1
|
Copper(II) coordination polymer based on l-arginine as a supramolecular hybrid inorganic–organic material: synthesis, structural, spectroscopic and magnetic properties. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-04957-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
AbstractWe report the synthesis and structural, spectroscopic and magnetic properties of new 1D coordination polymeric complex {[Cu(μ-l-Arg)2]SO4⋅1.5H2O}n (1) that contains asymmetric μ−O,O’ carboxylic bridge linking distorted square-pyramidal [Cu(μ-l-Arg)2]2+ coordination units. In 1D, the syn−anti−μ2−η1:η1zigzag polymer conformation, the adjacent Cu(II) ions are distanced by 5.707 Å, and the subsequent Cu∙∙∙Cu proximity in 1D-coordination chain equals 6.978 Å. Detailed interpretation of IR and Raman spectra of l-arginine and 1 was performed. The principal components of the g tensor determined from EPR experiments (gx = 2.059, gy = 2.075, gz = 2.228) indicate nearly axial symmetry of Cu(II) coordination sphere and correspond to the unpaired electron occupying the dx2–y2 orbital. The single broad band at 16,200 cm–1, characteristic of d−d transition, is assigned to the dominant dublet-dublet 2B1g(dx2–y2)→ 2Eg(dyz≈dxz) transition. Magnetic susceptibility measurements have revealed ferromagnetic coupling between the Cu(II) ions within the 1D-coordination chain, while the intermolecular coupling is antiferromagnetic.
Graphical Abstract
Collapse
|
2
|
Gregoliński J, Ślepokura K, Kłak J, Witwicki M. Multinuclear Ni(II) and Cu(II) complexes of a meso 6 + 6 macrocyclic amine derived from trans-1,2-diaminocyclopentane and 2,6-diformylpyridine. Dalton Trans 2022; 51:9735-9747. [PMID: 35703400 DOI: 10.1039/d2dt01329k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four hexanuclear chloride and sulphate Ni(II) and Cu(II) complexes 1, 2, 4 and 5 and one tetranuclear nitrate Cu(II) complex 3 have been synthesised from appropriate metal salts and 6 + 6 octadecaaza macrocyclic ligands. All obtained coordination compounds have been characterised by elemental analysis, spectroscopic methods (ESI MS, NMR and EPR), magnetic susceptibility measurements and X-ray crystallography. Their X-ray crystal structures reveal different coordination modes of metal cations involved in the obtained centro-symmetrical coordination compounds. The conformational folding of the macrocyclic ligand adopted in the respective complexes depends on the number of metal cations bound within the macrocycle but not on their type. The cavities of these multinuclear complexes might be occupied by solvent molecules and counter anions bound by hydrogen bonds or might be empty in the case where the macrocyclic ring of the ligand is squeezed in the middle. All obtained Ni(II) and Cu(II) coordination compounds are paramagnetic. This has been proved by their 1H NMR and EPR spectra and magnetic measurements. Direct current (DC) variable-temperature magnetic susceptibility measurements on the polycrystalline samples of 1-5 were carried out in the temperature range of 1.8-300 K. The magnetic behaviour of 1 and 2 is dominated by the magnetic anisotropy of the nickel(II) ion masking the magnetic interactions between magnetic centres. The magnetic data of 3-5 reveal small antiferromagnetic interactions within the Cu4 and Cu6 units. EPR experiments for 3-5 show, at 9.6 and 34 GHz frequencies, that the predominant contribution to the orbitals occupied by the unpaired electrons in the ground state originates from dx2-y2.
