1
|
Neaz S, Alam MM, Imran AB. Advancements in cyclodextrin-based controlled drug delivery: Insights into pharmacokinetic and pharmacodynamic profiles. Heliyon 2024; 10:e39917. [PMID: 39553547 PMCID: PMC11567044 DOI: 10.1016/j.heliyon.2024.e39917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024] Open
Abstract
This article discusses and summarizes some fascinating outcomes and applications of cyclodextrins (CDs) and their derivatives in drug delivery. These applications include the administration of protein, peptide medications, and gene delivery. Several innovative drug delivery systems, including NPs, microspheres, microcapsules, and liposomes, are designed with the help of CD, which is highlighted in this article. The use of these compounds as excipients in medicine formulation is reviewed, in addition to their well-known effects on drug solubility and dissolution, as well as their bioavailability, safety, and stability. Furthermore, the article focuses on many factors that influence the development of inclusion complexes, as having this information is necessary to manage these diverse materials effectively. An overview of the commercial availability, regulatory status, and patent status of CDs for pharmaceutical formulation is also presented. Due to the fact that CDs can discover new uses in drug delivery consistently, it is predicted that they will solve a wide range of issues related to the distribution of a variety of unique medications through various delivery channels.
Collapse
Affiliation(s)
- Sharif Neaz
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Md Mahbub Alam
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Abu Bin Imran
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| |
Collapse
|
2
|
Elmoghayer ME, Saleh NM, Abu Hashim II. Enhanced oral delivery of hesperidin-loaded sulfobutylether-β-cyclodextrin/chitosan nanoparticles for augmenting its hypoglycemic activity: in vitro-in vivo assessment study. Drug Deliv Transl Res 2024; 14:895-917. [PMID: 37843733 DOI: 10.1007/s13346-023-01440-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 10/17/2023]
Abstract
Hesperidin (Hsd), a bioactive phytomedicine, experienced an antidiabetic activity versus both Type 1 and Type 2 Diabetes mellitus. However, its intrinsic poor solubility and bioavailability is a key challenging obstacle reflecting its oral delivery. From such perspective, the purpose of the current study was to prepare and evaluate Hsd-loaded sulfobutylether-β-cyclodextrin/chitosan nanoparticles (Hsd/CD/CS NPs) for improving the hypoglycemic activity of the orally administered Hsd. Hsd was first complexed with sulfobutylether-β-cyclodextrin (SBE-β-CD) and the complex (CX) was found to be formed with percent complexation efficiency and percent process efficiency of 50.53 ± 1.46 and 84.52 ± 3.16%, respectively. Also, solid state characterization of the complex ensured the inclusion of Hsd inside the cavity of SBE-β-CD. Then, Hsd/CD/CS NPs were prepared using the ionic gelation technique. The prepared NPs were fully characterized to select the most promising one (F1) with a homogenous particle size of 455.7 ± 9.04 nm, a positive zeta potential of + 32.28 ± 1.12 mV, and an entrapment efficiency of 77.46 ± 0.39%. The optimal formula (F1) was subjected to further investigation of in vitro release, ex vivo intestinal permeation, stability, cytotoxicity, and in vivo hypoglycemic activity. The results of the release and permeation studies of F1 manifested a modulated pattern between Hsd and CX. The preferential stability of F1 was observed at 4 ± 1 °C. Also, the biocompatibility of F1 with oral epithelial cell line (OEC) was retained up to a concentration of 100 µg/mL. After oral administration of F1, a noteworthy synergistic hypoglycemic effect was recorded with decreased blood glucose level until the end of the experiment. In conclusion, Hsd/CD/CS NPs could be regarded as a hopeful oral delivery system of Hsd with enhanced antidiabetic activity.
Collapse
Affiliation(s)
- Mona Ebrahim Elmoghayer
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Noha Mohamed Saleh
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | | |
Collapse
|
3
|
Saha P, Rafe MR. Cyclodextrin: A prospective nanocarrier for the delivery of antibacterial agents against bacteria that are resistant to antibiotics. Heliyon 2023; 9:e19287. [PMID: 37662769 PMCID: PMC10472013 DOI: 10.1016/j.heliyon.2023.e19287] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Supramolecular chemistry introduces us to the macrocyclic host cyclodextrin, which has a hydrophobic cavity. The hydrophobic cavity has a higher affinity for hydrophobic guest molecules and forms host-guest complexation with non-covalent interaction. Three significant cyclodextrin kinds are α-cyclodextrin, β-cyclodextrin, and γ-cyclodextrin. The most often utilized is β-cyclodextrin (β-CD). An effective weapon against bacteria that are resistant to antibiotics is cyclodextrin. Several different kinds of cyclodextrin nanocarriers (β-CD, HP-β-CD, Meth-β-CD, cationic CD, sugar-grafted CD) are utilized to enhance the solubility, stability, dissolution, absorption, bioavailability, and permeability of the antibiotics. Cyclodextrin also improves the effectiveness of antibiotics, antimicrobial peptides, metallic nanoparticles, and photodynamic therapy (PDT). Again, cyclodextrin nanocarriers offer slow-release properties for sustained-release formulations where steady-state plasma antibiotic concentration is needed for an extended time. A novel strategy to combat bacterial resistance is a stimulus (pH, ROS)-responsive antibiotics released from cyclodextrin carrier. Once again, cyclodextrin traps autoinducer (AI), a crucial part of bacterial quorum sensing, and reduces virulence factors, including biofilm formation. Cyclodextrin helps to minimize MIC in particular bacterial strains, keep antibiotic concentrations above MIC in the infection site and minimize the possibility of antibiotic and biofilm resistance. Sessile bacteria trapped in biofilms are more resistant to antibiotic therapy than bacteria in a planktonic form. Cyclodextrin also involves delivering antibiotics to biofilm and resistant bacteria to combat bacterial resistance.
