1
|
Xie L, Wang T, Chen L, Li X. Effects of myricetin on heterocyclic aromatic amines formation and sensory quality of Cantonese mooncakes. Food Chem 2025; 465:142084. [PMID: 39577259 DOI: 10.1016/j.foodchem.2024.142084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/04/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
This study aims to investigate the inhibition of myricetin on heterocyclic aromatic amines (HAAs) formation in glucose/creatine (creatinine)/amino acid simulated system and Cantonese mooncakes, and elucidate the mechanism by which myricetin inhibits HAAs and analyze its impact on sensory quality of mooncakes. Results demonstrated 0.2 mmol myricetin inhibited six HAAs by 43.7 % to 85.6 % in simulated system. The significant scavenging effect of myricetin on HAAs intermediates and free radicals suggested that it inhibits HAAs formation by forming adducts with Strecker aldehydes, thereby reducing small molecule aldehydes and scavenging free radicals. In Cantonese mooncakes, 0.5 % myricetin inhibited nine HAAs formation by 54.4 % to 81.8 %. The presence of myricetin-phenylacetaldehyde adducts confirmed myricetin inhibited HAAs formation by capturing reactive intermediates. Importantly, 0.2 % myricetin enhanced umami and richness without compromising their texture in mooncakes. This research provides a theoretical foundation and technical support for developing strategies to effectively inhibit HAAs generation, thus advancing food safety.
Collapse
Affiliation(s)
- Lei Xie
- School of Food Science and Engineering, Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Tianxing Wang
- School of Food Science and Engineering, Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Ling Chen
- School of Food Science and Engineering, Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Xiaoxi Li
- School of Food Science and Engineering, Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Modern Industrial Technology Research Institute, South China University of Technology, Zhongshan 528437, China.
| |
Collapse
|
2
|
El-Gendy ZA, Ammar NM, Kassem AM, Attia MS, Afifi SM, Ibrahim AH, Emam SE, Ms Korany R, El-Nasser G El-Gendy A, Elshamy AI. Myricetin-loaded SBA-15 silica nanoparticles for enhanced management of pyrexia, pain, and inflammation through modulation of MAPK/NF-κB and COX-2/PGE-2 pathways: Evidence from the biochemical, histological, and metabolomic analysis. Int J Pharm 2024; 666:124775. [PMID: 39353498 DOI: 10.1016/j.ijpharm.2024.124775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Myricetin (MYR) is a natural flavonoid that has several biological functions. However, some of its beneficial effects are diminished due to low water solubility, stability, and bioavailability. Herein, several kinds of silica nanoparticles (MCM-41 and SBA-15) were loaded with MYR to improve its biological activity as an analgesic, antipyretic, and anti-inflammatory component, thereby overcoming its drawbacks. The nanoparticles (MYR@SBA-15) were formulated optimally, transforming MYR into an amorphous state. This transformation was confirmed via several strategies, including differential scanning calorimetry, Fourier transform infrared spectroscopy, and powder x-ray diffraction. As a result, there was a significant enhancement in the solubility and rate of dissolution in water. The anti-inflammatory benefits as an innovative strategy and the underlying mechanism of action of MYR and its SBA-15 silica nanoparticles (MYR@SBA-15) were investigated based on the biochemical, histological, immunohistochemical, and metabolomic assays alongside their antipyretic and analgesic characteristics. Compared to the usage of raw MYR, the administration of MYR@SBA-15 at doses of 25, 50, and 100 mg/kg significantly decreases pain perception by inhibiting the body's writhing motions induced by acetic acid. Furthermore, it helps regulate increased body temperature caused by baking yeast and effectively stabilizes it. It reduces the release of NO and PGE-2 in a concentration-dependent manner by down-regulating iNOS and COX-2 expression in the inflammatory model. MYR and MYR@SBA-15 also inhibit the nuclear translocation of NF-κB, downregulate the expression of mitogen-activated protein kinases (MAPKs), such as p38, ERK1/2, and JNK protein, and reduce the generation of proinflammatory cytokines, such as TNF-α. In addition, inflammatory cardinal signs like paw edema caused by carrageenan in rats are greatly suppressed by MYR and MYR@SBA-15 treatment when compared to the untreated group. More noteworthy outcomes are shown in the MYR@SBA-15, particularly at a dose of 100 mg/kg. These results of biochemical and immuno-histochemistry suggest that MYR@SBA-15 may be a useful analgesic antipyretic and may also help reduce inflammation by altering MAPKs/NF-κB and COX-2/PGE-2 signaling cascades. Serum metabolomics study demonstrated modifications in various low molecular weight metabolites with arthritis development. These metabolite levels were restored to normal when MYR@SBA-15 was administered via modulating several metabolic pathways, i.e., pyrimidine, energy metabolism, and proteins. Overall, MYR-loaded SBA-15 silica nanoparticles have demonstrated significant promise in enhancing the disturbed metaboloic pathways and providing a substantial capacity to regulate several oxidative stress and inflammatory mediators.