Collapse
Affiliation(s)
- Janusz Gregoliński
- Faculty of Chemistry University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Katarzyna Ślepokura
- Faculty of Chemistry University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Julia Kłak
- Faculty of Chemistry University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Maciej Witwicki
- Faculty of Chemistry University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| |
Collapse
|
3
|
Impert O, Kozakiewicz-Piekarz A, Katafias A, Witwicki M, Komarnicka UK, Kurpiewska K, van Eldik R. Mixed-valence outer-sphere RuII/RuIII ion-pair complexes. Synthesis, experimental, and theoretical studies. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
EPR Spectroscopy of Cu(II) Complexes: Prediction of g-Tensors Using Double-Hybrid Density Functional Theory. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8040036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Computational electron paramagnetic resonance (EPR) spectroscopy is an important field of applied quantum chemistry that contributes greatly to connecting spectroscopic observations with the fundamental description of electronic structure for open-shell molecules. However, not all EPR parameters can be predicted accurately and reliably for all chemical systems. Among transition metal ions, Cu(II) centers in inorganic chemistry and biology, and their associated EPR properties such as hyperfine coupling and g-tensors, pose exceptional difficulties for all levels of quantum chemistry. In the present work, we approach the problem of Cu(II) g-tensor calculations using double-hybrid density functional theory (DHDFT). Using a reference set of 18 structurally and spectroscopically characterized Cu(II) complexes, we evaluate a wide range of modern double-hybrid density functionals (DHDFs) that have not been applied previously to this problem. Our results suggest that the current generation of DHDFs consistently and systematically outperform other computational approaches. The B2GP-PLYP and PBE0-DH functionals are singled out as the best DHDFs on average for the prediction of Cu(II) g-tensors. The performance of the different functionals is discussed and suggestions are made for practical applications and future methodological developments.
Collapse
|
5
|
Szyszka K, Targońska S, Lewińska A, Watras A, Wiglusz RJ. Quenching of the Eu 3+ Luminescence by Cu 2+ Ions in the Nanosized Hydroxyapatite Designed for Future Bio-Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:464. [PMID: 33670306 PMCID: PMC7918106 DOI: 10.3390/nano11020464] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022]
Abstract
The hydroxyapatite nanopowders of the Eu3+-doped, Cu2+-doped, and Eu3+/Cu2+-co-doped Ca10(PO4)6(OH)2 were prepared by a microwave-assisted hydrothermal method. The structural and morphological properties of the products were investigated by X-ray powder diffraction (XRD), transmission electron microscopy techniques (TEM), and infrared spectroscopy (FT-IR). The average crystal size and the unit cell parameters were calculated by a Rietveld refinement tool. The absorption, emission excitation, emission, and luminescence decay time were recorded and studied in detail. The 5D0 → 7F2 transition is the most intense transition. The Eu3+ ions occupied two independent crystallographic sites in these materials exhibited in emission spectra: one Ca(1) site with C3 symmetry and one Ca(2) sites with Cs symmetry. The Eu3+ emission is strongly quenched by Cu2+ ions, and the luminescence decay time is much shorter in the case of Eu3+/Cu2+ co-doped materials than in Eu3+-doped materials. The luminescence quenching mechanism as well as the schematic energy level diagram showing the Eu3+ emission quenching mechanism using Cu2+ ions are proposed. The electron paramagnetic resonance (EPR) technique revealed the existence of at least two different coordination environments for copper(II) ion.
Collapse
Affiliation(s)
- Katarzyna Szyszka
- Institute of Low Temperature and Structure Research, PAS, Okolna 2, 50-422 Wroclaw, Poland; (S.T.); (A.W.)
| | - Sara Targońska
- Institute of Low Temperature and Structure Research, PAS, Okolna 2, 50-422 Wroclaw, Poland; (S.T.); (A.W.)
| | - Agnieszka Lewińska
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland;
| | - Adam Watras
- Institute of Low Temperature and Structure Research, PAS, Okolna 2, 50-422 Wroclaw, Poland; (S.T.); (A.W.)
| | - Rafal J. Wiglusz
- Institute of Low Temperature and Structure Research, PAS, Okolna 2, 50-422 Wroclaw, Poland; (S.T.); (A.W.)
