1
|
Thioether-based novel transition metal complexes: Synthesis, DNA interaction, in vitro biological assay, DFT calculations, and molecular docking studies. Bioorg Chem 2023; 132:106343. [PMID: 36623447 DOI: 10.1016/j.bioorg.2023.106343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
A novel Schiff base ligand 2-(((2-(benzylthio)phenyl)imino)methyl)-4-chlorophenol and its cobalt, nickel, copper, and zinc metal complexes were prepared. Using B3LYP/6-31++G(d,p) method with LanL2DZ as basis set, the molecular structure of metal complexes has been optimized, and their parameters have been explored. The distorted octahedral geometries have been observed in cobalt, nickel, and copper complexes. In contrast, zinc complex exhibited distorted tetrahedral geometry indicating the coordination of metal ions with ligands through ONS binding sites, which are confirmed by various spectroscopic techniques, magnetic measurements, molar conductivity, elemental analysis, and DFT studies. The intercalative binding mode between CT-DNA and synthesized metal complexes has been determined by absorption and fluorescence spectroscopy. The binding constant values of metal complexes found to be varied from 5.28 × 103 M-1 to 9.18 × 104 M-1. Furthermore, several methods have been used to scrutinize the bioactivities, such as in vitro anti-diabetic, anti-inflammatory, and antioxidant. From the obtained results, it can be concluded that zinc metal complex exhibited excellent anti-inflammatory and anti-diabetic activity compared to others. However, the copper complex has good antioxidant property. Besides deducing the prospective binding energies of inhibitors, molecular docking simulations have also been conducted utilizing the enzyme structures of B-DNA, 6-COX, α-amylase, and α-glucosidase.
Collapse
|
2
|
Lee J, Melchakova I, Nayab S, Kim K, Ko YH, Yoon M, Avramov P, Lee H. Synthesis and Characterization of Zinc(II), Cadmium(II), and Palladium(II) Complexes with the Thiophene-Derived Schiff Base Ligand. ACS OMEGA 2023; 8:6016-6029. [PMID: 36816644 PMCID: PMC9933481 DOI: 10.1021/acsomega.2c08001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/23/2023] [Indexed: 06/01/2023]
Abstract
Zn(II), Pd(II), and Cd(II) complexes, [L TH MCl 2 ] (M = Zn, Pd; X = Br, Cl) and [L TH Cd(μ-X)X] n (X = Cl, Br; n = n, 2), supported by the (E)-N 1,N 1-dimethyl-N 2-(thiophen-2-ylmethylene)ethane-1,2-diamine (L TH ) ligand are synthesized and structurally characterized. Density functional theory (DFT) electronic structure calculations and variable-temperature NMR support the presence of two conformers and a dynamic interconversion process of the minor conformer to the major one in solution. It is found that the existence of two relevant complex conformers and their respective ratios in solution depend on the central metal ions and counter ions, either Cl- or Br-. Among the two relevant conformers, a single conformer is crystallized and X-ray diffraction analysis revealed a distorted tetrahedral geometry for Zn(II) complexes, and a distorted square planar and square pyramidal geometry for Pd(II) and Cd(II) complexes, respectively. It is shown that [L TH MCl 2 ]/LiO i Pr (M = Zn, Pd) and [L TH Cd(μ-Cl)Cl] n /LiO i Pr can effectively catalyze the ring-opening polymerization (ROP) reaction of rac-lactide (rac-LA) with 94% conversion within 30 s with [L TH ZnCl 2 ]/LiO i Pr at 0 °C. Overall, hetero-enriched poly(lactic acid)s (PLAs) were provided by these catalytic systems with [L TH ZnCl 2 ]/LiO i Pr producing PLA with higher heterotactic bias (P r up to 0.74 at 0 °C).
