1
|
Haq S, Khalid M, Braga AAC, Alhokbany N, Chen K. Design and evaluation of indacenothienothiophene based functional materials for second and third order nonlinear optics properties via DFT approach. Sci Rep 2025; 15:13262. [PMID: 40246890 PMCID: PMC12006305 DOI: 10.1038/s41598-025-96902-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/01/2025] [Indexed: 04/19/2025] Open
Abstract
Nonlinear optics (NLO) is a fascinating field that explores how intense light interacts with matter. Organic chromophores are regarded as promising materials for nonlinear optics research due to their properties i.e., easy of process, structural versatility, and instant response to NLO effects. Therefore, in current research, a comprehensive investigation was carried out on a series of organic indacenothienothiophene (ITT) based chromophores (AOR and AO1-AO6) to explore their NLO properties through quantum chemical calculations. The DFT and TD-DFT methods at M06/6-311G(d,p) level were employed to investigate the optoelectronic properties of new designed compounds. The parent compound, i.e., AOIC was taken for the designing of the reference molecule (AOR) by substituting one terminal acceptor with donor in AOIC to develop push-pull architecture. The other derivatives (AO1-AO6) were designed via modulation of end-capped acceptor of AOR with benzothiophene (BT) based acceptors. These investigations revealed a red-shift absorption spectra (λmax = 783-848 nm) with reduced HOMO-LUMO energy gap (Egap = 1.741-1.956 eV) in AO1-AO6 as compared to AOR (Egap = 2.040; λmax=743 nm) in chloroform. Significant charge transferred from donor to BT acceptors through ITT core in AO1-AO6 as illustrated by DOS, FMOs and TDM analyses. All entitled compounds (AO1-AO6) exhibited a notable NLO response relative to the AOR. Particularly, AO2 displayed the prominent results like < α > = 2.790 × 10-22 esu, βtotal = 7.027 × 10-27 esu and γtotal = 11.440 × 10-32 esu among all the derivatives. This might be owing to unique optoelectronic characteristics such as lowest Egap (1.741 eV) and hardness (0.871 eV) with highest softness (0.574 eV) and absorption spectrum (820 nm) of AO2. Hence, these calculations illustrated that the end-capped substitution of acceptor moieties with BT acceptors and the incorporation of conjugated donor system played a vital role in improving the NLO aptitude. Overall, these ITT-based derivatives can be considered as potential materials for promising applications in NLO field.
Collapse
Affiliation(s)
- Saadia Haq
- Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan.
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan.
| | - Ataualpa Albert Carmo Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil
| | - Norah Alhokbany
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Ke Chen
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
2
|
Khalid M, Arshad M, Haroon M, Braga AAC, Alhokbany N. Exploring key electronic and non-linear optical amplitute with bilateral intramolecular charge transfer into thieno[3,2- b]thiophene-based compounds: a DFT approach. RSC Adv 2025; 15:6291-6307. [PMID: 40034806 PMCID: PMC11874931 DOI: 10.1039/d4ra08662g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/17/2025] [Indexed: 03/05/2025] Open
Abstract
Organic molecules are considered important NLO materials in the modern age because of their potential optoelectronic features. Therefore, a series of organic molecules (DBTD1-DBTD7) with a D-π-A architecture was designed from the reference compound (DBTR) by structurally tailoring it with effective donors and making significant modifications to the π-spacers. All derivatives and references were initially optimized at the M06 functional with a 6-311G(d,p) basis set. Furthermore, the optimized structures (DBTR and DBTD1-DBTD7) were used to determine the density of states (DOS), frontier molecular orbitals (FMOs), natural bond orbital (NBO), UV-Visible, transition density matrix (TDM) analyses, and the most significant NLO properties. Among the compounds, DBTD4 had the smallest band gap (2.882 eV) which was further supported by DOS analysis. The global reactivity parameters were also related to the HOMO-LUMO band gap, where the compound with the lowest band gap showed a lower hardness value and higher softness value. NBO analysis was used to explain the molecular stability and hyperconjugation. DBTD4 and DBTD5 demonstrated comparable low bandgaps with the highest comparable NLO parameter values. However, we also observed efficient NLO characteristics for DBTD6 and DBTD7. The highest μ tot value is observed in DBTD6 as 10.362 D, whereas the highest α tot (1.48 × 10-22 and 1.47 × 10-22 esu) is observed in DBTD6 and DBTD7. Further, β tot (6.68 × 10-28 and 6.23 × 10-28 esu) in DBTD4 and DBTD5 and γ tot (6.20 × 10-33 and 6.59 × 10-33 esu) values are observed in DBTD5 and DBTD6. To acquire favorable NLO responses in molecules, structural modelling utilizing efficient donor units played significant role. Thus, current research insights encourage researches to develop efficient NLO materials for optoelectronic applications.