Collapse
Affiliation(s)
- Pranoy Saha
- Department of Pharmacy, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Rajdoula Rafe
- Department of Pharmacy, Jagannath University, Dhaka, 1100, Bangladesh
| |
Collapse
|
4
|
Liang B, Hao J, Zhu N, Han L, Song L, Hong H. Formulation of nitrendipine/hydroxypropyl-β-cyclodextrin inclusion complex as a drug delivery system to enhance the solubility and bioavailability by supercritical fluid technology. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Gasbarri C, Angelini G. Combined calorimetric, spectroscopic and microscopic investigation on the inclusion complex from cyclocurcumin and sulfobutylether-β-cyclodextrin in aqueous solution and Kinetics of thermal cis-trans isomerization. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
6
|
Pardeshi CV, Kothawade RV, Markad AR, Pardeshi SR, Kulkarni AD, Chaudhari PJ, Longhi MR, Dhas N, Naik JB, Surana SJ, Garcia MC. Sulfobutylether-β-cyclodextrin: A functional biopolymer for drug delivery applications. Carbohydr Polym 2022; 301:120347. [DOI: 10.1016/j.carbpol.2022.120347] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
|
7
|
Bayat F, Homami SS, Monzavi A, Olyai MRTB. Synthesis and Characterization of Ataluren-Cyclodextrins Complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Thakur A, Jain S, Pant A, Sharma A, Kumar R, Singla N, Suttee A, Kumar S, Barnwal RP, Katare OP, Singh G. Cyclodextrin Derivative Enhances the Ophthalmic Delivery of Poorly Soluble Azithromycin. ACS OMEGA 2022; 7:23050-23060. [PMID: 35847282 PMCID: PMC9280958 DOI: 10.1021/acsomega.1c07218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Azithromycin (AZM), a macrolide antibiotic used for the treatment of chlamydial conjunctivitis, is less effective for the treatment of this disease due to its poor bioavailability (38%). Various alternatives have been developed for improving the physicochemical properties (i.e., solubility) of the AZM without much success. To overcome the problems associated with AZM, an inclusion complex employing a modified cyclodextrin, i.e., sulfobutylether-β-cyclodextrin (SBE-β-CD), was prepared and characterized by phase solubility studies and PXRD techniques. The results portrayed the formation of an inclusion complex of AZM with SBE-β-CD in 1:2 molar stoichiometric ratios. This inclusion complex was later incorporated into a polymer matrix to prepare an in situ gel. Various combinations of Carbopol 934P and hydroxypropyl methylcellulose (HPMC K4M) polymers were used and evaluated by rheological and in vitro drug release studies. The optimized formulation (F4) containing Carbopol 934P (0.2% w/v) and HPMC K4M (0.2% w/v) was evaluated for clarity, pH, gelling capacity, drug content, rheological properties, in vitro drug release pattern, ocular irritation test, and antimicrobial efficacy. Finally, owing to the improved antimicrobial efficacy and increased residence time, the AZM:SBE-β-CD in situ gel was found to be a promising formulation for the efficient treatment of bacterial ocular disease.
Collapse
Affiliation(s)
- Anil Thakur
- Lachoo
Memorial College of Science and Technology, Jodhpur 342001, India
- University
Institute of Pharmaceutical Sciences, Panjab
University, Chandigarh 160014, India
| | - Sourabh Jain
- Lachoo
Memorial College of Science and Technology, Jodhpur 342001, India
| | - Anjali Pant
- University
Institute of Pharmaceutical Sciences, Panjab
University, Chandigarh 160014, India
| | - Akanksha Sharma
- University
Institute of Pharmaceutical Sciences, Panjab
University, Chandigarh 160014, India
- Department
of Biophysics, Panjab University, Chandigarh 160014, India
| | - Rajiv Kumar
- University
Institute of Pharmaceutical Sciences, Panjab
University, Chandigarh 160014, India
| | - Neha Singla
- Department
of Biophysics, Panjab University, Chandigarh 160014, India
| | - Ashish Suttee
- Lovely
Professional University, Phagwara, Panjab 144411, India
| | - Santosh Kumar
- Department
of Biotechnology, Panjab University, Chandigarh 160014, India
- National
Centre for Cell Science, NCCS Complex, S.
P. Pune University Campus, Ganeshkhind, Pune, Maharashtra 411007, India
| | - Ravi P. Barnwal
- Department
of Biophysics, Panjab University, Chandigarh 160014, India
| | - Om Prakash Katare
- University
Institute of Pharmaceutical Sciences, Panjab
University, Chandigarh 160014, India
| | - Gurpal Singh
- University
Institute of Pharmaceutical Sciences, Panjab
University, Chandigarh 160014, India
| |
Collapse
|
9
|
Yin P, Zhang S, Liu J, Liao X, Zhou G, Yang J, Wang B, Yang B. Preparation, binding behaviours and thermal stability of inclusion complexes between (Z)‐jasmone and acyclic cucurbit[n]urils. FLAVOUR FRAG J 2022. [DOI: 10.1002/ffj.3714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peipei Yin
- R&D Center of China Tobacco Yunnan Industrial Co. Kunming China
| | - Shuqing Zhang
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming China
| | - Jing Liu
- R&D Center of China Tobacco Yunnan Industrial Co. Kunming China
| | - Xiali Liao
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming China
| | - Guiyuan Zhou
- R&D Center of China Tobacco Yunnan Industrial Co. Kunming China
| | - Jing Yang
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming China
| | - Baoxing Wang
- R&D Center of China Tobacco Yunnan Industrial Co. Kunming China
| | - Bo Yang
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming China
| |
Collapse
|
10
|
Sun L, Chen L, Yang K, Dai WF, Yang Y, Cui X, Yang B, Wang C. A multiple functional supramolecular system for synergetic treatments of hepatocellular carcinoma. Int J Pharm 2022; 619:121716. [PMID: 35367586 DOI: 10.1016/j.ijpharm.2022.121716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/10/2022] [Accepted: 03/29/2022] [Indexed: 01/06/2023]
Abstract
In the current times, achieving specific targeted and controllable drug delivery remains one of the major challenges in the treatment of hepatocellular carcinoma (HCC). The present study reported the development of a multiple functional indocyanine green (ICG)-cyclodextrin (CD) system, wherein loaded etoposide (EPS) was used as the model chemotherapeutic drug. In the developed system, ICG segment served as a photosensitizer for photothermal therapy (PTT) and the targeting moiety, which was primarily attributed to the specific retention properties in HCC tissues. The Ex vivo evaluation showed that ICG-CD@EPS exhibited a laser-triggered release profile with the photothermal efficiency and cytotoxicity towards HepG2 cells. In vivo evaluation suggested that ICG could navigate the systems to HCC tissues and retained at the site for 48 h, producing a drug accumulation in HCC. Further, laser irradiation boosted EPS release and local hyperthermia effects in HCC. Thus, the present study explored a novel and specific HCC targeting mechanism, and provided a feasible and controllable strategy for synergistic PTT and chemotherapy treatments for HCC.