Collapse
Affiliation(s)
- Zeinab A El-Gendy
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Naglaa M Ammar
- Therapeutic Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Abdulsalam M Kassem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11751, Cairo, Egypt
| | - Mohamed S Attia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Sherif M Afifi
- Department for Life Quality Studies, Rimini Campus, University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Ahmed H Ibrahim
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11751, Cairo, Egypt
| | - Sherif E Emam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Reda Ms Korany
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Abd El-Nasser G El-Gendy
- Medicinal and Aromatic Plants Research Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Abdelsamed I Elshamy
- Department of Natural Compounds Chemistry, National Research Centre, Dokki, Giza 12622, Egypt.
| |
Collapse
|
3
|
Wang H, Luan Y, Li M, Wu S, Zhang S, Xue J. Crystallization and intermolecular hydrogen bonding in carbamazepine-polyvinyl pyrrolidone solid dispersions: An experiment and molecular simulation study on drug content variation. Int J Pharm 2024; 666:124769. [PMID: 39341386 DOI: 10.1016/j.ijpharm.2024.124769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/08/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The choice of drug content is a critical factor as far as the solid dispersion is concerned. This investigation aims to build the relationship between the drug content, intermolecular hydrogen bonding and the crystalline of the carbamazepine-polyvinyl pyrrolidone solid dispersion. In this work, the microstructural changes of solid dispersions were investigated using experimental characterization combined with molecular simulation. Experimental investigations demonstrated that increasing the drug content enhances the intermolecular hydrogen bonding between drugs, resulting in the crystalline phase of the drug emerged in the solid dispersion. This negatively affects the solubility and stability of solid dispersions. Molecular simulations were then used to analyze the changes of intermolecular hydrogen bonding at different drug content in the system. It revealed a tenfold increase in drug-drug hydrogen bonding concentration as drug content elevated from 10% to 50%, while the drug-excipient hydrogen bonding concentration decreased by 45%. The correlation analysis proves the significant relationships among the drug content, intermolecular hydrogen bonding, and crystallinity of solid dispersion. Using polynomial fitting analysis, the quantitative relationships between the drug content and crystalline properties were investigated. This study will offer valuable insights into the impact of drug content on the performance of solid dispersion.
Collapse
Affiliation(s)
- Huaqi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yajie Luan
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Mengke Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Sizhu Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Sidian Zhang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Jiajia Xue
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
4
|
Deriabina A, Prutskij T, Morales Ochoa HD, Gonzalez Jimenez E, Deriabin S. Comparative Analysis of Fluorescence Emission in Myricetin, Kaempferol, and Quercetin Powders and Solutions. Int J Mol Sci 2024; 25:2558. [PMID: 38473805 DOI: 10.3390/ijms25052558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024] Open
Abstract
Myricetin is a flavonol with high antioxidant properties. In this research, the fluorescence emission of myricetin powder and its solutions in different solvents were measured and analyzed by comparing with the results of calculations. Comparison of the calculated and measured characteristic wavelengths allowed the identification of all the spectral features in the fluorescence spectra of myricetin powder and solutions with different concentrations. The computation was based on modeling the process of the excited state intermolecular proton transfer, which predicts the formation of tautomeric forms of the flavonol molecule. Characteristic emission wavelengths were obtained using TDDFT/M06-2X/6-31++G(d,p). To understand the influence of the hydroxyl groups in the B-ring of the flavonol molecule on the emission spectrum, we also compared the fluorescence spectra of myricetin with those of kaempferol and quercetin. Moreover, based on the analysis of the changes in the shape of the FL spectra with the concentration of the solution, a criterion for the complete dissolution of the flavonol powders was established, which is important for bioavailability of flavonoids.