Collapse
Affiliation(s)
- Jaegyeong Lee
- Department
of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| | - Iuliia Melchakova
- Department
of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| | - Saira Nayab
- Department
of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
- Department
of Chemistry, Shaheed Benazir Bhutto University
(SBBU), Sheringal 18050, Upper Dir, Khyber Pakhtunkhwa, Islamic Republic of Pakistan
| | - Kyeonghun Kim
- Department
of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| | - Young Ho Ko
- Center
for Self-Assembly and Complexity (CSC), Institute for Basic Science
(IBS), Pohang University of Science and
Technology (POSTEC), Pohang 37673, Republic
of Korea
| | - Minyoung Yoon
- Department
of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| | - Paul Avramov
- Department
of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| | - Hyosun Lee
- Department
of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| |
Collapse
|
3
|
Keshtkar N, Zamanpour A, Esmaielzadeh S. Bioactive Ni(II), Cu(II) and Zn(II) complexes with an N3 functionalized Schiff base ligand: Synthesis, structural elucidation, thermodynamic and DFT calculation studies. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
4
|
NASKAR RAHUL, GHOSH PARAMITA, MANDAL SUBRATA, JANA SUBRATA, MURMU NABENDU, MONDAL TAPANKUMAR. Palladium(II) complex bearing benzothiazole based O,N,S donor pincer ligand: Study of in-vitro cytotoxicity, interaction with CT-DNA and BSA protein. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02101-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Raj Meena D, Deepa, Jubair Aalam M, Chaudhary P, Devi Yadav G, Singh S. Synthesis and structural studies of Pd(II) complexes of bidentate Schiff bases and their catalytic activities as pre-catalysts in the Mizoroki-Heck reaction. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Naskar R, Ghosh P, Manna CK, Murmu N, Mondal TK. Palladium(II) complexes with thioether based ONS donor ligand: Synthesis, characterization, X-ray structure, DFT study and anti-cancer activity. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Kadafour ANW, Bala MD. Structural characterization of a square planar Ni(II) complex and its application as a catalyst for the transfer hydrogenation of ketones. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.2007890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Muhammad D. Bala
- School of Chemistry & Physics, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
8
|
Turan N, Buldurun K, Türkan F, Aras A, Çolak N, Murahari M, Bursal E, Mantarcı A. Some metal chelates with Schiff base ligand: synthesis, structure elucidation, thermal behavior, XRD evaluation, antioxidant activity, enzyme inhibition, and molecular docking studies. Mol Divers 2021; 26:2459-2472. [PMID: 34743300 DOI: 10.1007/s11030-021-10344-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022]
Abstract
Schiff bases are well-known compounds for having significant biological properties. In this study, a new Schiff base ligand and its metal complexes were synthesized, and their antioxidant and enzyme inhibitory activities were evaluated. The new Schiff base ligand was synthesized with the condensation reaction of 6-tert-butyl 3-ethyl 2-amino-4,5-dihydrothieno[2,3-c]pyridine-3,6(7H)-dicarboxylate and 2-hydroxybenzaldehyde compounds. Fe(II), Co(II), and Ni(II) metal complexes of the novel Schiff base ligand were synthesized and characterized. The purity and molecular formula of the synthesized compounds were identified with elemental analysis, infrared, ultraviolet-visible, mass spectrophotometry, powder XRD, magnetic and thermal measurements. The Schiff base acted as a three dentate chelate. The analytical and spectroscopic data suggested an octahedral geometry for the complexes. The in vitro antioxidant method studies elucidated a more effective antioxidant character of the Schiff base ligand than its metal complexes but a less effective antioxidant potential than the standard antioxidant compounds. The enzyme inhibition potentials of the synthesized compounds for AChE, BChE, and GST enzymes were determined by in vitro enzyme activity methods. The Schiff base ligand was discovered to be the best inhibitor for the AChE and BChE with the values of 7.13 ± 0.84 µM and 5.75 ± 1.03 µM Ki, respectively. Moreover, the Fe(II) complex displayed the best Ki value as 9.37 ± 1.06 µM for the GST enzyme. Finally, molecular docking studies were carried out to see the structural interactions of the compounds. The metal complexes demonstrated better binding affinities with the AChE, BChE, and GST enzymes than the Schiff base ligand. This study identified a potential Schiff base molecule against both AChE and BChE targets to further investigate for in vivo and safety evaluation.
