1
|
Baral D, Bhattarai A, Chaudhary NK. Aquifer pollution by metal-antibiotic complexes: Origins, transport dynamics, and ecological impacts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117390. [PMID: 39579446 DOI: 10.1016/j.ecoenv.2024.117390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Aquifer pollution by metal-antibiotic complexes is a rising environmental and public health concern owing to their enhanced mobility and persistence in groundwater. The purpose of this review is to examine the origins, transport dynamics, and ecological impacts of complexes formed through interactions between metal ions and antibiotics in agricultural runoff, pharmaceutical effluents, and wastewater discharge. Metal-antibiotic complexes are more resistant to degradation and are more soluble than their components. This complicates the conventional water purification efforts. These complexes disrupt microbial ecosystems, facilitate the spread of antibiotic-resistance genes, and negatively affect aquatic organisms. The entry of pollutants into drinking water sources poses notable health risks, including chronic exposure to contaminants and the emergence of antibiotic-resistant pathogens. This review emphasizes both preventative and remedial strategies to mitigate these impacts. Preventative measures emphasize the regulation of antibiotic and metal use in agriculture and industry and promote green chemistry alternatives. Remediation approaches include advanced treatment technologies such as membrane filtration, oxidation, and bioremediation. Integrated management practices and ongoing monitoring were discussed to address this complex issue. To protect water quality and public health, metal-antibiotic complexes in aquifers require stringent regulatory measures, innovative treatment solutions, and heightened public awareness. This review highlights the importance of coordinated efforts to prevent and remediate the emerging pollution problem.
Collapse
Affiliation(s)
- Dipak Baral
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, (Tribhuvan University), Biratnagar, Nepal
| | - Ajaya Bhattarai
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, (Tribhuvan University), Biratnagar, Nepal
| | - Narendra Kumar Chaudhary
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, (Tribhuvan University), Biratnagar, Nepal.
| |
Collapse
|
2
|
Zhai M, Fu B, Zhai Y, Wang W, Maroney A, Keller AA, Wang H, Chovelon JM. Simultaneous removal of pharmaceuticals and heavy metals from aqueous phase via adsorptive strategy: A critical review. WATER RESEARCH 2023; 236:119924. [PMID: 37030197 DOI: 10.1016/j.watres.2023.119924] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/03/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
The coexistence of pharmaceuticals and heavy metals is regarded as a serious threat to aquatic environments. Adsorbents have been widely applied to the simultaneous removal of pharmaceuticals and metals from aqueous phase. Through a comprehensive review, behaviors that promote, inhibit, or have no effect on simultaneous adsorption of pharmaceuticals and heavy metals were found to depend on the system of contaminants and adsorbents and their environmental conditions, such as: characteristics of adsorbent and pollutant, temperature, pH, inorganic ions, and natural organic matter. Bridging and competition effects are the main reasons for promoting and inhibiting adsorption in coexisting systems, respectively. The promotion is more significant in neutral or alkaline conditions. After simultaneous adsorption, a solvent elution approach was most commonly used for regeneration of saturated adsorbents. To conclude, this work could help to sort out the theoretical knowledge in this field, and may provide new insights into the prevention and control of pharmaceuticals and heavy metals coexisting in wastewater.
Collapse
Affiliation(s)
- Mudi Zhai
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China
| | - Bomin Fu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China; Macao Environmental Research Institute, Macau University of Science and Technology, Macao 999078, China
| | - Yuhui Zhai
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China
| | - Weijie Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China
| | - Amy Maroney
- College of Engineering and Science, Louisiana Tech University, 201 Mayfield Ave. Ruston, LA 71272, United States
| | - Arturo A Keller
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, United States
| | - Hongtao Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, UNEP-TONGJI Institute of Environment for Sustainable Development, Shanghai 200092, China.