Collapse
Affiliation(s)
- Lijing Sun
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Liyuan Chen
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ke Yang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650500, China
| | - Wei Feng Dai
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ye Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiuming Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Bo Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
11
|
Alvi Z, Akhtar M, Mahmood A, Ur-Rahman N, Nazir I, Sadaquat H, Ijaz M, Syed SK, Waqas MK, Wang Y. Enhanced Oral Bioavailability of Epalrestat SBE 7-β-CD Complex Loaded Chitosan Nanoparticles: Preparation, Characterization and in-vivo Pharmacokinetic Evaluation. Int J Nanomedicine 2022; 16:8353-8373. [PMID: 35002232 PMCID: PMC8721161 DOI: 10.2147/ijn.s339857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/03/2021] [Indexed: 12/25/2022] Open
Abstract
Background Epalrestat (EPL) is a carboxylic acid derivative with poor aqueous solubility and its pharmacokinetic features are not fully defined. Purpose Current research aimed to fabricate inclusion complexation of EPL with SBE7 β-CD (IC) and EPL/SBE7 β-CD CS NPs (NP). Methods EPL was complexed with SBE7 β-CD using the co-precipitation method, and the prepared complex was fabricated into nanoparticles using the ionic gelation method. The prepared formulations were characterized for particle size analysis, surface morphology, and in vitro dissolution study. The % inhibition of EPL against α-glucosidase enzyme was also conducted to check the drug’s antidiabetic activity. Finally, an in vivo pharmacokinetic investigation was carried out to determine the concentration of EPL in rabbit plasma of the prepared formulation. In vivo pharmacokinetic studies were conducted by giving a single dose of pure EPL, IC, and NP. Results The size of NP was found to be 241.5 nm with PDI 0.363 and zeta potential of +31.8 mV. The surface of the prepared NP was non-porous, smooth and spherical when compared with pure EPL, SBE7 β-CD and IC. The cumulative drug release (%) from IC and NP was 73% and 88%, respectively, as compared to pure drug (25%). The % inhibition results for in vitro α-glucosidase was reported to be 74.1% and the predicted binding energy for in silico molecular docking was calculated to be −6.6 kcal/mol. The calculated Cmax values for EPL, IC and NP were 4.75±3.64, 66.91±7.58 and 84.27±6.91 μg/mL, respectively. The elimination half-life of EPL was 4 h and reduced to 2 h for IC and NP. The AUC0-α for EPL, IC and NP were 191.5±164.63, 1054.23±161.77 and 1072.5±159.54 μg/mL*h, respectively. Conclusion Taking these parameters into consideration it can be concluded that IC and NP have prospective applications for greatly improved delivery and regulatedt release of poorly water soluble drugs, potentially leading to increase therapeutic efficacy and fewer side effects.