Collapse
Affiliation(s)
- Nevin Turan
- Department of Chemistry, Faculty of Arts and Sciences, Muş Alparslan University, 49250, Muş, Turkey.
| | - Kenan Buldurun
- Department of Food Processing, Technical Science Vocational School, Muş Alparslan University, 49250, Muş, Turkey
| | - Fikret Türkan
- Health Services Vocational School, Igdır University, 76000, Igdır, Turkey
| | - Abdulmelik Aras
- Department of Biochemistry, Faculty of Arts and Sciences, Igdır University, 76100, Igdır, Turkey
| | - Naki Çolak
- Department of Chemistry, Faculty of Arts and Sciences, Hitit University, 19100, Çorum, Turkey
| | - Manikanta Murahari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Ercan Bursal
- Department of Nursing, Faculty of Health, Muş Alparslan University, 49250, Muş, Turkey
| | - Asim Mantarcı
- Department of Physics, Faculty of Arts and Sciences, Muş Alparslan University, 49250, Muş, Turkey
| |
Collapse
|
9
|
Vinusha HM, Kollur SP, Begum M, Shivamallu C, Ramu R, Shirahatti PS, Prasad N, Veerapur R, Ortega-Castro J, Frau J, Flores-Holguín N, Glossman-Mitnik D. Chemical synthesis, in vitro biological evaluation and theoretical investigations of transition metal complexes derived from 2-(((5-mercapto-1H-pyrrol-2-yl)imino) methyl)6-methoxyphenol. J Mol Struct 2021; 1244:130920. [DOI: 10.1016/j.molstruc.2021.130920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Sakthivel R, Sankudevan P, Vennila P, Venkatesh G, Kaya S, Serdaroğlu G. Experimental and theoretical analysis of molecular structure, vibrational spectra and biological properties of the new Co(II), Ni(II) and Cu(II) Schiff base metal complexes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
El‐Sawaf AK, Abdel‐Monem YK, Azzam MA. Synthesis, spectroscopic, electrochemical characterization, density functional theory (DFT), time dependent density functional theory (TD‐DFT), and antibacterial studies of some Co(II), Ni(II), and Cu(II) chelates of (
E
)‐4‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1
H
‐pyrazol‐4‐yl)‐1‐(3‐hydroxynaphthalen‐2‐yl)methylene) thiosemicarbazide Schiff base ligand. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5729] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ayman K. El‐Sawaf
- Department of Chemistry, College of Science and Humanities in Al‐Kharj Prince Sattam Bin Abdulaziz University Al‐Kharj 11942 Saudi Arabia
- Department of Chemistry, Faculty of Science Menoufia University Shebin El‐Kom Egypt
| | | | - Maged A. Azzam
- Department of Chemistry, College of Science and Humanities in Al‐Kharj Prince Sattam Bin Abdulaziz University Al‐Kharj 11942 Saudi Arabia
- Department of Chemistry, Faculty of Science Menoufia University Shebin El‐Kom Egypt
| |
Collapse
|
12
|
Synthesis and crystal structure of some first row transition metals containing a common Schiff base. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Kabeer H, Hanif S, Arsalan A, Asmat S, Younus H, Shakir M. Structural-Dependent N,O-Donor Imine-Appended Cu(II)/Zn(II) Complexes: Synthesis, Spectral, and in Vitro Pharmacological Assessment. ACS OMEGA 2020; 5:1229-1245. [PMID: 31984281 PMCID: PMC6977212 DOI: 10.1021/acsomega.9b03762] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/23/2019] [Indexed: 05/26/2023]
Abstract
Four mononuclear bioefficient imine-based coordination complexes, [(L 1 ) 2 Cu], [(L 1 ) 2 Zn], [(L 2 )Cu(H 2 O)], and [(L 2 )Zn(H 2 O)], were synthesized using ligands [L 1 = 2-(((3-hydroxynaphthalen-2-yl)methylene)amino)-2-methylpropane-1,3-diol and L 2 = 4-(1-((1,3-dihydroxy-2-methylpropan-2-yl)imino)ethyl)benzene-1,3-diol]. The formation of the complexes was ascertained by elemental analysis, Fourier transform infrared, 1H NMR, 13C NMR, electrospray ionization-mass spectroscopy, electron paramagnetic resonance, and thermogravimetric analysis. The comparative binding propensity profiles of the above-synthesized complexes with the DNA/human serum albumin (HSA) were investigated via UV absorption, fluorescence, and Förster resonance energy-transfer studies. On the basis of extended conjugation and planarity, L 1 complexes exhibited superior bioactivity with greater calculated DNA binding constant values, (K b) 2.9444 × 103 [(L 1 ) 2 Cu] and 2.2693 × 103 [(L 1 ) 2 Zn], as compared to L 2 complexes, 1.793 × 103 [(L 2 )Cu(H 2 O)] and 9.801 × 102 [(L 2 )Zn(H 2 O)]. The competitive displacement assay of complexes was performed by means of fluorogenic dyes (EtBr and Hoechst), which corroborates the occurrence of minor groove binding because of the enhanced displacement activity with Hoechst 33258. The minor groove binding of the [(L 1 ) 2 Cu] complex is further confirmed by the molecular docking study. Moreover, the HSA study demonstrated effective static quenching of complexes with substantial K sv values. The [(L 1 ) 2 Cu] complex was found to have pronounced cleavage efficiency as evaluated from sodium dodecyl sulfate polyacrylamide gel electrophoresis electrophoresis. Furthermore, in vitro antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl and superoxide radicals further proclaimed the remarkable bioefficiency of compounds, which make them promising as active chemotherapeutic agents.