| | - Jean-Marc Chovelon
- IRCELYON, CNRS UMR 5256, Université Claude Bernard Lyon 1, 2 Avenue Albert-Einstein, Villeurbanne F-69626, France
| |
Collapse
|
3
|
Pimenov OA, Grazhdan KV, Zavalishin MN, Gamov GA. Geometry and UV-Vis Spectra of Au 3+ Complexes with Hydrazones Derived from Pyridoxal 5'-Phosphate: A DFT Study. Int J Mol Sci 2023; 24:ijms24098412. [PMID: 37176119 PMCID: PMC10179053 DOI: 10.3390/ijms24098412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Gold(III) complexes with different ligands can provide researchers with a measure against pathogenic microorganisms with antibiotic resistance. We reported in our previous paper that the UV-Vis spectra of different protonated species of complexes formed by gold(III) and five hydrazones derived from pyridoxal 5'-phosphate are similar to each other and to the spectra of free protonated hydrazones. The present paper focuses on the reasons of the noted similarity in electron absorption spectra. The geometry of different protonated species of complexes of gold(III) and hydrazones (15 structures in total) was optimized using the density functional theory (DFT). The coordination polyhedron of gold(III) bond critical points were further studied to identify the symmetry of the gold coordination sphere and the type of interactions that hold the complex together. The UV-Vis spectra were calculated using TD DFT methods. The molecular orbitals were analyzed to interpret the calculated spectra.
Collapse
Affiliation(s)
- Oleg A Pimenov
- General Chemical Technology Department, Ivanovo State University of Chemistry and Technology, Sheremetevskii pr. 7, 153000 Ivanovo, Russia
| | - Konstantin V Grazhdan
- General Chemical Technology Department, Ivanovo State University of Chemistry and Technology, Sheremetevskii pr. 7, 153000 Ivanovo, Russia
| | - Maksim N Zavalishin
- General Chemical Technology Department, Ivanovo State University of Chemistry and Technology, Sheremetevskii pr. 7, 153000 Ivanovo, Russia
| | - George A Gamov
- General Chemical Technology Department, Ivanovo State University of Chemistry and Technology, Sheremetevskii pr. 7, 153000 Ivanovo, Russia
| |
Collapse
|
4
|
Siqueira FDS, Siqueira JD, Denardi LB, Moreira KS, Lima Burgo TA, de Lourenço Marques L, Machado AK, Davidson CB, Chaves OA, Anraku de Campos MM, Back DF. Antibacterial, antifungal, and anti-biofilm effects of sulfamethoxazole-complexes against pulmonary infection agents. Microb Pathog 2023; 175:105960. [PMID: 36587926 DOI: 10.1016/j.micpath.2022.105960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
Antibiotic resistance associated with pulmonary infection agents has become a public health problem, being considered one of the main priorities for immediate resolution. Thus, to increase the therapeutic options in the fight against resistant microorganisms, the synthesis of molecules from pre-existing drugs has shown to be a promising alternative. In this sense, the present work reports the synthesis, characterization, and biological evaluation (against fungal and bacterial agents that cause lung infections) of potential metallodrugs based on sulfamethoxazole complexed with AuI, AgI, HgII, CdII, NiII, and CuII. The minimal inhibitory concentration (MIC) value was used to evaluate the antifungal and antibacterial properties of the compounds. In addition, it was also evaluated the antibiofilm capacity in Pseudomonas aeruginosa, through the quantification of its biomass and visualization using atomic force microscopy. For each case, molecular docking calculations were carried out to suggest the possible biological target of the assayed inorganic complexes. Our results indicated that the novel inorganic complexes are better antibacterial and antifungal than the commercial antibiotic sulfamethoxazole, highlighting the AgI-complex, which was able to inhibit the growth of microorganisms that cause lung diseases with concentrations in the 2-8 μg mL-1 range, probably at targeting dihydropteroate synthetase - a key enzyme involved in the folate synthesis. Furthermore, sulfamethoxazole complexes were able to inhibit the formation of bacterial biofilms at significantly lower concentrations than free sulfamethoxazole, probably mainly targeting the active site of LysR-type transcriptional regulator (PqsR). Overall, the present study reports preliminary results that demonstrate the derivatization of sulfamethoxazole with transition metal cations to obtain potential metallodrugs with applications as antimicrobial and antifungal against pulmonary infections, being an alternative for drug-resistant strains.