Collapse
Affiliation(s)
- Zunaira Alvi
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Muhammad Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan.,Department of Medical Laboratory Technology, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Arshad Mahmood
- College of Pharmacy, Al Ain University, Abu Dhabi Campus, Abu Dhabi, United Arab Emirates
| | - Nisar Ur-Rahman
- Department of Pharmacy, Royal College of Medical Sciences (RIMS), Multan, Punjab, 60000, Pakistan
| | - Imran Nazir
- Bahawal Victoria Hospital, Bahawalpur, Punjab, 63100, Pakistan
| | - Hadia Sadaquat
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Muhammad Ijaz
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Shahzada Khurram Syed
- Department of Basic Medical Sciences, School of Health Sciences, University of Management and Technology, Lahore, Pakistan
| | - Muhammad Khurram Waqas
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Yi Wang
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201600, People's Republic of China
| |
Collapse
|
12
|
Chen L, Yang W, Gao C, Liao X, Yang J, Yang B. The complexes of cannabidiol mediated by bridged cyclodextrins dimers with high solubilization, in vitro antioxidant activity and cytotoxicity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Martins TEA, Pinto CASDO, Oliveira ACD, Lima FV, Velasco MVR, Rodrigues LNC, Baby AR. RP-HPLC simultaneous quantification of rutin, avobenzone, and octyl methoxycinnamate in the presence of hydroxypropyl β-cyclodextrin (HPβCD) and sulfobutyl ether β-cyclodextrin (SBEβCD). BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
| | | | | | - Fabiana Vieira Lima
- University of São Paulo, Brazil; Federal University of Espírito Santo, Brazil
| | | | | | | |
Collapse
|
14
|
Zhang Q, Liang D, Guo J, Guo R, Bi Y. Inclusion Complex of Sea Buckthorn Fruit Oil with β‐Cyclodextrin: Preparation Characterization and Antioxidant Activity. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202100006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Qiang Zhang
- College of Pharmacy Guangdong Pharmaceutical University Guangzhou 510000 China
| | - Dongyi Liang
- College of Pharmacy Guangdong Pharmaceutical University Guangzhou 510000 China
| | - Juan Guo
- College of Food Science Guangdong Pharmaceutical University Guangzhou 510000 China
| | - Rui‐Xue Guo
- College of Food Science Guangdong Pharmaceutical University Guangzhou 510000 China
| | - Yongguang Bi
- College of Pharmacy Guangdong Pharmaceutical University Guangzhou 510000 China
| |
Collapse
|
15
|
Su W, Polyakov NE, Xu W, Su W. Preparation of astaxanthin micelles self-assembled by a mechanochemical method from hydroxypropyl β-cyclodextrin and glyceryl monostearate with enhanced antioxidant activity. Int J Pharm 2021; 605:120799. [PMID: 34126176 DOI: 10.1016/j.ijpharm.2021.120799] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
This research aimed to overcome the current challenges in the application of natural carotenoid antioxidants, such as their complex preparation processes, low bioavailability and poor drug stability. Herein, a mechanochemical method was used to prepare an inclusion complex (IC) that self-assembles into micelles in aqueous solution and achieves solid-phase loading of astaxanthin (AST). The NMR analysis, thermodynamics study, particle size analysis and electron microscopy image results showed that AST, hydroxypropyl β-cyclodextrin (HPβ-CD) and glyceryl monostearate (GMS) formed self-assembled micelles and maintained good stability in aqueous solution. The antioxidant performance experiments showed that the formation of IC increases free radical scavenging activity. The pharmacokinetic studies showed that the bioavailability of the astaxanthin inclusion complex increased 4-fold. The tissue distribution experiments showed that the astaxanthin inclusion complex targets the liver to exert its antioxidant effects. The proposed method uses an innovative preparation technology to produce an efficient drug delivery system without solvents, and it exerts powerful antioxidant activity against astaxanthin.
Collapse
Affiliation(s)
- Wenjing Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China
| | - Nikolay E Polyakov
- Institute of Chemical Kinetics and Combustion, Novosibirsk, Russia; Institute of Solid State Chemistry and Mechanochemistry, Novosibirsk, Russia
| | - Wenhao Xu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China.
| | - Weike Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China.
| |
Collapse
|
16
|
Host−guest inclusion systems of nicotine with acyclic cucurbit[n]urils for controlled heat releases. J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-021-01073-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Zhao X, Qiu N, Ma Y, Liu J, An L, Zhang T, Li Z, Han X, Chen L. Preparation, characterization and biological evaluation of β-cyclodextrin-biotin conjugate based podophyllotoxin complex. Eur J Pharm Sci 2021; 160:105745. [PMID: 33549707 DOI: 10.1016/j.ejps.2021.105745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/02/2021] [Accepted: 02/01/2021] [Indexed: 02/05/2023]
Abstract
Podophyllotoxin is a natural occurring aryltetralin lignin with pronounced cytotoxic activity. However, its clinical application for cancer treatment has been blocked due to its poor water solubility and selectivity. In this work, biotin as a tumor specific ligand was coupled with β-cyclodextrin and the resulting biotin modified β-cyclodextrin was used to complex with podophyllotoxin to improve its aqueous solubility and tumor selectivity. The solubility of β-cyclodextrin was greatly enhanced(>16 times) by conjugating with biotin. podophyllotoxin/ mono-6-biotin-amino-6-deoxy-β-cyclodextrin inclusion complex was prepared by freeze-drying method and the complex behavior between mono-6-biotin-amino-6-deoxy-β-cyclodextrin and podophyllotoxin was studied by water solubility, phase solubility, Job's plot, UV spectroscopy, Proton Nuclear Magnetic Resonance, Rotating-frame Overhauser Effect Spectroscopy, Powder X-ray diffraction and Scanning electron microscopy. The solubility of podophyllotoxin/ mono-6-biotin-amino-6-deoxy-β-cyclodextrin complex was greatly improved(9 times) compared with Podophyllotoxin. The stability constant of podophyllotoxin/ mono-6-biotin-amino-6-deoxy-β-cyclodextrin complex (Ks= 415.29 M-1) was 3.2 times that of podophyllotoxin/β-cyclodextrin complex. The possible inclusion mode of podophyllotoxin/mono-6-biotin-amino-6-deoxy-β-cyclodextrin complex was inferred from the Proton Nuclear Magnetic Resonance and Rotating-frame Overhauser Effect Spectroscopy. The cellular uptake study showed that the introduction of biotin increased the cellular uptake of rhodamine-B/mono-6-biotin-amino-6-deoxy-β-cyclodextrin complex. Moreover, cell cytotoxicity study showed that the antitumor activity of podophyllotoxin/ mono-6-biotin-amino-6-deoxy-β-cyclodextrin complex was more potent than podophyllotoxin/β-cyclodextrin complex and free podophyllotoxin. The superior water solubility and enhanced cytotoxicity suggested that the mono-6-biotin-amino-6-deoxy-β-cyclodextrin associated inclusion complex might be a potential and promising delivery system for hydrophobic chemotherapeutics such as podophyllotoxin.
