1
|
Chauhan C, Tanuj, Kumar R, Kumar J, Sharma S, Benmansour S, Kumar S. Synthesis, structural characterization, DFT and molecular dynamics simulations of dinuclear (μ-hydroxo)-bridged triethanolamine copper(II) complexes: efficient candidates towards visible light-mediated photo-Fenton degradation of organic dyes. Dalton Trans 2024. [PMID: 39087793 DOI: 10.1039/d4dt01463d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Multinuclear (di/tri) copper(II) complexes bridged through hydroxyl groups are very interesting coordination complexes owing to their potential applications in various fields. In this work, three novel dinuclear (μ-hydroxo)-bridged copper(II) complexes in the crystal form, namely, [Cu2(3,5-DIFLB)2(H2tea)2](H2O) (1), [Cu2(4-ClB)2(H2tea)2](H2O) (2), and [Cu2(4-ETHB)2(H2tea)2](H2O)2 (3) (where DIFLB = difluorobenzoate, CLB = chlorobenzoate, ETHB = ethoxybenzoate, and H3tea = triethanolamine), were isolated at room temperature using methanol and water in a 4 : 1 v/v ratio as a solvent. Furthermore, all three complexes (1-3) were characterised using spectroscopic (UV-vis, DRS, and FT-IR), electrochemical (CV) and single-crystal X-ray diffraction techniques. Structural insights gained by packing analysis revealed the role of steric constraints of substituents and various non-covalent interactions in lattice stabilization, which were indeed supported by theoretical and molecular electrostatic potential illustrations. Hirshfeld surface analysis provided quantitative verification about various non-covalent interactions (interatomic contacts) involved in the packing of molecules. Interestingly, as a potential application, complexes 1-3 all exhibited remarkable visible light-mediated photo-Fenton degradation of approximately 98% for 50 ppm concentration of organic dyes (fuchsin basic (FB) and methyl orange (MO)) in 90 minutes with the optimized conditions of 1 mg mL-1 of dye solution. In all the cases, dye degradation by these materials was ascribed to the symbiotic relations among the molecular structures of complexes 1-3, which were endowed with various electron-withdrawing and electron-releasing substituents and ionic strength, with respect to the structure, shape and interacting patterns of dye molecules. The adsorption mechanism indicates that various weak interactions between the donor and acceptor groups of complexes and dyes, such as electrostatic, hydrogen bonding, and direct coordination to metal sites, play a crucial role, which is confirmed by molecular dynamics (MD) simulations. Theoretical studies by DFT-based descriptors, molecular electrostatic potentials, and band gaps provided deep insights into various electronic and reactivity parameters. For subsequent processes of dye degradation, complexes 1-3 were stable and recoverable. The successful integration of experimental and theoretical approaches sheds light on copper-based dinuclear stable coordination complexes, showcasing a significant step towards the development of novel heterogeneous photo-Fenton catalysts.
Collapse
Affiliation(s)
- Chetan Chauhan
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla, India.
| | - Tanuj
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla, India.
| | - Rajesh Kumar
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla, India.
| | - Jitendra Kumar
- Department of Chemistry, MLPK, College, Balrampur, UP, India
| | - Subhash Sharma
- CONAHCyT-Centro de Nanociencias y Nanotecnología. Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada AP14, Ensenada, 22860, B.C, Mexico
| | - Samia Benmansour
- Departamento de Química Inorgánica, Edificio F Grupo M4 (Materiales moleculares Multifuncionales y Modulables) C/Doctor Moliner, 50 46100-Burjassot, Spain.
| | - Santosh Kumar
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla, India.