Collapse
Affiliation(s)
- Fallon Dos Santos Siqueira
- Mycobacteriology Laboratory, Graduate Program in Pharmaceutical Sciences, Department of Clinical and Toxicological Analysis, Federal University of Santa Maria, Roraima Avenue 1000, zip code:, 97105-900, Santa Maria, Brazil
| | - Josiéli Demetrio Siqueira
- Inorganic Materials Laboratory, Graduate Program in Chemistry, Department of Chemistry Federal University of Santa Maria, Roraima Avenue 1000, zip code:, 97105-900, Santa Maria, Brazil
| | - Laura Bedin Denardi
- Mycobacteriology Laboratory, Graduate Program in Pharmaceutical Sciences, Department of Clinical and Toxicological Analysis, Federal University of Santa Maria, Roraima Avenue 1000, zip code:, 97105-900, Santa Maria, Brazil
| | - Kelly Schneider Moreira
- Coulomb Electrostatic and Mechanochemical Laboratory, Graduate Program in Chemistry, Department of Chemistry, Federal University of Santa Maria, Roraima Avenue 1000, zip code:, 97105-900, Santa Maria, Brazil
| | - Thiago Augusto Lima Burgo
- Coulomb Electrostatic and Mechanochemical Laboratory, Graduate Program in Chemistry, Department of Chemistry, Federal University of Santa Maria, Roraima Avenue 1000, zip code:, 97105-900, Santa Maria, Brazil
| | - Lenice de Lourenço Marques
- Inorganic Materials Laboratory, Graduate Program in Chemistry, Department of Chemistry Federal University of Santa Maria, Roraima Avenue 1000, zip code:, 97105-900, Santa Maria, Brazil
| | - Alencar Kolinski Machado
- Laboratory of Genetics and Cell Culture, Graduate Program in Nanosciences, Franciscan University, Andradas' Street, 1614, zip code:, 97010-032, Santa Maria, Brazil
| | - Carolina Bordin Davidson
- Laboratory of Genetics and Cell Culture, Graduate Program in Nanosciences, Franciscan University, Andradas' Street, 1614, zip code:, 97010-032, Santa Maria, Brazil
| | - Otávio Augusto Chaves
- Coimbra Chemistry Center - Institute of Molecular Sciences (CQC-IMS), Faculty of Science and Technology, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal
| | - Marli Matiko Anraku de Campos
- Mycobacteriology Laboratory, Graduate Program in Pharmaceutical Sciences, Department of Clinical and Toxicological Analysis, Federal University of Santa Maria, Roraima Avenue 1000, zip code:, 97105-900, Santa Maria, Brazil.
| | - Davi Fernando Back
- Inorganic Materials Laboratory, Graduate Program in Chemistry, Department of Chemistry Federal University of Santa Maria, Roraima Avenue 1000, zip code:, 97105-900, Santa Maria, Brazil.
| |
Collapse
|
5
|
Abd El-Wahab AHF, Mohamed HM. Synthesis and DFT Study of 7-Bromophenylnaphthopyran Moieties. ASIAN JOURNAL OF CHEMISTRY 2023; 35:1819-1826. [DOI: 10.14233/ajchem.2023.28032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
A one-pot, three-component reaction of 6-bromo-2-naphthol (1), p-chlorobenzaldehyde (2) and
malononitrile or ethyl cyanoacetate (3) in ethanol/piperidine under reflux was performed to afford
4H-naphtho[2,1-b]pyrano-3-carbonitrile (4a) and ethyl 4H-naphtho[2,1-b]pyrano-3-carboxylate (4b)
derivatives, respectively. The structure of these compounds was determined using IR, 1H NMR, 13C
NMR, mass spectroscopy and UV-Vis spectra. The molecular geometry of compounds 4a and 4b was
determined at the B3LYP/631+G(d) level. The geometric optimization was performed on two tautomers
and two conformers. Tautomers were separated by about 7.942 kcal/mol, while rotational conformers
were separated by just 0.511 kcal/mol. The global electrophilicity, hardness, softness and local
condensed Fukui functions were calculated and considered as molecular reactivity descriptors, moreover
the frontier molecular orbitals (HOMO and LUMO) were also calculated.