Collapse
Affiliation(s)
- Xiu Zhao
- Department of Chemical & Pharmaceutical Engineering, College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Neng Qiu
- Department of Chemical & Pharmaceutical Engineering, College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| | - Yingyu Ma
- Department of Chemical & Pharmaceutical Engineering, College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Junda Liu
- Department of Chemical & Pharmaceutical Engineering, College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Lianying An
- Department of Chemical & Pharmaceutical Engineering, College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Teng Zhang
- Department of Chemical & Pharmaceutical Engineering, College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Ziqin Li
- Department of Chemical & Pharmaceutical Engineering, College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Xu Han
- Department of Chemical & Pharmaceutical Engineering, College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Gao R, Yang W, Xu J, Chen L, Yang J, Wang B, Yang B. Host‐Guest Inclusion Complexes of Geraniol and Nerol with Acyclic Cucurbit[n]urils: Preparation, Characterization and Controlled Release. ChemistrySelect 2021. [DOI: 10.1002/slct.202004685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rui Gao
- R&D Center of China Tobacco Yunnan Industrial Co., Kunming Yunnan 650231 P.R. China
| | - Waixiang Yang
- Faculty of Life Science and Technology Kunming University of Science and Technology, Kunming Yunnan 650500 P.R. China
| | - Jicang Xu
- R&D Center of China Tobacco Yunnan Industrial Co., Kunming Yunnan 650231 P.R. China
| | - Liyuan Chen
- Faculty of Life Science and Technology Kunming University of Science and Technology, Kunming Yunnan 650500 P.R. China
| | - Jing Yang
- Faculty of Life Science and Technology Kunming University of Science and Technology, Kunming Yunnan 650500 P.R. China
| | - Baoxing Wang
- R&D Center of China Tobacco Yunnan Industrial Co., Kunming Yunnan 650231 P.R. China
| | - Bo Yang
- Faculty of Life Science and Technology Kunming University of Science and Technology, Kunming Yunnan 650500 P.R. China
| |
Collapse
|
19
|
Physical formulation approaches for improving aqueous solubility and bioavailability of ellagic acid: A review. Eur J Pharm Biopharm 2020; 159:198-210. [PMID: 33197529 DOI: 10.1016/j.ejpb.2020.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/10/2020] [Accepted: 11/07/2020] [Indexed: 01/16/2023]
Abstract
Ellagic acid (EA) is a polyphenolic active compound with antimalarial and other promising therapeutic activities. However, its solubility and its permeability are both low (BCS IV). These properties greatly compromise its oral bioavailability and clinical utilizations. To overcome these limitations of the physicochemical parameters, several formulation approaches, including particle size reduction, amorphization and lipid-based formulations, have been used. Although these strategies have not yet led to a clinical application, some of them have resulted in significant improvements in the solubility and bioavailability of EA. This critical review reports and analyses the different formulation approaches used by scientists to improve both the biopharmaceutical properties and the clinical use of EA.
Collapse
|
20
|
Soe HMH, Chamni S, Mahalapbutr P, Kongtaworn N, Rungrotmongkol T, Jansook P. The investigation of binary and ternary sulfobutylether-β-cyclodextrin inclusion complexes with asiaticoside in solution and in solid state. Carbohydr Res 2020; 498:108190. [PMID: 33160203 DOI: 10.1016/j.carres.2020.108190] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 11/24/2022]
Abstract
Asiaticoside (AS) is poorly water-soluble compound that can lead to low the bioavailability. The aims of this study were to determine the cyclodextrin (CD) solubilization of AS and characterize binary AS/CD and ternary AS/CD/polymer complexes in solution- and solid-state. Thermal stability of AS through heating process was determined and found that It could withstand by heating through sonication method. Phase-solubility profiles showed that β-cyclodextrin (βCD) exhibited the greatest solubilizing effect but sulfobutylether-βCD (SBEβCD) was selected for further investigations due to its relatively high complexation efficiency (CE) value. The effect of polymers that were poloxamer 407 (P407) and chitosan (CS) on CD solubilization were investigated. It was found that the increment of CE was resulted from the formation of ternary complexes or complex aggregates with confirmed by dynamic light scattering and transmission electron microscopy. Proton nuclear magnetic resonance (1H NMR) data indicated that the cyclohexane moiety of AS was totally inserted into the hydrophobic inner cavity of SBEβCD in the presence or absence of polymer. The molecular modeling study displayed the binding orientation of such complex which correlated to 1H NMR result. The solid state characterized by Fourier transform infra-red, differential scanning calorimetry and powder X-ray diffraction demonstrated the formation of binary AS/SBEβCD and ternary AS/SBEβCD/polymer inclusion complexes. The enhancement of AS dissolution was achieved in both binary and ternary complexes. The permeation study showed that ternary AS/SBEβCD/CS nanoparticles exhibited a promising controlled drug release nanocarrier.
Collapse
Affiliation(s)
- Hay ManSaung Hnin Soe
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phyathai rd., Pathumwan, Bangkok, 10330, Thailand
| | - Supakarn Chamni
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phyathai rd., Pathumwan, Bangkok, 10330, Thailand
| | - Panupong Mahalapbutr
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Napat Kongtaworn
- Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Molecular Sensory Science Center, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Phatsawee Jansook
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phyathai rd., Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
21
|
Tomato Oil Encapsulation by α-, β-, and γ-Cyclodextrins: A Comparative Study on the Formation of Supramolecular Structures, Antioxidant Activity, and Carotenoid Stability. Foods 2020; 9:foods9111553. [PMID: 33121076 PMCID: PMC7693019 DOI: 10.3390/foods9111553] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
Cyclodextrins (CDs) are oligosaccharides, comprising 6 (α), 7 (β), or 8 (γ) glucose residues, used to prepare oil-in-water emulsions and improve oil stability towards degradation. In this research, the aptitude of α-, β-, and γ-CDs to form complexes with a supercritical CO2 extracted lycopene-rich tomato oil (TO) was comparatively assessed. TO/CD emulsions and the resulting freeze-dried powders were characterized by microscopy, Fourier transform infrared-attenuated total reflection (FTIR-ATR), and differential scanning calorimetry (DSC), as well as for their antioxidant activity. Furthermore, carotenoid stability was monitored for 90 days at 25 and 4 °C. Confocal and SEM microscopy revealed morphological differences among samples. α- and β-CDs spontaneously associated into microcrystals assembling in thin spherical shells (cyclodextrinosomes, Ø ≈ 27 µm) at the oil/water interface. Much smaller (Ø ≈ 9 µm) aggregates were occasionally observed with γ-CDs, but most TO droplets appeared "naked". FTIR and DSC spectra indicated that most CDs did not participate in TO complex formation, nevertheless structurally different interfacial complexes were formed. The trolox equivalent antioxidant capacity (TEAC) activity of emulsions and powders highlighted better performances of α- and β-CDs as hydrophobic antioxidants-dispersing agents across aqueous media. Regardless of CDs type, low temperature slowed down carotenoid degradation in all samples, except all-[E]-lycopene, which does not appear efficiently protected by any CD type in the long storage period.
