fused triazinobenzimidazoles showed that they were characterized by a significant degree of drug-likeness and optimal properties for anthelmintic agents.
Collapse
Affiliation(s)
- Kameliya Anichina
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria
| | - Nikolai Georgiev
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria
| | - Nikolay Lumov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 9, 1113 Sofia, Bulgaria
| | - Dimitar Vuchev
- Department of Infectious Diseases, Parasitology and Tropical Medicine, Medical University, 15A Vasil Aprilov Blvd., 4002 Plovdiv, Bulgaria
| | - Galya Popova-Daskalova
- Department of Infectious Diseases, Parasitology and Tropical Medicine, Medical University, 15A Vasil Aprilov Blvd., 4002 Plovdiv, Bulgaria
| | - Georgi Momekov
- Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria
| | - Emiliya Cherneva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 9, 1113 Sofia, Bulgaria
- Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria
| | - Rositsa Mihaylova
- Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria
| | - Anelia Mavrova
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria
| | | | - Iskra Piroeva
- Institute of Physical Chemistry, Bulgarian Academy of Sciences, Build. 11, 1113 Sofia, Bulgaria
| | - Denitsa Yancheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 9, 1113 Sofia, Bulgaria
| |
Collapse
|
3
|
Choudhary A, Viradiya RH, Ghoghari RN, Chikhalia KH. Recent Scenario for the Synthesis of Benzimidazole Moiety(2020–2022). ChemistrySelect 2023. [DOI: 10.1002/slct.202204910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Annu Choudhary
- Department of Chemistry Veer Narmad South Gujarat University Surat 395007 Gujarat India
| | - Riddhi H. Viradiya
- Department of Chemistry Veer Narmad South Gujarat University Surat 395007 Gujarat India
| | - Rajnikant N. Ghoghari
- Department of Chemistry Veer Narmad South Gujarat University Surat 395007 Gujarat India
| | - Kishor H. Chikhalia
- Department of Chemistry Veer Narmad South Gujarat University Surat 395007 Gujarat India
| |
Collapse
|
4
|
Synthesis, spectroscopic characterization and biological activities as an anticancer and antioxidant of the Pd(II) and Pt(IV) complexes with a new azo dye ligand derived from 5-methyl imidazole. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Ullah A, Al Kury LT, Althobaiti YS, Ali T, Shah FAL. Benzimidazole Derivatives as New Potential NLRP3 Inflammasome Inhibitors That Provide Neuroprotection in a Rodent Model of Neurodegeneration and Memory Impairment. J Inflamm Res 2022; 15:3873-3890. [PMID: 35845091 PMCID: PMC9286489 DOI: 10.2147/jir.s351913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
Abstract
Objective The study investigated the effect of newly synthesized benzimidazole derivatives against ethanol-induced neurodegeneration. According to evidence, ethanol consumption may cause a severe insult to the central nervous system (CNS), resulting in mental retardation, neuronal degeneration, and oxidative stress. Targeting neuroinflammation and oxidative stress may be a useful strategy for preventing ethanol-induced neurodegeneration. Methodology Firstly, the newly synthesized compounds were subjected to molecular simulation and docking in order to predict ligand binding status. Later, for in vivo observations, adult male Sprague Dawley rats were used for studying behavioral and oxidative stress markers. ELIZA kits were used to analyse tumour necrosis factor-alpha (TNF-), nuclear factor-B (NF-B), interleukin (IL-18), and pyrin domain-containing protein 3 (NLRP3) expression, while Western blotting was used to measure IL-1 and Caspase-1 expression. Results Our findings suggested that altered levels of antioxidant enzymes were associated with elevated levels of TNF-α, NF-B, IL-1, IL-18, Caspase-1, and NLRP3 in the ethanol-treated group. Furthermore, ethanol also caused memory impairment in rats, as measured by behavioural tests. Pretreatment using selected benzimidazole significantly increased the combat of the brain against ethanol-induced oxidative stress. The neuroprotective effects of benzimidazole derivatives were promoted by their free radical scavenging activity, augmentation of endogenous antioxidant proteins (GST, GSH), and amelioration of lipid peroxide (LPO) and other pro-inflammatory mediators. Molecular docking and molecular simulation studies further supported our hypothesis that the synthetic compounds Ca and Cb had an excellent binding affinity with proper bond formation with their targets (TNF-α and NLRP3). Conclusion It is revealed that these benzimidazole derivatives can reduce ethanol-induced neuronal toxicity by regulating the expression of cytokines, antioxidant enzymes, and the inflammatory cascade.