Collapse
Affiliation(s)
| | - Hany Mostafa Mohamed
- Chemistry Department, Faculty of Science, Jazan University, 2097, Jazan, Saudi Arabia
| |
Collapse
|
6
|
Food-borne melanoidin-based nanozyme mimics natural peroxidase for efficient catalytic disinfection. Colloids Surf B Biointerfaces 2022; 220:112948. [DOI: 10.1016/j.colsurfb.2022.112948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
|
7
|
Cryptic specialized metabolites drive Streptomyces exploration and provide a competitive advantage during growth with other microbes. Proc Natl Acad Sci U S A 2022; 119:e2211052119. [PMID: 36161918 DOI: 10.1073/pnas.2211052119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Streptomyces bacteria have a complex life cycle that is intricately linked with their remarkable metabolic capabilities. Exploration is a recently discovered developmental innovation of these bacteria, that involves the rapid expansion of a structured colony on solid surfaces. Nutrient availability impacts exploration dynamics, and we have found that glycerol can dramatically increase exploration rates and alter the metabolic output of exploring colonies. We show here that glycerol-mediated growth acceleration is accompanied by distinct transcriptional signatures and by the activation of otherwise cryptic metabolites including the orange-pigmented coproporphyrin, the antibiotic chloramphenicol, and the uncommon, alternative siderophore foroxymithine. Exploring cultures are also known to produce the well-characterized desferrioxamine siderophore. Mutational studies of single and double siderophore mutants revealed functional redundancy when strains were cultured on their own; however, loss of the alternative foroxymithine siderophore imposed a more profound fitness penalty than loss of desferrioxamine during coculture with the yeast Saccharomyces cerevisiae. Notably, the two siderophores displayed distinct localization patterns, with desferrioxamine being confined within the colony area, and foroxymithine diffusing well beyond the colony boundary. The relative fitness advantage conferred by the alternative foroxymithine siderophore was abolished when the siderophore piracy capabilities of S. cerevisiae were eliminated (S. cerevisiae encodes a ferrioxamine-specific transporter). Our work suggests that exploring Streptomyces colonies can engage in nutrient-targeted metabolic arms races, deploying alternative siderophores that allow them to successfully outcompete other microbes for the limited bioavailable iron during coculture.
Collapse
|
8
|
Soltani S, Akhbari K. Facile and single-step entrapment of chloramphenicol in ZIF-8 and evaluation of its performance in killing infectious bacteria with high loading content and controlled release of the drug. CrystEngComm 2022. [DOI: 10.1039/d1ce01593a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CLN@ZIF-8 was prepared by trapping chloramphenicol during ZIF-8 synthesis with high DLC and DLE. It showed H2O2-sensitive controlled release with higher drug release under the simulated infectious conditions and short-time antibacterial activity.
Collapse
Affiliation(s)
- Sajjad Soltani
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Kamran Akhbari
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
9
|
Khurana P, Pulicharla R, Kaur Brar S. Antibiotic-metal complexes in wastewaters: fate and treatment trajectory. ENVIRONMENT INTERNATIONAL 2021; 157:106863. [PMID: 34534786 DOI: 10.1016/j.envint.2021.106863] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Unregulated usage, improper disposal, and leakage from pharmaceutical use and manufacturing sites have led to high detection levels of antibiotic residues in wastewater and surface water. The existing water treatment technologies are insufficient for removing trace antibiotics and these residual antibiotics tend to interact with co-existing metal ions and form antibiotic-metal complexes (AMCs) with altered bioactivity profile and physicochemical properties. Typically, antibiotics, including tetracyclines, fluoroquinolones, and sulphonamides, interact with heavy metals such as Fe2+, Co2+, Cu2+, Ni2+, to form AMCs which are more persistent and toxic than parent compounds. Although many studies have reported antibiotics detection, determination, distribution and risks associated with their environmental persistence, very few investigations are published on understanding the chemistry of these complexes in the wastewater and sludge matrix. This review, therefore, summarizes the structural features of both antibiotics and metals that facilitate complexation in wastewater. Further, this work critically appraises the treatment methods employed for antibiotic removal, individually and combined with metals, highlights the knowledge gaps, and delineates future perspectives for their treatment.
Collapse
Affiliation(s)
- Pratishtha Khurana
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Rama Pulicharla
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
10
|
Sharfalddin AA, Hussien MA. Bivalence metal complexes of antithyroid drug carbimazole; synthesis, characterization, computational simulation, and biological studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Kryuchkova N, Mironov I, Afanas'eva V. The effect of ligand modification on the structure and electronic spectra of tetraazamacrocyclic complexes Au(III). J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Sharfalddin AA, Emwas A, Jaremko M, Hussien MA. Transition metal complexes of 6‐mercaptopurine: Characterization, Theoretical calculation, DNA‐Binding, molecular docking, and anticancer activity. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6041] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Abeer A. Sharfalddin
- Department of Chemistry, Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
| | - Abdul‐Hamid Emwas
- Imaging and Characterization Core Lab King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Science and Engineering (BESE) King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia
| | - Mostafa A. Hussien
- Department of Chemistry, Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
- Department of Chemistry, Faculty of Science Port Said University Port Said Egypt
| |
Collapse
|
13
|
Sharfalddin A, Davaasuren B, Emwas AH, Jaremko M, Jaremko Ł, Hussien M. Single crystal, Hirshfeld surface and theoretical analysis of methyl 4-hydroxybenzoate, a common cosmetic, drug and food preservative-Experiment versus theory. PLoS One 2020; 15:e0239200. [PMID: 33021975 PMCID: PMC7537869 DOI: 10.1371/journal.pone.0239200] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/01/2020] [Indexed: 11/18/2022] Open
Abstract
Methyl 4-hydroxybenzoate, commonly known as methyl paraben, is an anti-microbial agent used in cosmetics and personal-care products, and as a food preservative. In this study, the single crystal X-ray structure of methyl 4-hydroxybenzoate was determined at 120 K. The crystal structure comprises three methyl 4-hydroxybenzoate molecules condensed to a 3D framework via extensive intermolecular hydrogen bonding. Hirshfeld surface analysis was performed to determine the intermolecular interactions and the crystal packing. In addition, computational calculations of methyl 4-hydroxybenzoate were obtained using the Gaussian 09W program, and by quantum mechanical methods, Hartree Fock (HF) and Density Functional Theory (DFT) with the 6–311G(d,p) basis set. The experimental FT-IR spectrum strongly correlated with the computed vibrational spectra (R2 = 0.995). The energies of the frontier orbitals, HOMO and LUMO, were used to calculate the chemical quantum parameters. The lower band gap value (ΔE) indicates the molecular determinants underlying the known pharmaceutical activity of the molecule.