Collapse
|
22
|
Reddy CK, Jung ES, Son SY, Lee CH. Inclusion complexation of catechins-rich green tea extract by β-cyclodextrin: Preparation, physicochemical, thermal, and antioxidant properties. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109723] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Feng Y, Xin Q, Zhang W, Wang Z, Gao S, Chen X, Chen X, Li J. Cell-Membrane-Targeted Drug Delivery System Based on Choline-Phosphate-Functionalized β-Cyclodextrin. Macromol Biosci 2020; 20:e2000069. [PMID: 32864834 DOI: 10.1002/mabi.202000069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/16/2020] [Indexed: 12/19/2022]
Abstract
In this study, a novel cyclodextrin derivative, i.e., zwitterionic choline phosphate (CP)-functionalized β-cyclodextrin (CP-β-CD) is successfully synthesized by click chemistry reaction. CP-β-CD has excellent cell-membrane-targeted ability because of the CP group can bind to phosphate choline (PC) in the cell membrane and promote the cellular uptake. Due to the introduction of CP group on β-CD, it disrupts the hydrogen network between natural β-CD molecules. Meanwhile, the water solubility of CP-β-CD is improved dramatically to 816 mg mL-1 , which is 440 times as that of unmodified β-CD. Apatinib, a small molecular inhibitor, is used as a model of hydrophobic drug and loaded into CP-β-CD to study the solubilization effect and the anti-angiogenisis activity. In addition, the cytotoxicity of CP-β-CD is also studied, and it is demonstrated that CP-β-CD is nontoxic. These results indicate that the apatinib can be transported into cell interior and play an excellent anti-angiogenisis activity after being loaded into CP-β-CD drug delivery system. This work suggests that the water soluble CP-β-CD with excellent cell internalization efficiency has a potential application prospect in the field of drug delivery.
Collapse
Affiliation(s)
- Ying Feng
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Qiangwei Xin
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Wanlin Zhang
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Zuxin Wang
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Shan Gao
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xin Chen
- Department of Laboratory Medicine, The Third People's Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, 610000, P. R. China
| | - Xingyu Chen
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
24
|
Preparation, characterization and solubilization evaluation of two novel host-guest complexes based on two different functional groups of modified β-cyclodextrins and 20(S)-protopanaxatriol. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Li W, Ran L, Liu F, Hou R, Zhao W, Li Y, Wang C, Dong J. Preparation and Characterisation of Polyphenol-HP-β-Cyclodextrin Inclusion Complex that Protects Lamb Tripe Protein against Oxidation. Molecules 2019; 24:E4487. [PMID: 31817887 PMCID: PMC6943433 DOI: 10.3390/molecules24244487] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
Grape seed extract (GSE) displays strong antioxidant activity, but its instability creates barriers to its applications. Herein, three HP-β-CD/GSE inclusion complexes with host-guest ratios of 1:0.5, 1:1, and 1:2 were successfully prepared by co-precipitation method to improve stability. Successful embedding of GSE in the HP-β-CD cavity was confirmed by fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) analyses. The Autodock Tools 1.5.6 was used to simulate the three-dimensional supramolecular structure of the inclusion complex of 2-hydroxypropyl-β-cyclodextrin and grape seed extract (HP-β-CD/GSE) by molecular docking. The MALDI-TOF-MS technology and chemical database Pubchem, and structural database PDB were combined to reconstitute the three-dimensional structure of target protein. The binding mode of the HP-β-CD/GSE inclusion complex to target protein was studied at the molecular level, and the antioxidant ability of the resulting HP-β-CD/GSE inclusion complexes was investigated by measuring 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging. The effects of HP-β-CD/GSE on myofibrillar protein from lamb tripe were also investigated under oxidative conditions. The positions and interactions of the binding sites of HP-β-CD/GSE inclusion complexes and target protein receptors were simulated by molecular docking. The results showed that HP-β-CD/GSE inclusion complexes were successfully prepared, optimally at a molar ratio of 1:2. At low (5 μmol/g) to medium (105 μmol/g) concentrations, HP-β-CD/GSE inclusion complexes decreased the carbonyl content, hydrophobicity, and protein aggregation of myofibrillar protein from lamb tripe, and increased the sulphydryl content. Furthermore, high concentration (155 μmol/g) of HP-β-CD/GSE inclusion complexes promoted protein oxidation.