Collapse
Affiliation(s)
- Alexandra Deriabina
- Faculty of Physical and Mathematical Sciences, Autonomous University of Puebla (BUAP), Puebla 72570, Mexico
| | - Tatiana Prutskij
- Sciences Institute, Autonomous University of Puebla (BUAP), Puebla 72570, Mexico
| | | | - Eduardo Gonzalez Jimenez
- Faculty of Physical and Mathematical Sciences, Autonomous University of Puebla (BUAP), Puebla 72570, Mexico
| | - Sergei Deriabin
- Institute for Biological Instrumentation, Pushchino 142290, Russia
| |
Collapse
|
5
|
Zhang S, Wang H, Zhao X, Xu H, Wu S. Screening of Organic Small Molecule Excipients on Ternary Solid Dispersions Based on Miscibility and Hydrogen Bonding Analysis: Experiments and Molecular Simulation. AAPS PharmSciTech 2024; 25:21. [PMID: 38267749 DOI: 10.1208/s12249-024-02737-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
The preparation of solid dispersions by mixing insoluble drugs with polymers is the main way to improve the aqueous solubility of drugs. The introduction of organic small molecule excipients into binary solid dispersions is expected to further enhance drug solubility by regulating intermolecular hydrogen bonding within the system at the microscopic level. In this study, we used carbamazepine (CBZ) as the target drug and polyvinylpyrrolidone as the solid dispersion matrix and screened the third component from 13 organic small molecules with good miscibility in the solid dispersion based on the principle of similarity of solubility parameters. The hydrogen bonding parameters and dissociation Gibbs free energy of the 13 organic small molecule-CBZ dimer were calculated by quantum mechanical simulation, and the tryptophan (Try) was identified as the optimal third component of organic small molecule. The migration of CBZ in binary and ternary systems was also analyzed by molecular dynamics simulation. On this theoretical basis, the corresponding solid dispersions were prepared, characterized, and tested for solubility analysis, which verified that the drug solubility was stronger for the system with the addition of polar fractions and the Try was indeed the best third component of organic small molecule compound, which was consistent with the simulation predictions. This screening method may provide theoretical guidance for drug modification design and clinical studies.
Collapse
Affiliation(s)
- Sidian Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Huaqi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiuying Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Haiyan Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, People's Republic of China.
| | - Sizhu Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
6
|
Huang H, Zhang Y, Liu Y, Guo Y, Hu C. Influence of Intermolecular Interactions on Crystallite Size in Crystalline Solid Dispersions. Pharmaceutics 2023; 15:2493. [PMID: 37896253 PMCID: PMC10610461 DOI: 10.3390/pharmaceutics15102493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Crystalline solid dispersions (CSDs) represent a thermodynamically stable system capable of effectively reducing the crystallite size of drugs, thereby enhancing their solubility and bioavailability. This study uses flavonoid drugs with the same core structures but varying numbers of hydroxyl groups as model drugs and poloxamer 188 as a carrier to explore the intrinsic relationships between drug-polymer interactions, crystallite size, and in vitro dissolution behavior in CSDs. Initially, we investigate the interactions between flavonoid drugs and P188 by calculating Hansen solubility parameters, determination of Flory-Huggins interaction parameters, and other methods. Subsequently, we explore the crystallization kinetics of flavonoid drugs and P188 in CSD systems using polarized optical microscopy and powder X-ray diffraction. We monitor the domain size and crystallite size of flavonoids in CSDs through powder X-ray diffraction and a laser-particle-size analyzer. Finally, we validate the relationship between crystallite size and in vitro dissolution behavior through powder dissolution. The results demonstrate that, as the number of hydroxyl groups increases, the interactions between drugs and polymers become stronger, making drug crystallization in the CSD system less likely. Consequently, reductions in crystalline domain size and crystallite size become more pronounced, leading to a more significant enhancement in drug dissolution.