Collapse
Affiliation(s)
- Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Memoona Arshad
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Muhammad Haroon
- Department of Chemistry and Biochemistry, Miami University Oxford OH USA
| | - Ataualpa Albert Carmo Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo Av. Prof. Lineu Prestes, 748 São Paulo 05508-000 Brazil
| | - Norah Alhokbany
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| |
Collapse
|
3
|
Shafiq I, Khalid M, Jawaria R, Shafiq Z, Murtaza S, Braga AAC. Exploring the photovoltaic properties of naphthalene-1,5-diamine-based functionalized materials in aprotic polar medium: a combined experimental and DFT approach. RSC Adv 2024; 14:33048-33060. [PMID: 39434999 PMCID: PMC11493133 DOI: 10.1039/d4ra03916e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
In this study, a series of naphthalene-1,5-diamine-based donor chromophores (ND1-ND9) with A-D-A architecture was synthesized through a condensation reaction between amines and substituted aldehydes. Various spectroscopic techniques i.e., FTIR, UV-Vis, 1HNMR and 13CNMR were performed for structural elucidation of naphthalene-1,5-diamine-based chromophores. Accompanying the synthesis, quantum chemical calculations were also accomplished at MPW1PW91/6-311G (d,p) functional of DFT/TD-DFT approaches to explore the photovoltaic properties of ND1-ND9 compounds. A comparative study between experimental and DFT results of vibrational and UV-Vis analyses showed a good harmony. All compounds showed band gaps in the range of 3.804-3.900 eV with absorption spectra in the UV region (397.169-408.822 nm). Frontier molecular orbital (FMO) findings revealed an efficient intramolecular charge transfer (ICT) from the central naphthalene-1,5-diamine-based donor core towards terminal acceptors. This significant charge transfer was also supported by the density of states (DOS) and transition density matrix (TDM) maps. All synthesized chromophores showed lower exciton binding energy values (E b = 0.670-0.785 eV), illustrating higher exciton dissociation rates with greater charge transfer in the studied chromophores. A reasonable harmony was obtained by comparative investigations of a standard hole transport material (HTM), Spiro-OMe TAD, with ND1-ND9 compounds, which illustrated that these synthesized chromophores might be considered as good HTMs. Therefore, all analyses indicated that the naphthalene-1,5-diamine-based chromophores might be utilized as efficient photovoltaic materials.
Collapse
Affiliation(s)
- Iqra Shafiq
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Rifat Jawaria
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - Shahzad Murtaza
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Ataualpa A C Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo Av. Prof. LineuPrestes, 748 São Paulo 05508-000 Brazil
| |
Collapse
|
4
|
Khan M, Khalid M, Murtaza S, Braga AAC, Alrashidi KA, Ahmed S. Exploration of the effect of multiple acceptor and π-spacer moieties coupled to indolonaphthyridine core for promising organic photovoltaic properties: a first principles framework. Sci Rep 2024; 14:19820. [PMID: 39191819 PMCID: PMC11350145 DOI: 10.1038/s41598-024-70457-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Herein, the indolonaphthyridine-based molecules (INDTD1-INDTD8) with A1-π-A2-π-A1 configuration were designed by the end-capped modification of INDTR reference with various acceptors. The density functional theory (DFT) and time-dependent DFT (TD-DFT) analyses at M06/6-31G(d,p) level were reported in this research to explore their optoelectronic and photovoltaic features. Their geometrical structures were initially optimized at the afore-said level and followed by various calculations such as the frontier molecular orbitals (FMOs), UV-Visible, density of states (DOS), transition density matrix (TDM), binding energy (Eb), open circuit voltage (Voc) and fill factor (FF). Moreover, their global reactivity parameters (GRPs) were depicted by using the HOMO-LUMO band gaps obtained from the FMOs study. The tailored molecules demonstrated lower band gaps (2.183-2.269 eV) than INDTR (2.288 eV). They also showed bathochromic shifts in the visible region in chloroform (735.937-762.318 nm) and gas phase (710.384-729.571 nm) as compared to INDTR (724.710 and 698.498 nm, respectively). Further, intramolecular charge transfer (ICT) was demonstrated via the DOS and TDM graphical maps. Among all the entitled chromophores, INDTD7 showed significantly reduced band gap (2.183 eV), red-shifted absorption value (760.914 nm) in chloroform solvent and minimal Eb value (0.554 eV). The presence of -SO3H groups on the terminal acceptors of INDTD7 may enhance the mobility of charges. The results suggested that the newly designed chromophores can be effective candidates for the future organic solar cell applications. Moreover, this study may encourage the experimentalists to develop photovoltaic materials.
Collapse
Affiliation(s)
- Mashal Khan
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan.
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan.
| | - Shahzad Murtaza
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Ataualpa Albert Carmo Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil
| | - Khalid Abdullah Alrashidi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Sarfraz Ahmed
- Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| |
Collapse
|
5
|
Haq S, Tariq A, Naz S, Abid S, Akhtar MN, Bullo S, Alhokbany N, Ahmed S. Remarkable enhancement of the nonlinear optical behavior towards asymmetric substituted D-π-A dithiophene-based compounds. J Mol Model 2024; 30:287. [PMID: 39066914 DOI: 10.1007/s00894-024-06081-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
CONTEXT Nonlinear optics (NLO) is an interesting field that discloses the interaction between intense light and matter, leading to a deeper understanding of NLO phenomena. Organic chromophores are considered as promising materials for NLO due to their exceptional structural versatility, ease of processing, and rapid response to NLO effects. Functional materials based on thiophene have been indispensable in advancing organic optoelectronics. Specifically, dithiophene-based compounds display weaker aromaticity, reduced steric hindrance, and additional sulfur-sulfur interactions. Hence, by utilizing dithieno[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene (DTBDT) as the core structure, designing of a set of organic compounds with D1-π-D2-π-A-type framework, namely ZR1D1-ZR1D8, was carried out in this study. The analysis of frontier molecular orbitals (FMOs) revealed that compound ZR1D2 has the lowest band gap of 1.922 eV among all the investigated chromophores. The correlation of global reactivity parameters (GRPs) with the band gap values indicates that ZR1D2 displays a hardness of 0.961 eV and a softness of 0.520 eV-1. Among the studied compounds, ZR1D2 demonstrated a broad absorption spectrum that extended across the visible region. The maximum absorption wavelengths were observed at 766.470 nm for ZR1D2 and 749.783 nm for ZR1D5. These DTBDT-based dyes exhibit a remarkable NLO response with exceptionally high first hyperpolarizability (βtot) values. Among them, compound ZR1D2 stands out with the highest average linear polarizability (⟨α⟩ = 3.0 × 10-22 esu), first hyperpolarizability (βtot = 4.1 × 10-27 esu), and second hyperpolarizability (γtot = 7.5 × 10-32 esu) values. In summary, this investigation offers valuable insights into the potential use of DTBDT-based organic chromophores, particularly ZR1D2, for advanced applications in NLO. These findings suggest promising opportunities for researchers to synthesize these molecules and utilize these compounds in hi-tech NLO-based applications. METHODOLOGY The density functional theory computations were performed at the M06/6-311G(d,p) functional to explore their structural effects on electronic and NLO findings. Various analyses like highest occupied molecular orbital-lowest unoccupied molecular orbital energy gaps, absorption maxima, density of states, open circuit voltage, binding energies of electrons and holes, and transition density matrix are employed to investigate photovoltaic efficiencies of the derivatives. Different software packages like Avogadro, Multiwfn, Origin, GaussSum, PyMOlyze, and Chemcraft were used to deduce conclusions from the output files.