Collapse
Affiliation(s)
- Aman Ullah
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Lina Tariq Al Kury
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Yusuf S Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif, 21944, Saudi Arabia.,Addiction and Neuroscience Research Unit, Taif University, Taif, 21944, Saudi Arabia
| | - Tahir Ali
- University of Calgary, Calgary, AB, Canada
| | - Fawad ALi Shah
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
6
|
Hussein BRM, Moustafa AH. Utility of arylglyoxal hydrates in synthesis of 4-aroyl-[1,3,5]triazino[1,2-a]benzimidazol-2(1H)-imines and 5-aryl-2-phenyl-4H-imidazol-4-imines. Mol Divers 2022; 26:3185-3191. [PMID: 35064443 DOI: 10.1007/s11030-022-10379-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/04/2022] [Indexed: 11/28/2022]
Abstract
Nucleophilic substitution reaction for arylglyoxal hydrates (AGs-hydrate) was studied via their reaction with some mono- and multi-nucleophilic reagents in the presence of sodium ethoxide as basic catalyst. Thus, reaction of phenylglyoxal hydrate (1a) with hydrogen sulfide and/or ammonium acetate afforded the corresponding 2-hydroxy-2-mercapto-1-phenylethanone (2) and 2-oxo-2-phenylethanimidamide (3), respectively. Heterocyclization reaction of AGs-hydrate 1a-f with 1-(1H-benzimidazol-2-yl)guanidine (4) gave 4-aroyl-[1,3,5]triazino[1,2-a]benzimidazol-2(1H)-imines 5a-f. Also, a series of 5-aryl-2-phenyl-4H-imidazol-4-imines 7a-d was synthesized via one-pot multicomponent reaction of AGs-hydrate 1a-d, benzonitrile (6) and ammonium acetate. Imidazole-4-imines 7a-d can be also prepared using other route via multicomponent reaction of AGs-hydrate 1a-d, benzenecarboximidamide acetate (8) and ammonium acetate.
Collapse
Affiliation(s)
- Bahgat R M Hussein
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Amr H Moustafa
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| |
Collapse
|
7
|
Hashem HE, El Bakri Y. An overview on novel synthetic approaches and medicinal applications of benzimidazole compounds. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
8
|
Zhu Z, Liu Z, Cui J, Huang Y, Chen H, Wu Y, Huang X, Gan C. Apoptosis inducing properties of 3-biotinylate-6-benzimidazole B-nor-cholesterol analogues. Steroids 2021; 169:108822. [PMID: 33722574 DOI: 10.1016/j.steroids.2021.108822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/14/2023]
Abstract
In this work, a series of Biotin-substituted B-nor-cholesteryl benzimidazole compounds were synthesized. The antiproliferativeactivities of these compounds were evaluated in vitro using a series of human cancer cell lines, including HeLa (cervical cancer), SKOV3 (ovarian cancer), T-47D (thymus gland cancer), MCF-7 (human breast cancer) and HEK293T (normal renal epithelial) cells. These compounds displayed distinct antiproliferative activities against the currently tested cancer cells. The apoptotic properties induced by compound 6d were further investigated. Our results showed that compound 6d could induce the apoptosis of SKOV3 cells, blocking the cell growth in S-phase. Western blotting analyses revealed that compound 6d can induce cell apoptosis via the mitochondria-dependent pathway.
Collapse
Affiliation(s)
- Zhiling Zhu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China
| | - Zhiping Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China
| | - Jianguo Cui
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China
| | - Yanmin Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China
| | - Hualong Chen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China
| | - Yulan Wu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China
| | - Xiaotong Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China
| | - Chunfang Gan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China.
| |
Collapse
|
9
|
Srivastava R, Gupta SK, Naaz F, Sen Gupta PS, Yadav M, Singh VK, Singh A, Rana MK, Gupta SK, Schols D, Singh RK. Alkylated benzimidazoles: Design, synthesis, docking, DFT analysis, ADMET property, molecular dynamics and activity against HIV and YFV. Comput Biol Chem 2020; 89:107400. [PMID: 33068917 PMCID: PMC7537607 DOI: 10.1016/j.compbiolchem.2020.107400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/22/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022]
Abstract
New benzimidazole analogs synthesized as antivirals against HIV-1 and yellow fever virus. Molecular dynamics simulation studies indicated a stable ligand-protein complex of compound 3a within NNIBP of HIV-RT. DFT analysis confirmed the stability of hydrogen bonding interaction between the TRP 229 residue of HIV-RT and compound 3a. Molecules were tested for their anti-HIV and broad spectrum antiviral properties against different DNA and RNA viruses. Antiviral properties and cytotoxicity determined using MTT assay. Compound 3a showed anti-HIV activity and compound 2b showed excellent inhibition property against yellow fever virus.