Collapse
Affiliation(s)
- Abeer Sharfalddin
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bambar Davaasuren
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Łukasz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- * E-mail: (MH); (LJ)
| | - Mostafa Hussien
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Chemistry, Faculty of Science, Port Said University, Port Said, Egypt
- * E-mail: (MH); (LJ)
| |
Collapse
|
14
|
|
15
|
Lee N, Kim W, Chung J, Lee Y, Cho S, Jang KS, Kim SC, Palsson B, Cho BK. Iron competition triggers antibiotic biosynthesis in Streptomyces coelicolor during coculture with Myxococcus xanthus. ISME JOURNAL 2020; 14:1111-1124. [PMID: 31992858 PMCID: PMC7174319 DOI: 10.1038/s41396-020-0594-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/09/2020] [Accepted: 01/17/2020] [Indexed: 01/09/2023]
Abstract
Microbial coculture to mimic the ecological habitat has been suggested as an approach to elucidate the effect of microbial interaction on secondary metabolite biosynthesis of Streptomyces. However, because of chemical complexity during coculture, underlying mechanisms are largely unknown. Here, we found that iron competition triggered antibiotic biosynthesis in Streptomyces coelicolor during coculture with Myxococcus xanthus. During coculture, M. xanthus enhanced the production of a siderophore, myxochelin, leading M. xanthus to dominate iron scavenging and S. coelicolor to experience iron-restricted conditions. This chemical competition, but not physical contact, activated the actinorhodin biosynthetic gene cluster and the branched-chain amino acid degradation pathway which imply the potential to produce precursors, along with activation of a novel actinorhodin export system. Furthermore, we found that iron restriction increased the expression of 21 secondary metabolite biosynthetic gene clusters (smBGCs) in other Streptomyces species. These findings suggested that the availability for key ions stimulates specific smBGCs, which had the potential to enhance secondary metabolite biosynthesis in Streptomyces.
Collapse
Affiliation(s)
- Namil Lee
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Woori Kim
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jinkyoo Chung
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yongjae Lee
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Kyoung-Soon Jang
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea.,Division of Bio-Analytical Science, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.,Intelligent Synthetic Biology Center, Daejeon, 34141, Republic of Korea
| | - Bernhard Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.,Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea. .,Intelligent Synthetic Biology Center, Daejeon, 34141, Republic of Korea. .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark.
| |
Collapse
|
16
|
Mullis MM, Rambo IM, Baker BJ, Reese BK. Diversity, Ecology, and Prevalence of Antimicrobials in Nature. Front Microbiol 2019; 10:2518. [PMID: 31803148 PMCID: PMC6869823 DOI: 10.3389/fmicb.2019.02518] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022] Open
Abstract
Microorganisms possess a variety of survival mechanisms, including the production of antimicrobials that function to kill and/or inhibit the growth of competing microorganisms. Studies of antimicrobial production have largely been driven by the medical community in response to the rise in antibiotic-resistant microorganisms and have involved isolated pure cultures under artificial laboratory conditions neglecting the important ecological roles of these compounds. The search for new natural products has extended to biofilms, soil, oceans, coral reefs, and shallow coastal sediments; however, the marine deep subsurface biosphere may be an untapped repository for novel antimicrobial discovery. Uniquely, prokaryotic survival in energy-limited extreme environments force microbial populations to either adapt their metabolism to outcompete or produce novel antimicrobials that inhibit competition. For example, subsurface sediments could yield novel antimicrobial genes, while at the same time answering important ecological questions about the microbial community.