Collapse
Affiliation(s)
- Saadia Haq
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Areej Tariq
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Salma Naz
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Saba Abid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Muhammad Nadeem Akhtar
- Division of Inorganic Chemistry, Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Saifullah Bullo
- Department of Human and Rehabilitation Sciences, Begum Nusrat Bhutto Women University, Sukkur, Sindh, Pakistan.
| | - Norah Alhokbany
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sarfraz Ahmed
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA, 02114, USA
| |
Collapse
|
6
|
Haq S, Khalid M, Hussain A, Haroon M, Alshehri SM. A first principles based prediction of electronic and nonlinear optical properties towards cyclopenta thiophene chromophores with benzothiophene acceptor moieties. Sci Rep 2024; 14:13971. [PMID: 38886473 PMCID: PMC11183240 DOI: 10.1038/s41598-024-64700-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
In the current work, organic cyclopenta-thiophene (CPT) based derivatives (FICR and FICD1-FICD5) were designed by the modulation of end-capped acceptor group of the reference molecule i.e., FICR, to explore their nonlinear optical (NLO) response. The effect of terminal acceptor and donor groups in the tailored compounds was explored by using DFT based quantum calculations. The UV-Vis analysis, frontier molecular orbitals (FMOs), transition density matrix (TDM), natural bond orbitals (NBOs), density of states (DOS), nonlinear optical (NLO) analyses were performed at M06/6-311G(d,p) functional. The LUMO-HOMO band gaps of FICD1-FICD5 were found to be smaller (1.75-1.92 eV) comparative to FICR (1.98 eV). Moreover, the global reactivity parameters (GRPs) were correlated with the results of other analyses. FICD2 and FICD5 with lowest band gap 1.73 and 1.75 eV showed less hardness (0.86 and 0.87 eV, respectively), high softness (0.58 and 0.57 eV-1), and larger absorption spectrum (815 and 813 nm) in gaseous phase and (889 and 880 nm) in solvent phase among all entitled compounds. All the designed chromophores (FICD1-FICD5) demonstrated a significant NLO response as compared to FICR. Particularly, FICD2 and FICD5 exhibited the highest average linear polarizability (<α>) [2.86 × 10-22 and 2.88 × 10-22 esu], first hyperpolarizability (βtot) (8.43 × 10-27 and 8.35 × 10-27 esu) and second hyperpolarizability (γtot) (13.20 × 10-32 and 13.0 × 10-32 esu) values as compared to the other derivatives. In nutshell, structural modeling of CPT based chromophores with extended acceptors, can be significantly utilized to achieve potential NLO materials.
Collapse
Affiliation(s)
- Saadia Haq
- Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan.
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan.
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Haroon
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Rasool F, Wu G, Shafiq I, Kousar S, Abid S, Alhokbany N, Chen K. Heterocyclic Donor Moiety Effect on Optical Nonlinearity Behavior of Chrysene-Based Chromophores with Push-Pull Configuration via the Quantum Chemical Approach. ACS OMEGA 2024; 9:3596-3608. [PMID: 38284097 PMCID: PMC10809687 DOI: 10.1021/acsomega.3c07596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/07/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
Organic-based nonlinear optical (NLO) materials may be used in many optical-electronic systems and other next-generation defense technologies. With the importance of NLO materials, a series of push-pull architecture (D-π-A) derivatives (DTMD2-DTMD6) were devised from DTMR1 through structural alteration of different efficient donor heterocyclic groups. Density functional theory-based computations were executed at the MPW1PW91/6-31G(d,p) level to explore the NLO behavior of the derivatives. To investigate the optoelectronic behavior of the said compounds, various analyses like the frontier molecular orbital (FMO), global reactivity parameters, density of state (DOS), absorption spectra (UV-vis), natural bond orbital, and transition density matrix (TDM) were performed. The derivatives have a smaller band gap (2.156-1.492 eV) and a larger bathochromic shift (λmax = 692.838-969.605 nm) as compared to the reference chromophore (ΔE = 2.306 eV and λmax = 677.949 nm). FMO analysis revealed substantial charge conduction out of the donor toward the acceptor via a spacer that was also shown by TDM and DOS analyses. All derivatives showed promising NLO results, with the maximum amplitude of linear polarizability ⟨α⟩ and first (βtotal) and second (γtotal) hyperpolarizabilities over their reference chromophore. DTMD2 contained the highest βtotal (7.220 × 10-27 esu) and γtotal (1.720 × 10-31 esu) values corresponding with the reduced band gap (1.492 eV), representing potential futures for a large NLO amplitude. This structural modification through the use of various donors has played a significant part in achieving promising NLO behavior in the modified compounds.