- International Institute of Translational Medicine, Jesionowa 11 St., 55–124 Malin, Poland
| |
Collapse
|
6
|
Buvailo HI, Makhankova VG, Kokozay VN, Omelchenko IV, Shishkina SV, Bieńko A, Pavliuk MV, Shylin SI. Hybrid compound based on diethylenetriaminecopper( ii) cations and scarce V-monosubstituted β-octamolybdate as water oxidation catalyst. RSC Adv 2021; 11:32119-32125. [PMID: 35495520 PMCID: PMC9041742 DOI: 10.1039/d1ra05030c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/08/2021] [Indexed: 11/21/2022] Open
Abstract
Herein, we report on a new hybrid compound (NH4){[Cu(dien)(H2O)2]2[β-VMo7O26]}·1.5H2O (1), where dien = diethylenetriamine, containing an extremely rare mixed-metal pseudo-octamolybdate cluster. An ex situ EPR spectroscopy provided insights into the formation of paramagnetic species in reaction mixture and in solution of 1. The magneto-structural correlations revealed weak antiferromagnetic exchange interactions between the [Cu(dien)]2+ cations transmitted by intermolecular pathways. The cyclic voltammetry showed the one-electron process associated with the Cu3+/Cu2+ oxidation followed by the multi-electron catalytic wave due to water oxidation with a faradaic yield of 86%. The title compound was thus employed in homogeneous water oxidation catalysis using tris(bipyridine)ruthenium photosensitizer. At pH 8.0, efficiency of the catalytic system attained 0.19 turnovers per second supported by the relatively mild water oxidation overpotential of 0.54 V. A new hybrid compound (NH4){[Cu(dien)(H2O)2]2[β-VMo7O26]}·1.5H2O was employed in homogeneous water oxidation catalysis. At pH 8.0, its efficiency attains 0.19 turnovers per second, supported by the relatively mild water oxidation overpotential of 0.54 V.![]()
Collapse
Affiliation(s)
- Halyna I. Buvailo
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64/13, 01601 Kyiv, Ukraine
| | - Valeriya G. Makhankova
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Hlushkova Avenue, 4g, 03022, Kyiv, Ukraine
| | - Vladimir N. Kokozay
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64/13, 01601 Kyiv, Ukraine
| | - Iryna V. Omelchenko
- Institute for Single Crystals, National Academy of Sciences of Ukraine, Nauky Ave 60, 61001 Kharkiv, Ukraine
| | - Svitlana V. Shishkina
- Institute for Single Crystals, National Academy of Sciences of Ukraine, Nauky Ave 60, 61001 Kharkiv, Ukraine
| | - Alina Bieńko
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Mariia V. Pavliuk
- Department of Chemistry – Ångström Laboratory, Uppsala University, P. O. Box 523, 75120 Uppsala, Sweden
| | - Sergii I. Shylin
- Department of Chemistry – Ångström Laboratory, Uppsala University, P. O. Box 523, 75120 Uppsala, Sweden
| |
Collapse
|
7
|
Buvailo HI, Pavliuk MV, Makhankova VG, Kokozay VN, Bon V, Mijangos E, Shylin SI, Jezierska J. Facile one-pot synthesis of hybrid compounds based on decavanadate showing water oxidation activity. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Tüzün B. Investi̇gati̇on of pyrazoly derivatives schi̇ff base li̇gands and thei̇r metal complexes used as anti-cancer drug. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117663. [PMID: 31655391 DOI: 10.1016/j.saa.2019.117663] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
In this study, six pyrazole derivatives containing hetero atoms have been analyzed using theoretical calculation method. The ligands were tested by HF, B3LYP and M06-2X methods using 3-21G, 6-31G, 6-31G(d, p), and sdd basis sets. The results showed that Ligand 5 has a HOMO value of -7.470 at HF / 6-31g (d.p) level. These ligands were investigated in IR, NMR, and UV-VIS spectrum, then experimental values were compared with IR and NMR spectrum data. The solvents, whose effects were investigated in UV-VIS spectrum, were gas phase (ε = 1), toluene (ε = 2.3741), chloroform (ε = 4.7113), methanol (ε = 32.613), water (ε = 78.3553), and n-methylformamide-mixture (ε = 181.56). Metal complexes of tested ligands were produced with copper, nickel, and zinc. Lastly, the interactions between these six pyrazole derivatives and three proteins, namely 3dju, 2IJN, and 1JNX, were also examined. Biological and anti-cancer properties of six pyrazole derivatives were analyzed by DockingServer. In docking calculations, Estimated Free Energy of Binding value of Ligand 5 was found to be -4.87, -4.82, -1.73 respectively, which indicated the highest biological activity.