Collapse
Affiliation(s)
- Megan M. Mullis
- Department of Life Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX, United States
| | - Ian M. Rambo
- Department of Marine Science, University of Texas Marine Science Institute, Port Aransas, TX, United States
| | - Brett J. Baker
- Department of Marine Science, University of Texas Marine Science Institute, Port Aransas, TX, United States
| | - Brandi Kiel Reese
- Department of Life Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX, United States
| |
Collapse
|
17
|
Siqueira FDS, Rossi GG, Machado AK, Alves CFS, Flores VC, Somavilla VD, Agertt VA, Siqueira JD, Dias RDS, Copetti PM, Sagrillo MR, Back DF, de Campos MMA. Sulfamethoxazole derivatives complexed with metals: a new alternative against biofilms of rapidly growing mycobacteria. BIOFOULING 2018; 34:893-911. [PMID: 30418037 DOI: 10.1080/08927014.2018.1514497] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Biofilms are considered important sources of infections on biomedical surfaces, and most infections involving biofilm formation are associated with medical device implants. Therefore, there is an urgent need for new antimicrobial compounds that can combat microbial resistance associated with biofilm formation. In this context, this work aimed to evaluate the antibiofilm action of sulfamethoxazole complexed with Au, Cd, Cu, Ni and Hg on rapidly growing mycobacteria (RGM), as well as to evaluate their safety through cytotoxic assays. The results demonstrate potentiation of the novel compounds in antibiofilm activity, mainly in the complex with Au, which was able to completely inhibit biofilm formation and had the capacity to destroy the biofilm at all the concentrations tested. All cytotoxic data suggest that the majority of sulfamethoxazole metallic derivatives are antimicrobial alternatives, as well as safe molecules, which could be used as potential therapeutic agents for bacterial and biofilm elimination.
Collapse
Affiliation(s)
- Fallon Dos Santos Siqueira
- a Graduate Program in Pharmaceutical Sciences , Universidade Federal de Santa Maria , Santa Maria , Brazil
| | - Grazielle Guidolin Rossi
- a Graduate Program in Pharmaceutical Sciences , Universidade Federal de Santa Maria , Santa Maria , Brazil
| | | | | | - Vanessa Costa Flores
- a Graduate Program in Pharmaceutical Sciences , Universidade Federal de Santa Maria , Santa Maria , Brazil
| | - Viviane Drescher Somavilla
- a Graduate Program in Pharmaceutical Sciences , Universidade Federal de Santa Maria , Santa Maria , Brazil
| | - Vanessa Albertina Agertt
- a Graduate Program in Pharmaceutical Sciences , Universidade Federal de Santa Maria , Santa Maria , Brazil
| | | | - Renne de Sousa Dias
- c Graduate Program in Chemistry , Universidade Federal de Santa Maria , Santa Maria , Brazil
| | | | | | - Davi Fernando Back
- c Graduate Program in Chemistry , Universidade Federal de Santa Maria , Santa Maria , Brazil
| | | |
Collapse
|
18
|
Fekri R, Salehi M, Asadi A, Kubicki M. Spectroscopic studies, structural characterization and electrochemical studies of two cobalt (III) complexes with tridentate hydrazone Schiff base ligands: Evaluation of antibacterial activities, DNA‐binding, BSA interaction and molecular docking. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.4019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Roghayeh Fekri
- Department of Chemistry, College of ScienceSemnan University Semnan Iran
| | - Mehdi Salehi
- Department of Chemistry, College of ScienceSemnan University Semnan Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of ScienceUniversity of Mohaghegh Ardabili Ardabil Iran
| | - Maciej Kubicki
- Faculty of ChemistryAdam Mickiewicz University Umultowska 89b 61‐614 Poznan Poland
| |
Collapse
|
19
|
Al-Khodir FAI, Refat MS. Physicochemical, spectroscopic, and anti-tumor studies of cefradine complexes with Ca(II), Zn(II), Fe(III), Au(III), and Pd(II) ions. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s1070363217050322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Rusu A, Hancu G, Cristina Munteanu A, Uivarosi V. Development perspectives of silver complexes with antibacterial quinolones: Successful or not? J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.02.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|