Collapse
Affiliation(s)
- Hina Kabeer
- Department
of Chemistry, Interdisciplinary Biotechnology Unit, and Department of
Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Summaiya Hanif
- Department
of Chemistry, Interdisciplinary Biotechnology Unit, and Department of
Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Abdullah Arsalan
- Department
of Chemistry, Interdisciplinary Biotechnology Unit, and Department of
Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Shamoon Asmat
- Department
of Chemistry, Interdisciplinary Biotechnology Unit, and Department of
Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Hina Younus
- Department
of Chemistry, Interdisciplinary Biotechnology Unit, and Department of
Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Shakir
- Department
of Chemistry, Interdisciplinary Biotechnology Unit, and Department of
Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
14
|
Noorussabah N, Choudhary M, Jana A, Das N, Mohan B, Ahmad K, Sangeeta S, Bharti S, Mishra MK, Sharma SR. Synthesis, characterizations, crystal structures, BSA-binding, molecular docking, and cytotoxic activities of nickel(II) and copper(II) coordination complexes with bidentate N,S-chelating ligand. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1602867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- N. Noorussabah
- Department of Chemistry, National Institute of Technology Patna, Patna, India
| | - Mukesh Choudhary
- Department of Chemistry, National Institute of Technology Patna, Patna, India
| | - Achintya Jana
- Department of chemistry, Indian Institute of Technology Patna, Patna, India
| | - Neeladri Das
- Department of chemistry, Indian Institute of Technology Patna, Patna, India
| | - B. Mohan
- Department of Chemistry, National Institute of Technology Patna, Patna, India
| | - K. Ahmad
- Department of Chemistry, National Institute of Technology Patna, Patna, India
| | - S. Sangeeta
- Department of Chemistry, National Institute of Technology Patna, Patna, India
| | - S. Bharti
- Department of Chemistry, National Institute of Technology Patna, Patna, India
| | - M. K. Mishra
- Department of Chemistry, National Institute of Technology Patna, Patna, India
| | - S. R. Sharma
- Department of Chemistry, National Institute of Technology Patna, Patna, India
| |
Collapse
|
15
|
Buldurun K, Turan N, Savcı A, Çolak N. Synthesis, structural characterization and biological activities of metal(II) complexes with Schiff bases derived from 5-bromosalicylaldehyde: Ru(II) complexes transfer hydrogenation. JOURNAL OF SAUDI CHEMICAL SOCIETY 2019. [DOI: 10.1016/j.jscs.2018.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
A dual approach to study the key features of nickel (II) and copper (II) coordination complexes: Synthesis, crystal structure, optical and nonlinear properties. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.09.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
In vitro cytotoxic activity of a novel Schiff base ligand derived from 2-hydroxy-1-naphthaldehyde and its mononuclear metal complexes. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.06.104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
18
|
Mohan B, Jana A, Das N, Bharti S, Choudhary M. Syntheses, crystal structures, antioxidant SOD-like properties and in-vitro antimicrobial studies of Cu(II) and Ni (II) complexes with 2-(( E )-(4-bromo-2-chlorophenylimino) methyl)-6-bromo-4-nitrophenol and ( E )-1-(3, 5-dichloro-2-hydroxybenzylidene)-4, 4-dimethylthiosemicarbazide. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Bharti S, Choudhary M, Mohan B, Rawat S, Sharma S, Ahmad K. Syntheses, spectroscopic characterization, SOD-like properties and antibacterial activities of dimer copper (II) and nickel (II) complexes based on imine ligands containing 2-aminothiophenol moiety: X-ray crystal structure determination of disulfide Schiff bases. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.03.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Busa AV, Lalancette R, Nordlander E, Onani M. New copper(II) salicylaldimine derivatives for mild oxidation of cyclohexane. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1455-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Ermiş E. Synthesis, spectroscopic characterization and DFT calculations of novel Schiff base containing thiophene ring. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.11.089] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Crystal Structure and Cyclic Voltammetric Studies on the Metal Complexes of N-(Dimethylcarbamothioyl)-4-fluorobenzamide. J CHEM-NY 2018. [DOI: 10.1155/2018/6108242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We synthesized N-(dimethylcarbamothioyl)-4-fluorobenzamide compound and its copper(II) and nickel(II) complexes. The structures of compounds have been characterized by elemental analysis and spectral data (IR, 1H NMR). Furthermore, crystal and molecular structure of the synthesized complexes have been identified by using single crystal X-ray diffraction data. In the complexes formation the metal atom was coordinated via two sulfur atoms and two oxygen atoms. The single crystal structure of copper(II) and nickel(II) complex exhibits slightly distorted square planar geometry. The oxygen atoms are in a cis configuration. It appeared that the lengths of the thiocarbonyl and carbonyl bonds are longer than the average for C=S and C=O; meanwhile the C‐N bonds in the complex ring appeared to be shorter than the average for C‐N single bonds. These data show that C-O, C-S, and C-N bond lengths of the complexes suggest considerable electronic delocalization in the chelate ring. All bond lengths and angles obtained as a result of the analyses are found to be within experimental error limits. The obtained crystal analysis data shows that the structure of complex compounds is compatible with similar compounds in literature. Electrochemical behavior of complexes has been investigated by cyclic voltammetry technique in aprotic media. From the cyclic voltammetric investigation, both of the complexes have demonstrated electroactive properties.
Collapse
|
23
|
Barwiołek M, Babinska M, Kozakiewicz A, Wojtczak A, Kaczmarek-Kedziera A, Szłyk E. New fluorescent [Ag(I)(Schiff base)] complexes derived from 9-anthracenecarboxaldehyde and their application in thin layers deposition. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Synthesis of palladium(II) complex with NNS donor Schiff base ligand via C S bond cleavage: X-ray structure, electrochemistry and DFT computation. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.04.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Metal Complexes of a Novel Schiff Base Based on Penicillin: Characterization, Molecular Modeling, and Antibacterial Activity Study. Bioinorg Chem Appl 2017; 2017:6927675. [PMID: 28684958 PMCID: PMC5480249 DOI: 10.1155/2017/6927675] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/04/2017] [Accepted: 04/12/2017] [Indexed: 11/17/2022] Open
Abstract
A novel Schiff base ligand of type HL was prepared by the condensation of amoxicillin trihydrate and nicotinaldehyde. The metal complexes of Co+2, Ni+2, Cu+2, and Zn+2 were characterized and investigated by physical and spectral techniques, namely, elemental analysis, melting point, conductivity, 1H NMR, IR, UV-Vis spectra, ESR, SEM, and mass spectrometry measurements. They were further analyzed by thermal technique (TGA/DTA) to gain better insight about the thermal stability and kinetic properties of the complexes. Thermal data revealed high thermal stability and nonspontaneous nature of the decomposition steps. The Coats-Redfern method was applied to extract thermodynamic parameters to explain the kinetic behavior. The molar conductance values were relatively low, showing their nonelectrolytic nature. The powder XRD pattern revealed amorphous nature except copper complex (1c) that crystallized in the triclinic crystal system. The EPR study strongly recommends the tetrahedral geometry of 1c. The structure optimization by MM force field calculation through ArgusLab 4.0.1 software program supports the concerned geometry of the complexes. The in vitro antibacterial activity of all the compounds, at their two different concentrations, was screened against four bacterial pathogens, namely, E. coli, P. vulgaris, K. pneumoniae, and S. aureus, and showed better activity compared to parent drug and control drug.
Collapse
|