Collapse
Affiliation(s)
- Wenhui Li
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (W.L.); (L.R.); (R.H.); (Y.L.); (C.W.)
| | - Lidan Ran
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (W.L.); (L.R.); (R.H.); (Y.L.); (C.W.)
| | - Fei Liu
- College of Life and Geography science Kashgar University, Kashi 844006, Xinjiang, China;
| | - Ran Hou
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (W.L.); (L.R.); (R.H.); (Y.L.); (C.W.)
| | - Wei Zhao
- College of Food, Jiangnan University, Wuxi 214122, China;
| | - Yingbiao Li
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (W.L.); (L.R.); (R.H.); (Y.L.); (C.W.)
| | - Chunyan Wang
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (W.L.); (L.R.); (R.H.); (Y.L.); (C.W.)
| | - Juan Dong
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (W.L.); (L.R.); (R.H.); (Y.L.); (C.W.)
| |
Collapse
|
26
|
Development of Anacardic Acid/hydroxypropyl-β-cyclodextrin inclusion complex with enhanced solubility and antimicrobial activity. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.112085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Niu H, Chen W, Chen W, Yun Y, Zhong Q, Fu X, Chen H, Liu G. Preparation and Characterization of a Modified-β-Cyclodextrin/β-Carotene Inclusion Complex and Its Application in Pickering Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12875-12884. [PMID: 31644278 DOI: 10.1021/acs.jafc.9b05467] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
β-Cyclodextrin (β-CD) was modified using octenyl succinic anhydride (OSA) to introduce amphiphilic groups (hydrophilic carboxyl and lipophilic octenyl chains) by esterification under alkaline conditions. The FT-IR results indicated that the OSA-modified β-CD (OCD) showed new absorption peaks of an ester bond and a carboxylate (RCOO-) at 1724 and 1570 cm-1, respectively, confirming the successful preparation of OCD. Then the embedding effects of β-CD and OCD on β-carotene and the emulsifying and antioxidant properties of their inclusion complexes were evaluated. The results of XRD showed that the β-CD (or OCD)/β-carotene inclusion complexes were converted from a cage-type structure to a channel-type structure. AFM and SEM showed that the crystal characteristics and surface morphologies of the inclusion complexes were different from those of the physical mixture. The emulsion stabilized by OCD exhibited smaller droplet sizes and larger zeta-potentials than that stabilized by β-CD. In addition, the inclusion complexes-prepared emulsion exhibited lower POV values and TBARS contents than did the physical mixture. OCD/β-carotene inclusion complexes can improve the physical and oxidative stability of the emulsion, which is of great significance to the food industry.
Collapse
Affiliation(s)
- Hui Niu
- College of Food Sciences , South China University of Technology , 381 Wushan Road , Guangzhou , Guangdong 510640 , PR China
- College of Food Sciences & Engineering , Hainan University , 58 People Road , Haikou , Hainan 570228 , PR China
| | - Weijun Chen
- College of Food Sciences & Engineering , Hainan University , 58 People Road , Haikou , Hainan 570228 , PR China
| | - Wenxue Chen
- College of Food Sciences & Engineering , Hainan University , 58 People Road , Haikou , Hainan 570228 , PR China
| | - Yonghuan Yun
- College of Food Sciences & Engineering , Hainan University , 58 People Road , Haikou , Hainan 570228 , PR China
| | - Qiuping Zhong
- College of Food Sciences & Engineering , Hainan University , 58 People Road , Haikou , Hainan 570228 , PR China
| | - Xiong Fu
- College of Food Sciences , South China University of Technology , 381 Wushan Road , Guangzhou , Guangdong 510640 , PR China
| | - Haiming Chen
- College of Food Sciences & Engineering , Hainan University , 58 People Road , Haikou , Hainan 570228 , PR China
| | - Gang Liu
- College of Food Science and Engineering , Wuhan Polytechnic University , Wuhan , Hubei 430023 , China
| |
Collapse
|
28
|
Takke A, Shende P. Nanotherapeutic silibinin: An insight of phytomedicine in healthcare reformation. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 21:102057. [PMID: 31340181 DOI: 10.1016/j.nano.2019.102057] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/03/2019] [Accepted: 07/01/2019] [Indexed: 12/16/2022]
Abstract
Most of the herbal origin drugs possess water insoluble active constituents which lower the bioavailability and increase systemic clearance after administration of repeated or higher dose of drug. Silymarin is extracted from the seeds and fruits of milk thistle plant Silybum marianum which consists of main biologically active component as silibinin. However, the clinical applications of silibinin show some limitations due to low aqueous solubility, poor penetration into the epithelial cells of intestine, high metabolism and rapid systemic elimination. But nanotechnology-based drug delivery system explores great potential for phytochemicals to enhance the aqueous solubility and bioavailability of BCS class II and IV drugs, improve stability and modify the pharmacological activity. This review focuses on the therapeutic properties of silibinin and discusses the benefits, challenges and applications of silibinin nanoformulations. Such nanotherapeutic system as a regular medicine will be an attractive approach to reduce the adverse events and toxicities of current therapies.
Collapse
Affiliation(s)
- Anjali Takke
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Mumbai, India.
| |
Collapse
|
29
|
Arumugam SP, Balakrishnan SB, Ganesan V, Munisamy M, Kuppu SV, Narayanan V, Baskaralingam V, Jeyachandran S, Thambusamy S. In-vitro dissolution and microbial inhibition studies on anticancer drug etoposide with β-cyclodextrin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:96-105. [DOI: 10.1016/j.msec.2019.04.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/04/2019] [Accepted: 04/12/2019] [Indexed: 01/28/2023]
|
30
|
Wang H, Wang S, Zhu H, Wang S, Xing J. Inclusion Complexes of Lycopene and β-Cyclodextrin: Preparation, Characterization, Stability and Antioxidant Activity. Antioxidants (Basel) 2019; 8:antiox8080314. [PMID: 31426339 PMCID: PMC6719067 DOI: 10.3390/antiox8080314] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/11/2019] [Accepted: 08/14/2019] [Indexed: 02/06/2023] Open
Abstract
In this study, the inclusion complexes of lycopene with β-cyclodextrin (β-CD) were prepared by the precipitation method. Then the inclusion complexes were characterized by the scanning electron microscopy (SEM), ultraviolet-visible spectroscopy (UV), microscopic observation, liquid chromatography, differential scanning calorimetry (DSC) and phase-solubility study. Moreover, the stability and antioxidant activity were tested. The results showed that lycopene was embedded into the cavity of β-CD with a 1:1 stoichiometry. Moreover, the thermal and irradiant stabilities of lycopene were all significantly increased by the formation of lycopene/β-CD inclusion complexes. Antioxidant properties of lycopene and its inclusion complexes were evaluated on the basis of measuring the scavenging activity for 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl and superoxide anion radicals. The results showed that the scavenging activity of DPPH radicals was obviously increased by the formation of the inclusion complex with β-cyclodextrin at concentrations of 5–30 μg/mL, however, some significant positive effects on the scavenging activity of hydroxyl and superoxide anion radicals were not observed and the reasons are worth further study.