| |
Collapse
|
2
|
Bhaskar C, Elangovan N, Sowrirajan S, Chandrasekar S, Ali OAA, Mahmoud SF, Thomas R. Synthesis, XRD, Hirshfeld surface analysis, DFT studies, cytotoxicity and anticancer activity of di(m-chlorobenzyl) (dichloro) (4, 7-diphenyl-1,10-phenanthroline) tin (IV) complex. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
Latha A, Elangovan N, Manoj K, Keerthi M, Balasubramani K, Sowrirajan S, Chandrasekar S, Thomas R. Synthesis, XRD, spectral, structural, quantum mechanical and anticancer studies of di(p-chlorobenzyl) (dibromo) (1, 10-phenanthroline) tin (IV) complex. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Zhang Y, Cao Y, Wang H. Multi-Interactions in Ionic Liquids for Natural Product Extraction. Molecules 2020; 26:E98. [PMID: 33379318 PMCID: PMC7796109 DOI: 10.3390/molecules26010098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
Natural products with a variety of pharmacological effects are important sources for commercial drugs, and it is very crucial to develop effective techniques to selectively extract and isolate bioactive natural components from the plants against the background of sustainable development. Ionic liquids (ILs) are a kind of designable material with unique physicochemical properties, including good thermal stability, negligible vapor pressure, good solvation ability, etc. ILs have already been used in pharmaceuticals for extraction, purification, drug delivery, etc. It has been reported that multi-interactions, like hydrogen bonding, hydrophobic interactions, play important roles in the extraction of bioactive components from the plants. In this review, recent progress in the understanding of scientific essence of hydrogen bonding, the special interaction, in ILs was summarized. The extraction of various natural products, one important area in pharmaceutical, by conventional and functional ILs as well as the specific roles of multi-interactions in this process were also reviewed. Moreover, problems existing in bioactive compound extraction by ILs and the future developing trends of this area are given, which might be helpful for scientists, especially beginners, in this field.
Collapse
Affiliation(s)
- Ying Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (Y.Z.); (Y.C.)
- CAS Key Laboratory of Green Process Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Yingying Cao
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (Y.Z.); (Y.C.)
- CAS Key Laboratory of Green Process Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (Y.Z.); (Y.C.)
- CAS Key Laboratory of Green Process Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Kumar S, Sharma RP, Venugopalan P, Gondil VS, Chhibber S, Ferretti V. Synthesis and characterization of new silver(I) naphthalenedisulfonate complexes with heterocyclic N-donor ligands: Packing analyses and antibacterial studies. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
|
7
|
Unusual coordination modes of ligand 2-chloro-5-nitrobenzene sulfonate: Synthesis, spectroscopic characterization, thermal and X-ray structural studies of metal 2-chloro-5-nitrobenzene sulfonate complexes, metal = Tl(I), Cu(II), Ag(I) and Pb(II). J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2015.11.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Ozarowski A, Calzado CJ, Sharma RP, Kumar S, Jezierska J, Angeli C, Spizzo F, Ferretti V. Metal–Metal Interactions in Trinuclear Copper(II) Complexes [Cu3(RCOO)4(H2TEA)2] and Binuclear [Cu2(RCOO)2(H2TEA)2]. Syntheses and Combined Structural, Magnetic, High-Field Electron Paramagnetic Resonance, and Theoretical Studies. Inorg Chem 2015; 54:11916-34. [DOI: 10.1021/acs.inorgchem.5b02199] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Carmen J. Calzado
- Departamento de Química Física, Universidad de Sevilla, c/Prof. García González, s/n, 41012 Sevilla, Spain
| | - Raj Pal Sharma
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Santosh Kumar
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Julia Jezierska
- Faculty of Chemistry, Wroclaw University, 14 F. Joliot Curie Str., 50-383 Wroclaw, Poland
| | | | - Federico Spizzo
- Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via Saragat 1, I-44122 Ferrara, Italy
| | | |
Collapse
|
9
|
Kumar S, Sharma RP, Venugopalan P, Jezierska J, Wojciechowska A, Ferretti V. Synthesis, characterization and X-ray structural studies of three hybrid inorganic–organic compounds: Silver(I)-, lead(II)- and tris(phenanthroline)copper(II)- 2,6-naphthalenedisulfonate (2,6-nds). Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|