Collapse
Affiliation(s)
- Hua Huang
- Medical College, Qinghai University, Xining 810001, China; (H.H.); (Y.Z.); (Y.L.); (Y.G.)
| | - Yong Zhang
- Medical College, Qinghai University, Xining 810001, China; (H.H.); (Y.Z.); (Y.L.); (Y.G.)
| | - Yao Liu
- Medical College, Qinghai University, Xining 810001, China; (H.H.); (Y.Z.); (Y.L.); (Y.G.)
| | - Yufei Guo
- Medical College, Qinghai University, Xining 810001, China; (H.H.); (Y.Z.); (Y.L.); (Y.G.)
| | - Chunhui Hu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810001, China
| |
Collapse
|
7
|
Zhang S, Wang T, Xue J, Xu H, Wu S. Hydrogen Bonding Principle-Based Molecular Design of a Polymer Excipient and Impacts on Hydrophobic Drug Properties: Molecular Simulation and Experiment. Biomacromolecules 2023; 24:1675-1688. [PMID: 36867105 DOI: 10.1021/acs.biomac.2c01473] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Although some commercial excipients for improving the solubility of highly crystalline drugs are widely used, they still cannot cover all types of hydrophobic drugs. In this regard, with phenytoin as the target drug, related molecular structures of polymer excipients were designed. The optimal repeating units of NiPAm and HEAm were screened out through quantum mechanical simulation and Monte Carlo simulation methods, and the copolymerization ratio was also determined. Using molecular dynamics simulation technology, it was confirmed that the dispersibility and intermolecular hydrogen bonds of phenytoin in the designed copolymer were better than those in the commercial PVP materials. At the same time, the designed copolymers and solid dispersions were also prepared during the experiment, and the improvement of their solubility was confirmed, which is in accordance with the simulation predictions. The new ideas and simulation technology may be used for drug modification and development.
Collapse
Affiliation(s)
- Sidian Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Tao Wang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, P. R. China
| | - Jiajia Xue
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Haiyan Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, P. R. China
| | - Sizhu Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
8
|
Preparation of myricetin nanoliposomes using film-ultrasonic dispersion method and characterization. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02648-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Zhang S, Zhang X, Meng J, Lu L, Du S, Xu H, Wu S. Study on the Effect of Polymer Excipients on the Dispersibility, Interaction, Solubility, and Scavenging Reactive Oxygen Species of Myricetin Solid Dispersion: Experiment and Molecular Simulation. ACS OMEGA 2022; 7:1514-1526. [PMID: 35036814 PMCID: PMC8756572 DOI: 10.1021/acsomega.1c06329] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/23/2021] [Indexed: 05/12/2023]
Abstract
Although the preparation of amorphous solid dispersions can improve the solubility of crystalline drugs, there is still a lack of guidance on the micromechanism in the screening and evaluation of polymer excipients. In this study, a particular method of experimental characterization combined with molecular simulation was attempted on solubilization of myricetin (MYR) by solid dispersion. According to the analysis of the dispersibility and hydrogen-bond interaction, the effectiveness of the solid dispersion and the predicted sequence of poly(vinyl pyrrolidone) (PVP) > hypromellose (HPMC) > poly(ethylene glycol) (PEG) as the polymer excipient were verified. Through the dissolution, cell viability, and reactive oxygen species (ROS)-level detection, the reliability of simulation and micromechanism analysis was further confirmed. This work not only provided the theoretical guidance and screening basis for the miscibility of solid dispersions from the microscopic level but also served as a reference for the modification of new drugs.
Collapse
Affiliation(s)
- Sidian Zhang
- State
Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xue Zhang
- Institute
of Basic Medical Sciences, Chinese Academy
of Medical Sciences & Peking Union Medical College, Beijing 100005, P. R. China
| | - Jie Meng
- Institute
of Basic Medical Sciences, Chinese Academy
of Medical Sciences & Peking Union Medical College, Beijing 100005, P. R. China
| | - Ling Lu
- State
Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shanda Du
- State
Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Haiyan Xu
- Institute
of Basic Medical Sciences, Chinese Academy
of Medical Sciences & Peking Union Medical College, Beijing 100005, P. R. China
| | - Sizhu Wu
- State
Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
10
|
|
11
|
Tomar D, Singh PK, Hoque S, Modani S, Sriram A, Kumar R, Madan J, Khatri D, Dua K. Amorphous systems for delivery of nutraceuticals: challenges opportunities. Crit Rev Food Sci Nutr 2020; 62:1204-1221. [PMID: 33103462 DOI: 10.1080/10408398.2020.1836607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Amorphous solid products have recently gained a lot of attention as key solutions to improve the solubility and bioavailability of poorly soluble nutraceuticals. A pure amorphous drug is a high-energy form; physically/chemically unstable and so easily gets recrystallized into the less soluble crystalline form limiting solubility and bioavailability issues. Amorphous solid dispersion and co-amorphous are new formulation approach that stabilized unstable amorphous form through different mechanisms such as preventing mobility, high glass transition temperature and molecular interaction. Nutraceuticals have been received the utmost importance due to their health benefits. However, most of these compounds have been associated with poor oral bioavailability due to poor solubility, high lipophilicity, high melting point, poor permeability, degradability and rapid metabolism in the gastrointestinal tract (GIT) which limits its health benefits. This review provides us a systematic application of amorphous systems to the delivery of poorly soluble nutraceuticals, with the aim of overcoming their pharmacokinetic limitations and improved pharmacological potential. In particular, it describes the challenges associated with delivery of oral nutraceuticals, various methods involved in the preparation and characterization of amorphous systems and permeability enhancement of nutraceuticals are in detail.