Collapse
Affiliation(s)
- Haixiang Wang
- Department of Food Quality and Safety, School of Engineering, China Pharmaceutical University, Jiangning District, Nanjing 211198, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Haidian District, Beijing 100048, China
| | - Shaofeng Wang
- Department of Food Quality and Safety, School of Engineering, China Pharmaceutical University, Jiangning District, Nanjing 211198, China
| | - Hua Zhu
- Department of Food Quality and Safety, School of Engineering, China Pharmaceutical University, Jiangning District, Nanjing 211198, China
| | - Suilou Wang
- Department of Food Quality and Safety, School of Engineering, China Pharmaceutical University, Jiangning District, Nanjing 211198, China
| | - Jiudong Xing
- Department of Food Quality and Safety, School of Engineering, China Pharmaceutical University, Jiangning District, Nanjing 211198, China.
- Pharmaceutical Experimental Training Center, School of Pharmacy, China Pharmaceutical University, Jiangning District, Nanjing 211198, China.
| |
Collapse
|
31
|
Wang H, Xiao Y, Wang H, Sang Z, Han X, Ren S, Du R, Shi X, Xie Y. Development of daidzein nanosuspensions: Preparation, characterization, in vitro evaluation, and pharmacokinetic analysis. Int J Pharm 2019; 566:67-76. [PMID: 31125715 DOI: 10.1016/j.ijpharm.2019.05.051] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/01/2019] [Accepted: 05/19/2019] [Indexed: 01/31/2023]
Abstract
The purpose of this investigation was to improve the solubility and oral bioavailability of daidzein via preparing nanosuspensions (NS) with steric stabilizers, electrostatic stabilizers, or a combination of both. Based on particle size and zeta potential, daidzein NS stabilized by HP-β-CD, soy lecithin, HP-β-CD + soy lecithin, TPGS, TPGS + SBE-β-CD, SDS, or HPMC E5 + SDS were generated and characterized by scanning electron microscopy, powder X-ray diffraction, and Fourier transform-infrared spectroscopy. In addition, the stability, cytotoxicity, solubility, dissolution, and pharmacokinetics of NS were evaluated. The resulting daidzein NS were physically stable and biocompatible and presented as regular shapes with homogenous particle sizes of 360-600 nm and decreased crystallinity. Due to the increased solubility and dissolution rate, the oral bioavailability of daidzein NS in rats was 1.63-2.19 times greater than that of crude daidzein. In particular, among the investigated seven daidzein NS formulations, daidzein NS prepared with the costabilizers HPMC E5 + SDS is an optimal formulation for increased daidzein bioavailability. The present study proposes that the combined usage of steric and electrostatic stabilizers is a promising strategy for improving the bioavailability of water-insoluble flavonoid compounds by an NS approach.
Collapse
Affiliation(s)
- Hui Wang
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Pharmacy Department, Long Hua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yi Xiao
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hai Wang
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zechun Sang
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaole Han
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuzhen Ren
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ruofei Du
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiufeng Shi
- Pharmacy Department, Long Hua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Yan Xie
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
32
|
Kong F, Su Z, Zhang L, Qin Y, Zhang K. Inclusion complex of grape seeds extracts with sulfobutyl ether β-cyclodextrin: Preparation, characterization, stability and evaluation of α-glucosidase and α-amylase inhibitory effects in vitro. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Li X, Zhang Y, Xu J, Zheng Y. Efficient production of series sulfopropyl ether β-cyclodextrin derivatives using the eco-friendly microwave technique. J INCL PHENOM MACRO 2018. [DOI: 10.1007/s10847-018-0806-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
34
|
Skuredina AA, Le-Deygen IM, Kudryashova EV. The Effect of Molecular Architecture of Sulfobutyl Ether β-Cyclodextrin Nanoparticles on Physicochemical Properties of Complexes with Moxifloxacin. COLLOID JOURNAL 2018. [DOI: 10.1134/s1061933x18030134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
35
|
Tambe A, Pandita N, Kharkar P, Sahu N. Encapsulation of boswellic acid with β- and hydroxypropyl-β-cyclodextrin: Synthesis, characterization, in vitro drug release and molecular modelling studies. J Mol Struct 2018; 1154:504-510. [DOI: 10.1016/j.molstruc.2017.10.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
36
|
Sayed M, Jha S, Pal H. Complexation induced aggregation and deaggregation of acridine orange with sulfobutylether-β-cyclodextrin. Phys Chem Chem Phys 2017; 19:24166-24178. [DOI: 10.1039/c7cp03135a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The present study illustrates intriguing switching of multi-mode binding interactions of acridine orange dye with a sulfobutylether-β-cyclodextrin host.
Collapse
Affiliation(s)
- Mhejabeen Sayed
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | - Shruti Jha
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | - Haridas Pal
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| |
Collapse
|