A series of alkylated benzimidazole derivatives was synthesized and screened for their anti-HIV, anti-YFV, and broad-spectrum antiviral properties. The physicochemical parameters and drug-like properties of the compounds were assessed first, and then docking studies and MD simulations on HIV-RT allosteric sites were conducted to find the possible mode of their action. DFT analysis was also performed to confirm the nature of the hydrogen bonding interaction of active compounds. The in silico studies indicated that the molecules behaved like possible NNRTIs. The nature – polar or non-polar and position of the substituent present at fifth, sixth, and N-1 positions of the benzimidazole moiety played an important role in determining the antiviral properties of the compounds. Among the various compounds, 2-(5,6-dibromo-2-chloro-1H-benzimidazol-1-yl)ethan-1-ol (3a) showed anti-HIV activity with an appreciably low IC50 value as 0.386 × 10−5μM. Similarly, compound 2b, 3-(2-chloro-5-nitro-1H-benzimidazol-1-yl) propan-1-ol, showed excellent inhibitory property against the yellow fever virus (YFV) with EC50 value as 0.7824 × 10−2μM.
Collapse
Affiliation(s)
- Ritika Srivastava
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, 211002, India
| | - Sunil K Gupta
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, 211002, India
| | - Farha Naaz
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, 211002, India
| | - Parth Sarthi Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha 760010, India
| | - Madhu Yadav
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, 211002, India
| | - Vishal Kumar Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, 211002, India
| | - Anuradha Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, 211002, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha 760010, India
| | | | | | - Ramendra K Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, 211002, India.
| |
Collapse
|
10
|
Sharghi H, Razavi SF, Aberi M, Tavakoli F, Shekouhy M. The Co
2+
Complex of [7‐Hydroxy‐4‐methyl‐8‐coumarinyl]glycine as a Nanocatalyst for the Synthesis and Biological Evaluation of New Mannich Bases of Benzimidazoles and Benzothiazoles. ChemistrySelect 2020. [DOI: 10.1002/slct.201904700] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Hashem Sharghi
- Department of Chemistry, College of SciencesShiraz University Shiraz 71454 Iran
| | | | - Mahdi Aberi
- Department of Chemical and Materials Engineering, Faculty of Shahid Rajaee, Shiraz BranchTechnical and Vocational University (TVU), Shiraz Iran
| | - Fatemeh Tavakoli
- Department of Toxicology, Faculty of PharmacyShahid Sadoughi University of Medical Sciences, Yazd Iran
| | - Mohsen Shekouhy
- Department of Chemistry, College of SciencesShiraz University Shiraz 71454 Iran
| |
Collapse
|
11
|
A simple and metal-free one-pot synthesis of 2-substituted-1H-4-carboxamide benzimidazole using 3,6-di(pyridin-2-yl)-1,2,4,5-tetrazine(PYTZ) as catalyst. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00821-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Abstract
Background:
This review presents the exhaustive exploration of 1,3,5-triazine scaffold
for development of analogs of anticancer drugs, over the last century. In the recent years, striazine
moiety has been one of the most studied moiety, showing broad-spectrum pharmacological
activities such as antibacterial, antifungal, analgesic, anti-HIV, antileishmanial, antitrypanosomal,
antimalarial and antiviral. Nowadays, many boffins are have become interested in novel
synthesis of s-triazine derivatives because of low cost and ease of availability.
Methods:
This scaffold has been extensively investigated mainly in the past decade. Many products
have been synthesized from different starting materials and these synthetic products possess
anticancer potential against various cell lines.
Results:
Many 1,3,5-triazine analogs exhibited significant anticancer activity in various models
and cell lines exhibiting different mechanisms. Some analogs have also shown good pharmacokinetic
parameters with less IC50 values.
Conclusion:
Various 1,3,5-triazine analogs have shown potent activities and may be regarded as
clinical candidates for future anticancer formulations. This review may be helpful to those researchers
seeking required information with regard to the drug design and medicinal properties of
1,3,5-triazine derivatives for selected targets. This review may also offer help to find and improve
clinically viable anticancer molecules.