Collapse
Affiliation(s)
- Devendrasingh Tomar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pankaj K Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Sajidul Hoque
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Sheela Modani
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Anitha Sriram
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rahul Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health (GSH), The University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
12
|
Geddes HS, Blade H, McCabe JF, Hughes LP, Goodwin AL. Structural characterisation of amorphous solid dispersions via metropolis matrix factorisation of pair distribution function data. Chem Commun (Camb) 2019; 55:13346-13349. [PMID: 31580357 DOI: 10.1039/c9cc06753a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We measure the X-ray pair distribution functions (PDFs) of a series of felodipine:copovidone amorphous solid dispersions. Using a newly-developed Metropolis Matrix Factorisation (MMF) algorithm we extract from these data the PDF of the amorphous felodipine component in isolation. Our MMF analysis allows quantification of the degree of drug crystallinity in each sample, and structural characterisation of the amorphous drug via its PDF. Comparison with atomistic simulations reveals that the (in)accessibility of conformational rotamers distinguishes amorphous and crystalline felodipine, in turn suggesting design routes for stabilising the amorphous form. We discuss the conceptual importance of our results in the context of characterising not only amorphous pharmaceuticals, but complex mixtures in general.
Collapse
Affiliation(s)
- Harry S Geddes
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, UK.
| | - Helen Blade
- Pharmaceutical Development, AstraZeneca, Macclesfield, SK10 2NA, UK
| | - James F McCabe
- Pharmaceutical Development, AstraZeneca, Macclesfield, SK10 2NA, UK
| | - Leslie P Hughes
- Pharmaceutical Development, AstraZeneca, Macclesfield, SK10 2NA, UK
| | - Andrew L Goodwin
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, UK.
| |
Collapse
|
13
|
Baranović G, Šegota S. Infrared spectroscopy of flavones and flavonols. Reexamination of the hydroxyl and carbonyl vibrations in relation to the interactions of flavonoids with membrane lipids. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 192:473-486. [PMID: 29220817 DOI: 10.1016/j.saa.2017.11.057] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/18/2017] [Accepted: 11/25/2017] [Indexed: 05/27/2023]
Abstract
Detailed vibrational assignments for twelve flavonoids (seven flavones (flavone, 3- and 5-hydroxyflavone, chrysin, apigenin, fisetin and luteolin) and five flavonols (galangin, kaempferol, quercetin, morin and myricetin)) have been made based on own and reported experimental data and calculations at the B3LYP/6-31+G(d,p) level of theory. All the molecules are treated in a uniform way by using the same set of redundancy-free set of internal coordinates. A generalized harmonic mode mixing is used to corroborate the vibrational characteristics of this important class of molecules. Each flavonoid molecule can be treated from the vibrational point of view as made of relatively weakly coupled chromone and phenyl part. It has been shown that the strongest band around 1600cm-1 need not be attributable to the CO stretching. The way the vibrations of any of the hydroxyl groups are mixed with ring vibrations and vibrations of other neighboring hydroxyl groups is rather involved. This imposes severe limitations on any attempt to describe normal modes of a flavonol in terms of hydroxyl or carbonyl group vibrations. The role of water molecules in the appearance of flavonoid IR spectra is emphasized. Knowing for the great affinity of phosphate groups in lipids towards water, the immediate consequence is a reasonable assumption that flavonoid lipid interactions is mediated by water.
Collapse
Affiliation(s)
- Goran Baranović
- Division of Organic Chemistry and Biochemistry, R. Bošković Institute, Zagreb, Croatia
| | - Suzana Šegota
- Division of Physical Chemistry, R. Bošković Institute, Zagreb, Croatia.
| |
Collapse
|