Collapse
Affiliation(s)
- Faiz Rasool
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Gang Wu
- Department
of Infectious Diseases, The Affiliated Hospital
of Southwest Medical University, Luzhou 646000, China
| | - Iqra Shafiq
- Institute
of Chemistry,Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre
for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Shehla Kousar
- Institute
of Chemistry,Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre
for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Saba Abid
- Institute
of Chemistry,Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre
for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Norah Alhokbany
- Department
of Chemistry, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Ke Chen
- Department
of Infectious Diseases, The Affiliated Hospital
of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
8
|
Khalid M, Murtaza S, Gull K, Abid S, Imran M, Braga AAC. Influence of acceptors on the optical nonlinearity of 5 H-4-oxa-1,6,9-trithia-cyclopenta[ b]-as-indacene-based chromophores with a push-pull assembly: a DFT approach. RSC Adv 2024; 14:1169-1185. [PMID: 38174281 PMCID: PMC10762516 DOI: 10.1039/d3ra06673h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Herein, a series of compounds (TPD1-TPD6) having a D-π-A architecture was quantum chemically designed via the structural modulation of TPR. Quantum chemical calculations were employed to gain a comprehensive insight into the structural and optoelectronic properties of the designed molecules at the M06/6-311G(d,p) level. Interestingly, all the designed chromophores displayed narrow energy gaps (2.123-1.788 eV) and wider absorption spectra (λmax = 833.619-719.709 nm) with a bathochromic shift in comparison to the reference compound (λmax = 749.602 nm and Egap = 3.177 eV). Further, Egap values were utilized to evaluate global reactivity parameters (GRPs), which indicate that all the chromophores expressed higher softness (σ = 0.134-0.559 eV-1) and lower hardness (η = 4.155-4.543 eV) values than the reference chromophore. Efficient charge transfer from donors towards acceptors was noted through FMOs, which was also supported by DOS and TDM analyses. Overall, the TPD3 derivative exhibited a remarkable reduction in the HOMO-LUMO band gap (1.788 eV) with a red shift as λmax = 833.619 nm. Furthermore, it exhibited prominent linear and non-linear characteristics such as μtotal = 24.1731 D, 〈α〉 = 2.89 × 10-22 esu, and βtotal = 7.24 × 10-27 esu, among all derivatives. The above findings revealed that significant non-linear optical materials could be achieved through structural tailoring with studied efficient acceptors.
Collapse
Affiliation(s)
- Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Shahzad Murtaza
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Khansa Gull
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Saba Abid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University P. O. Box 9004 Abha 61413 Saudi Arabia
| | - Ataualpa A C Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo Av. Prof. Lineu Prestes, 748 São Paulo 05508-000 Brazil
| |
Collapse
|
9
|
Rashid M, Khalid M, Ashraf A, Saleem T, Shafiq I, Shakil MA, Zainab B, El-Kott AF, Yaqub M, Shafiq Z. Multicomponent synthesis of pyrido[2,3- b]pyrazine derivatives: electrochemical DNA sensing, nonlinear optical properties and biological activity. RSC Adv 2023; 13:32160-32174. [PMID: 37920758 PMCID: PMC10619479 DOI: 10.1039/d3ra05365b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
We synthesized novel pyrido[2,3-b]pyrazin based heterocyclic compounds (4-7) and their chemical structures were ascertained by spectral techniques (NMR, FT-IR). Besides experimental investigation, density functional theory (DFT) computations with B3LYP/6-31G(d,p) level of theory were executed to obtain spectroscopic and electronic properties. Nonlinear optical (NLO) properties, frontier molecular orbitals (FMOs), UV-visible, vibrational analysis, natural bond orbitals (NBOs), transition density matrix (TDM) and density of states (DOS) analyses of molecules (4-7) were accomplished at B3LYP/6-31G (d,p) level. Global reactivity parameters (GRPs) were correlated with the band gap (Egap) values; compound 7 with lower Egap (3.444 eV), exhibited smaller value of hardness (1.722 eV) with greater softness value (0.290 eV-1). The dipole moment (μ), average polarizability 〈α〉, first (βtot) and second 〈γ〉 hyper-polarizabilities were calculated for compounds (4-7). Compound 7 showed less Egap, highest absorption wavelength and remarkable NLO response. The highest 〈α〉, βtot and 〈γ〉 values for compound 7 were observed as 3.90 × 10-23, 15.6 × 10-30 and 6.63 × 10-35 esu, respectively. High NLO response revealed that pyrido[2,3-b]pyrazin based heterocyclic compounds had very remarkable contributions towards NLO technological applications. Further compounds (4-7) are utilized for the first time in electrochemical sensing of DNA, in vitro antioxidant and antiurease activity.