Collapse
Affiliation(s)
- Rajeev Kumar
- Devsthali Vidyapeeth College of Pharmacy, Lalpur, Rudrapur (U.S. Nagar)-263148, Uttarakhand, India
| | - Neeraj Kumar
- Devsthali Vidyapeeth College of Pharmacy, Lalpur, Rudrapur (U.S. Nagar)-263148, Uttarakhand, India
| | | | - Anita Singh
- Department of Pharmacy, Kumaun University, Bhimtal, Nainital-263136, Uttarakhand, India
| |
Collapse
|
13
|
El Bakri Y, Lai CH, Sebhaoui J, Ali AB, Ramli Y, Essassi EM, Mague JT. Synthesis, crystal structure, Hirshfeld surface analysis, and DFT calculations of new 1-[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]-6-methoxy-1H-benzimidazol-2(3H)-one. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cdc.2018.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
14
|
Cascioferro S, Parrino B, Spanò V, Carbone A, Montalbano A, Barraja P, Diana P, Cirrincione G. 1,3,5-Triazines: A promising scaffold for anticancer drugs development. Eur J Med Chem 2017; 142:523-549. [PMID: 29046238 DOI: 10.1016/j.ejmech.2017.09.035] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/16/2017] [Accepted: 09/18/2017] [Indexed: 12/18/2022]
Abstract
This review covering literature reports from the beginning of this century to 2016 describes the synthetic pathways, the antitumor activity, the structure-activity relationship and, whenever reported, the possible mechanism of action of 1,3,5-triazine derivatives as well as of their hetero-fused compounds. Many 1,3,5-triazine derivatives, both uncondensed and hetero-fused, have shown remarkable antitumor activities and some of them reached clinical development.
Collapse
Affiliation(s)
- Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Virginia Spanò
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Anna Carbone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Alessandra Montalbano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Paola Barraja
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Girolamo Cirrincione
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| |
Collapse
|
15
|
Akhtar W, Khan MF, Verma G, Shaquiquzzaman M, Rizvi MA, Mehdi SH, Akhter M, Alam MM. Therapeutic evolution of benzimidazole derivatives in the last quinquennial period. Eur J Med Chem 2016; 126:705-753. [PMID: 27951484 DOI: 10.1016/j.ejmech.2016.12.010] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/10/2016] [Accepted: 12/03/2016] [Indexed: 12/21/2022]
Abstract
Benzimidazole, a fused heterocycle bearing benzene and imidazole has gained considerable attention in the field of contemporary medicinal chemistry. The moiety is of substantial importance because of its wide array of pharmacological activities. This nitrogen containing heterocycle is a part of a number of therapeutically used agents. Moreover, a number of patents concerning this moiety in the last few years further highlight its worth. The present review covers the recent work published by scientists across the globe during last five years.
Collapse
Affiliation(s)
- Wasim Akhtar
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India
| | - Mohemmed Faraz Khan
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India
| | - Garima Verma
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India
| | - M Shaquiquzzaman
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India
| | - M A Rizvi
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Syed Hassan Mehdi
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mymoona Akhter
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India
| | - M Mumtaz Alam
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
16
|
Bhat M, Belagali SL. Guanidinyl benzothiazole derivatives: Synthesis and structure activity relationship studies of a novel series of potential antimicrobial and antioxidants. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2454-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
Efficient synthetic access to novel N-(Pyrimidinyl)-N-(1H-benzo[d]imidazolyl)amines in an aqueous medium. MONATSHEFTE FUR CHEMIE 2015. [DOI: 10.1007/s00706-015-1524-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Antitumor, antioxidant and antimicrobial studies of substituted pyridylguanidines. Molecules 2013; 18:10378-96. [PMID: 23985956 PMCID: PMC6269704 DOI: 10.3390/molecules180910378] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 07/23/2013] [Accepted: 07/26/2013] [Indexed: 11/17/2022] Open
Abstract
A series of N-pivaloyl-N′-(alkyl/aryl)-N″-pyridylguanidine of general formula C4H9CONHC(NR1R2)NPy have been synthesized and characterized using elemental analysis, FT-IR, multinuclear NMR spectroscopy, and in the case of compounds 7 and 11, by single crystal X-ray diffraction (XRD). The synthesized guanidines were tested for antitumor activities against potato tumor, and showed excellent inhibition against Agrobacterium tumefaciens (AT10)-induced tumor. The antioxidant and antimicrobial activities of these new compounds against various bacterial and fungal strains were also investigated.
Collapse
|
19
|
Taher AT, Khalil NA, Ahmed EM, Ragab YM. Synthesis of Certain 2-Substituted-1 H-benzimidazole Derivatives as Antimicrobial and Cytotoxic Agents. Chem Pharm Bull (Tokyo) 2012; 60:778-84. [DOI: 10.1248/cpb.60.778] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Azza Taher Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University
| | - Nadia Abdalla Khalil
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University
| | - Eman Mohamed Ahmed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University
| | - Yasser Mohamed Ragab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University
| |
Collapse
|