Collapse
Affiliation(s)
- Burak Tüzün
- Sivas Cumhuriyet University, Faculty of Science, Chemistry Department, SİVAS, Turkey.
| |
Collapse
|
9
|
Tüzün B, Sayin K. Investigations over optical properties of boron complexes of benzothiazolines. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 208:48-56. [PMID: 30292150 DOI: 10.1016/j.saa.2018.09.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/16/2018] [Accepted: 09/30/2018] [Indexed: 06/08/2023]
Abstract
Quantum chemical analyses over benzothiazolines and their boron complexes are performed. In calculations, M06-2X method was selected with 6-31 + G(d,p) level. Structural and spectral (IR and NMR) characterization of studied compounds are done in detail. Quantum chemical descriptors (QCDs) are calculated to investigate the optical properties. Furthermore, molecular electrostatic potential (MEP) maps of the studied compounds are calculated by using electro-static potential (ESP) charges. According to QCDs and MEP maps, NLO properties of boron complexes are more than those of benzothiazolines and (Z)-2-((pyridin-2-ylmethylene)amino) benzenethiolatebutane-1,3-bis(olate)boron(III), complex (7), has the most NLO activity in studied compounds. Finally, solvent effect on NLO activity are investigated by calculating UV-vis spectrum in gas phase (ε = 1), toluene (ε = 2.3741), chloroform (ε = 4.7113), methanol (ε = 32.613), water (ε = 78.3553) and n-methylformamide-mixture (ε = 181.56). According to these spectra results, NLO activity mainly increases with increasing of polarizability of media.
Collapse
Affiliation(s)
- Burak Tüzün
- Sivas Cumhuriyet University, Science Faculty, Chemistry Department, 58140 Sivas, Turkey
| | - Koray Sayin
- Sivas Cumhuriyet University, Science Faculty, Chemistry Department, 58140 Sivas, Turkey.
| |
Collapse
|
10
|
Buvailo HI, Makhankova VG, Kokozay VN, Omelchenko IV, Shishkina SV, Jezierska J, Pavliuk MV, Shylin SI. Copper-containing hybrid compounds based on extremely rare [V2Mo6O26]6– POM as water oxidation catalysts. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00040b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hybrid Cu/V/Mo compounds with rare [α-V2Mo6O26]6– and oxides prepared by their thermal degradation were used as catalysts for water oxidation.
Collapse
Affiliation(s)
- Halyna I. Buvailo
- Department of Chemistry
- Taras Shevchenko National University of Kyiv
- 01601 Kyiv
- Ukraine
| | | | - Vladimir N. Kokozay
- Department of Chemistry
- Taras Shevchenko National University of Kyiv
- 01601 Kyiv
- Ukraine
| | - Irina V. Omelchenko
- Institute for Single Crystals
- National Academy of Sciences of Ukraine
- 61001 Kharkiv
- Ukraine
| | - Svitlana V. Shishkina
- Institute for Single Crystals
- National Academy of Sciences of Ukraine
- 61001 Kharkiv
- Ukraine
| | - Julia Jezierska
- Faculty of Chemistry
- University of Wroclaw
- 50-383 Wroclaw
- Poland
| | - Mariia V. Pavliuk
- Department of Chemistry – Ångström Laboratory
- Uppsala University
- 75120 Uppsala
- Sweden
| | - Sergii I. Shylin
- Department of Chemistry – Ångström Laboratory
- Uppsala University
- 75120 Uppsala
- Sweden
| |
Collapse
|
11
|
Maślewski P, Wyrzykowski D, Witwicki M, Dołęga A. Histaminol and Its Complexes with Copper(II) - Studies in Solid State and Solution. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201701411] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Piotr Maślewski
- Department of Inorganic Chemistry; Faculty of Chemistry; Gdansk University of Technology; 11/12 Narutowicza Str. 80-233 Gdańsk Poland
| | - Dariusz Wyrzykowski
- Department of General and Inorganic Chemistry; Faculty of Chemistry; University of Gdańsk; 63 Wita Stwosza Str. 80-308 Gdańsk Poland
| | - Maciej Witwicki
- Faculty of Chemistry; Wroclaw University; 14 F. Joliot-Curie Str. 50-283 Wroclaw Poland
| | - Anna Dołęga
- Department of Inorganic Chemistry; Faculty of Chemistry; Gdansk University of Technology; 11/12 Narutowicza Str. 80-233 Gdańsk Poland
| |
Collapse
|
12
|
Hybrid inorganic-organic complexes: Synthesis, spectroscopic characterization, single crystal X-ray structure determination and antimicrobial activities of three copper(II)-diethylenetriamine-p-nitrobenzoate complexes. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.09.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Sharma RP, Saini A, Kumar S, Kumar J, Sathishkumar R, Venugopalan P. Non-covalent interactions in 2-methylimidazolium copper(II) complex (MeImH)2[Cu(pfbz)4]: Synthesis, characterization, single crystal X-ray structure and packing analysis. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.08.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|