Collapse
Affiliation(s)
- Muhammad Rashid
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan +92-3006559811
| | - Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Abida Ashraf
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan +92-3006559811
- Department of Chemistry, Govt. Graduate College Shah Rukne-Alam Multan Pakistan
| | - Tahira Saleem
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan +92-3006559811
| | - Iqra Shafiq
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Muhammad Azeem Shakil
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan +92-3006559811
| | - Briha Zainab
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan +92-3006559811
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University Abha Saudi Arabia
- Department of Zoology, College of Science, Damanhour University Egypt
| | - Muhammad Yaqub
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan +92-3006559811
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan +92-3006559811
| |
Collapse
|
10
|
Sagir M, Mushtaq K, Khalid M, Khan M, Tahir MB, Braga AAC. Exploration of linear and third-order nonlinear optical properties for donor-π-linker-acceptor chromophores derived from ATT-2 based non-fullerene molecule. RSC Adv 2023; 13:31855-31872. [PMID: 37920195 PMCID: PMC10618729 DOI: 10.1039/d3ra04580c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
In the current study, seven non-fullerene compounds abbreviated as ATTD2-ATTD8 were designed through structural tailoring and their nonlinear optical (NLO) properties were reported. The objective of this study was to explore the potential for newly configured D-π-A type non-fullerene-based compounds. Quantum chemical methods were adopted and revealed the molecules as highly efficient materials with favorable NLO characteristics for use in optoelectronic devices. The M06 functional along with the 6-311G(d,p) basis set in chloroform solvent were utilized for the natural bonding orbital (NBO) analysis, absorption spectra and computational assessments of frontier molecular orbitals (FMOs), global reactivity descriptors (GRPs), transition density matrix (TDM) and nonlinear optical properties (NLO) for ATTR1 and ATTD2-ATTD8. The HOMO-LUMO energy gap was significantly reduced in all the designed moieties compared to the reference compound in the following decreasing order: ATTR1 > ATTD8 > ATTD4 > ATTD5 > ATTD2 > ATTD7 > ATTD6 > ATTD3. All of the designed molecules (ATTD2-ATTD8) showed good NLO response. Global reactivity parameters were found to be closely associated with the band gap between the HOMO and LUMO orbitals, and the compound with the smallest energy gap, ATTD3, exhibited a lower hardness value of 1.754 eV and higher softness value of 0.570 eV with outstanding NLO response. For the reference compound and ATTD2-ATTD8 derivatives, attributes like dipole moment (μtot), average polarizability 〈α〉, first hyperpolarizability (βtot), and second hyperpolarizability γtot were calculated. Out of all the derivatives, ATTD3 revealed the highest amplitude with a βtot of 8.23 × 10-27 esu, which was consistent with the reduced band gap (1.754 eV) and suggested it was the best possibility for NLO materials in the future.
Collapse
Affiliation(s)
- Muhammad Sagir
- Institute of Chemical and Environmental Engineering, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Kalsoom Mushtaq
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Mashal Khan
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Muhammad Bilal Tahir
- Institute of Physics, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Ataualpa A C Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de Saõ Paulo Av. Prof. Lineu Prestes, 748 Sao Paulo 05508-000 Brazil
| |
Collapse
|
11
|
Abid S, Khalid M, Sagir M, Imran M, Braga AAC, Chandra Ojha S. Exploration of nonlinear optical enhancement in acceptor-π-donor indacenodithiophene based derivatives via structural variations: a DFT approach. RSC Adv 2023; 13:28076-28088. [PMID: 37746336 PMCID: PMC10517168 DOI: 10.1039/d3ra04858f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023] Open
Abstract
Herein, a series of indacenodithiophene-based derivatives (TNPD1-TNPD6) were designed having D-π-A architecture via end capped acceptor modulation of a reference molecule (TNPR) to investigate nonlinear optical (NLO) behavior. Quantum chemical calculations were accomplished to examine electronic, structural and optical properties utilizing a density functional theory (DFT) approach at M06 functional with 6-311G(d,p) basis set. For this, natural bond orbitals (NBOs), density of states (DOS), frontier molecular orbitals (FMOs), transition density matrix (TDM) and non-linear optical (NLO) analyses were performed for TNPR and TNPD1-TNPD6. The structural modifications revealed a significant electronic contribution in tuning the HOMOs and LUMOs of the derivatives with lowered energy gaps and wider absorption spectra. FMOs findings revealed that compound TNPD5 was found with the lowest energy gap (1.692 eV) and with the highest softness (0.591 eV-1) among the derivatives. Furthermore, a UV-Vis study also disclosed that maximum absorption (λmax = 852.242 nm) was exhibited by TNPD5 in chloroform solvent. All the derivatives exhibited significant NLO results; in particular, TNPD5 showed the highest first hyper-polarizability (βtot = 4.653 × 10-27 esu) and second hyper-polarizability (γtot = 9.472 × 10-32 esu). These DFT findings revealed that the end-capped substituents play a key role in enhancing the NLO response of these push-pull chromophores and the studied derivatives can be utilized as efficient NLO materials.
Collapse
Affiliation(s)
- Saba Abid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Muhammad Sagir
- Institute of Chemical and Environmental Engineering, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Ataualpa A C Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo Av. Prof. Lineu Prestes, 748 São Paulo 05508-000 Brazil
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University Luzhou 646000 China
| |
Collapse
|
12
|
Borodina TN, Smirnov VI, Serykh VY, Rozentsveig IB. Structural and theoretical study of π-stacking interactions in new complexes based on CuCl 2 and 3-sulfonamide-substituted imidazo[2,1-b]thiazoles. J Mol Model 2023; 29:136. [PMID: 37045992 DOI: 10.1007/s00894-023-05549-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
CONTEXT At present, sulfonamides and their metal complexes have received a new impetus for development. Of particular interest is the study of molecular and crystal structures, which takes into account weak non-valent interactions. Despite the low energy of such interactions, in many cases, they act collectively, and the sum of their actions can play a significant role. As a result, the spectrum of medical and biological activity of new metal complexes is expanded. In this regard, the synthesis and study of the molecular and crystal structure of sulfonamides and their metal complexes is of undoubted relevance. In this work, we studied non-valent intra- and intermolecular interactions in ligands of sulfonamide-substituted imidazo[2,1-b]thiazoles and their previously unknown complexes with CuCl2. The performed analysis of the data obtained by X-ray diffraction analysis made it possible to establish the intramolecular π-stacking interaction in imidazothiazole ligands, which is retained in their complexes with CuCl2. Within the framework of QTAIM topological analysis of electron density and DORI analysis, stereoelectronic and topological structures were studied. In the complexes, tetral, chalcogen, and pnycogen new interligand non-valent interactions were established. The energies of all established types of non-valent interactions have been calculated, and their comparative evaluation has been made. METHODS X-ray data of new arylsulfonylamino-substituted derivatives of imidazo[2,1-b]thiazoles and their metal complexes with CuCl2 have been studied. To determine the theoretical prerequisites for the occurrence of π-stacking in the molecules under study, the QTAIM method was used in the framework of the DFT/B3LYP/6-311 + G(d) calculation using the GAUSSIAN 09 program. In addition, the DORI electron density region overlap indicator and the Multiwfn program were used to analyze non-valent interactions.
Collapse
Affiliation(s)
- T N Borodina
- A.E. Favorsky Irkutsk Institute of Chemistry Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033, Irkutsk, Russian Federation.
| | - V I Smirnov
- A.E. Favorsky Irkutsk Institute of Chemistry Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033, Irkutsk, Russian Federation
| | - V Yu Serykh
- A.E. Favorsky Irkutsk Institute of Chemistry Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033, Irkutsk, Russian Federation
| | - I B Rozentsveig
- A.E. Favorsky Irkutsk Institute of Chemistry Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033, Irkutsk, Russian Federation
| |
Collapse
|
13
|
Haroon M, Akhtar T, Khalid M, Mehmood H, Asghar MA, Baby R, Orfali R, Perveen S. Synthesis, characterization and exploration of photovoltaic behavior of hydrazide based scaffolds: a concise experimental and DFT study. RSC Adv 2023; 13:7237-7249. [PMID: 36891493 PMCID: PMC9986803 DOI: 10.1039/d3ra00431g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Solar energy being a non-depleting energy resource, has attracted scientists' attention to develop efficient solar cells to meet energy demands. Herein, a series of hydrazinylthiazole-4-carbohydrazide organic photovoltaic compounds (BDTC1-BDTC7) with an A1-D1-A2-D2 framework was synthesized with 48-62% yields, and their spectroscopic characterization was accomplished using FT-IR, HRMS, 1H and 13C-NMR techniques. Density functional theory (DFT) and time dependent DFT analyses were performed utilizing the M06/6-31G(d,p) functional to calculate the photovoltaic and optoelectronic properties of BDTC1-BDTC7via numerous simulations of the frontier molecular orbitals (FMOs), transition density matrix (TDM), open circuit voltage (V oc) and density of states (DOS). Moreover, the conducted analysis on the FMOs revealed efficient transference of charge from the highest occupied to the lowest unoccupied molecular orbitals (HOMO → LUMO), further supported by TDM and DOS analyses. Furthermore, the values of binding energy (E b = 0.295 to 1.150 eV), as well as reorganization energy of the holes (-0.038-0.025 eV) and electrons (-0.023-0.00 eV), were found to be smaller for all the studied compounds, which suggests a higher exciton dissociation rate with greater hole mobility in BDTC1-BDTC7. V oc analysis was accomplished with respect to HOMOPBDB-T-LUMOACCEPTOR. Among all the synthesized molecules, BDTC7 was found to have a reduced band gap (3.583 eV), with a bathochromic shift and absorption maximum at 448.990 nm, and a promising V oc (1.97 V), thus it is regarded as a potential candidate for high performance photovoltaic applications.
Collapse
Affiliation(s)
- Muhammad Haroon
- Department of Chemistry, Mirpur University of Science and Technology (MUST) 10250-Mirpur AJK Pakistan .,Department of Chemistry, Government Major Muhammad Afzal Khan (Shaheed), Boys Degree College Afzalpur, Mirpur (Affiliated with Mirpur University of Science and Technology (MUST)) 10250-Mirpur AJK Pakistan
| | - Tashfeen Akhtar
- Department of Chemistry, Mirpur University of Science and Technology (MUST) 10250-Mirpur AJK Pakistan
| | - Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan .,Center for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Hasnain Mehmood
- Department of Chemistry, Mirpur University of Science and Technology (MUST) 10250-Mirpur AJK Pakistan
| | - Muhammad Adnan Asghar
- Department of Chemistry, Division of Science and Technology, University of Education Lahore Pakistan
| | - Rabia Baby
- Department of Education, Sukkur IBA University 65200 Pakistan
| | - Raha Orfali
- Department of Pharmacognosy, Collage of Pharmacy, King Saud University PO Box 2457 Riyadh 11451 Saudi Arabia
| | - Shagufta Perveen
- Department of Chemistry, School of Computer, Mathematical and Natural Sciences, Morgan State University Baltimore MD 21251 USA
| |
Collapse
|
14
|
Alarfaji SS, Fatima D, Ali B, Sattar A, Hussain R, Hussain R, Ayub K. Computational Investigation of Near-Infrared-Absorbing Indeno[1,2- b]indole Analogues as Acceptors in Organic Photovoltaic Devices. ACS OMEGA 2023; 8:1430-1442. [PMID: 36643501 PMCID: PMC9835169 DOI: 10.1021/acsomega.2c06878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Organic solar cells (OSCs) with fullerene-free acceptors have recently been in high demand in the solar cell market because OSCs are less expensive, more flexible, long-lasting, eco-friendly, and, most importantly, have better photovoltaic performance with a higher PCE. We used INTIC as our reference R molecule and designed five new molecules DF1-DF5 from this R molecule. We attempted to test the power conversion efficiencies of five designed novel molecules, DF1-DF5. Therefore, we compared the PCE values of DF1-DF5 with that of R. We used a variety of computational techniques on these molecules to achieve this goal. Among the designed molecules, DF5 proved to be the best due to its lowest H-L bandgap energy E g (1.82 eV), the highest value of λmax (844.58 nm) within dichloromethane, the lowest excitation energy (1.47 eV), and the lowest oscillator strength value. The newly designed molecule DF2 exhibited the highest dipole moment (21.98 D), while DF3 displayed the minimum binding energy (0.34 eV) and the highest V oc value (1.37 V) with HOMOdonor-LUMOacceptor. According to the partial density of states (PDOS) and transition density matrix (TDM) analysis, DF2 and DF5 exhibited the best results. Charge-transfer (CT) analysis of the blend DF5 and PTB7-Th confirmed the accepting nature of the DF5 molecule. These findings show that by modifying the end-capped units, we can create customized molecules with improved photovoltaic properties. These findings also show that when compared with R, all of the designed molecules DF1-DF5 have improved optoelectronic properties. As a result, it is strongly advised to employ these conceptualized molecules in the practical synthesis of organic solar cells (OSCs).
Collapse
Affiliation(s)
- Saleh S. Alarfaji
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha61413, Saudi Arabia
- Research
center for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha61514, Saudi Arabia
| | - Doua Fatima
- Department
of Chemistry, Division of Science and Technology, University of Education, Lahore32200, Pakistan
| | - Bakhat Ali
- Institute
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan64200, Pakistan
| | - Abdul Sattar
- Department
of Chemistry, Division of Science and Technology, University of Education, Lahore32200, Pakistan
| | - Riaz Hussain
- Department
of Chemistry, Division of Science and Technology, University of Education, Lahore32200, Pakistan
| | - Riaz Hussain
- Department
of Chemistry, University of Okara, Okara56300, Pakistan
| | - Khurshid Ayub
- Department
of Chemistry, COMSATS Institute of Information
Technology, Abbottabad22060, Pakistan
| |
Collapse
|
15
|
Khalid M, Naz S, Mahmood K, Hussain S, Carmo Braga AA, Hussain R, Ragab AH, Al-Mhyawi SR. First theoretical probe for efficient enhancement of optical nonlinearity via structural modifications into phenylene based D-π-A configured molecules. RSC Adv 2022; 12:31192-31204. [PMID: 36349029 PMCID: PMC9623554 DOI: 10.1039/d2ra04844b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/12/2022] [Indexed: 08/29/2023] Open
Abstract
The design of nonlinear optical (NLO) materials using conjugated molecules via different techniques is reported in the literature to boost the use of these systems in NLO. Therefore, in the current study, designed phenylene based non-fullerene organic compounds with a D-π-A framework were selected for NLO investigation. The initial compound (PMD-1) was taken as a reference and its seven derivatives (PMDC2-PMDC8) were made by introducing different acceptor moieties into the chemical structure of PMD-1. To explain the NLO findings, frontier molecular orbital (FMO), transition density matrix (TDM), density of states (DOS), natural bond orbital (NBO) and UV-Vis study of the title compounds was executed by applying the PBE1PBE functional with the 6-311G(d,p) basis set. The descending order of band gaps (E gap) was reported as PMDC7 (2.656) > PMDC8 (2.485) > PMD-1 (2.131) > PMDC3 (2.103) > PMDC2 (2.079) > PMDC4 (2.065) > PMDC5 (2.059) > PMDC6 (2.004), in eV. Global reactivity parameters (GRPs) were associated with E gap values as PMDC6 with the lowest band gap showed less hardness (0.0368 E h) and high softness (13.5785 E h). The UV-Vis investigation revealed that the maximum λ max (739.542 nm) was exhibited by PMDC6 in dichloromethane (DCM) as compared to other derivatives. Additionally, natural bond orbital (NBO) based findings revealed that PMDC6 exhibited the highest stability value (34.98 kcal mol-1) because of prolonged hyper-conjugation. The dipole moment (μ), average linear polarizability 〈α〉, first hyperpolarizability (β tot) and second hyperpolarizability (γ tot) were evaluated for the reference and its derivatives. Consequently, among the designed compounds, the highest β tot (4.469 × 10-27 esu) and γ tot (5.600 × 10-32 esu) values were shown by PMDC6. Hence, it's concluded from said results that these structural modifications proved PMDC6 as the best second and third order NLO candidate for various applications like fiber optics, signal processing and data storage.
Collapse
Affiliation(s)
- Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Salma Naz
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - Shabbir Hussain
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Ataualpa Albert Carmo Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo Av. Prof. Lineu Prestes, 748 São Paulo 05508-000 Brazil
| | - Riaz Hussain
- Department of Chemistry, Division of Science and Technology, University of Education Lahore Pakistan
| | - Ahmed H Ragab
- Department of Chemistry, Faculty of Science, King Khalid University Abha 62224 Saudi Arabia
| | - Saedah R Al-Mhyawi
- Department of Chemistry, College of Science, University of Jeddah Jeddah 21419 Saudi Arabia
| |
Collapse
|
16
|
Khan MU, Hussain S, Asghar MA, Munawar KS, Khera RA, Imran M, Ibrahim MM, Hessien MM, Mersal GAM. Exploration of Nonlinear Optical Properties for the First Theoretical Framework of Non-Fullerene DTS(FBTTh 2) 2-Based Derivatives. ACS OMEGA 2022; 7:18027-18040. [PMID: 35664583 PMCID: PMC9161415 DOI: 10.1021/acsomega.2c01474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Organic compounds having significant nonlinear optical (NLO) applications are being employed in the optoelectronics field. In the current work, a series of non-fullerene acceptor (NFA) based compounds are designed by modifying the acceptors with different substituents using DTS(FBTTh 2 ) 2 R1 as a reference compound. To study the NLO responses to the tuning of various acceptors, DFT and TD-DFT based parameters were calculated at the M06 level along with the 6-31G(d,p) basis set. The designed compounds (MSTD2-MSTD7) showed smaller values of the energy gap in comparison to the reference compound. The energy gaps of the title compounds were linked to global reactivity insights; MSTD7 provided a lower band gap, with smaller and larger quantities for hardness and softness characteristics, respectively. Further, UV-vis analyses were performed for all of the designed compounds, displaying wavelengths red-shifted from that of DTS(FBTTh 2 ) 2 R1 . The intraelectron transfer (ICT) process and stability of the title compounds were explored via frontier molecular orbital (FMO) and natural bond orbital (NBO) studies, respectively. Out of all the designed compounds, the highest value of linear polarizability ⟨α⟩ of 3.485 × 10-22 esu, first hyperpolarizability (βtotal) of 13.44 × 10-27 esu and second-order hyperpolarizability ⟨γ⟩ of 3.66 × 10-31 esu were exhibited by MSTD7. In short, all of the designed compounds exhibited promising NLO properties because of their low charge transport resistance. These NLO properties may be useful for experimental researchers to uncover NLO materials for modern applications.
Collapse
Affiliation(s)
| | - Shabbir Hussain
- Department
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Muhammad Adnan Asghar
- Department
of Chemistry, Division of Science and Technology, University of Education Lahore 54770, Pakistan
| | | | - Rasheed Ahmad Khera
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Imran
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mohamed M. Ibrahim
- Department
of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mahmoud M. Hessien
- Department
of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Gaber A. M. Mersal
- Department
of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
17
|
Khalid M, Arshad MN, Murtaza S, Shafiq I, Haroon M, Asiri AM, Figueirêdo de AlcântaraMorais S, Braga AAC. Enriching NLO efficacy via designing non-fullerene molecules with the modification of acceptor moieties into ICIF2F: an emerging theoretical approach. RSC Adv 2022; 12:13412-13427. [PMID: 35520135 PMCID: PMC9066771 DOI: 10.1039/d2ra01127a] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022] Open
Abstract
Non-fullerene (NF)-based compounds have attracted much attention as compared to fullerene-based materials because of their promising optoelectronic properties, lower synthetic cost and greater stability. Usually, the end-capped groups have a promising impact in magnifying the nonlinear optical (NLO) characteristics in the non-fullerene molecules. Based on this, a series of new NLO active non-fullerene molecules (NFAD2-NFAD6) have been established. The non-fullerene molecules (NFAD2-NFAD6) were designed by end-capped modification in acceptor moieties of the reference (NFAR1), while donor and π-bridge moieties were kept the same in the entire series. Quantum chemistry-based calculations at the M06/6-311G(d,p) level were done to determine the NLO characteristics and for other supportive analyses. The acceptor and donor moieties were utilized at the opposite terminals of NFAD2-NFAD6, which proved to be an effective approach in tuning the FMO band gap. Overall the results of natural bond orbital (NBO), density of state (DOS) and transition density matrices (TDMs) analyses supported the NLO properties of the designed compounds. Among all the studied compounds, NFAD4 was proven to be the most suitable candidate due to its promising NLO properties, well supported by a lower bandgap of 1.519 eV and a maximum absorption wavelength of 999.550 nm. Therefore, NFAD4 was reported with greater amplitude of dipole polarizability (10.429 e.s.u), average polarizability (2.953 × 10-22 e.s.u), first hyperpolarizability (13.16 × 10-27 e.s.u.) and second hyperpolarizability (2.150 × 10-31 e.s.u.) than other derivatives and NFAR1. Subsequently, the present study depicted the significance of utilizing different non-fullerene (NF)-based acceptor moieties to achieve the promising NLO material. This computational study may lead towards new plausible pathways for researchers to design potent NLO substances for impending hi-tech applications.
Collapse
Affiliation(s)
- Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Muhammad Nadeem Arshad
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 P.O. Box 80203 Saudi Arabia.,Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University Jeddah 21589 P.O. Box 80203 Saudi Arabia
| | - Shahzad Murtaza
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Iqra Shafiq
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Muhammad Haroon
- Department of Chemistry, Government Major Muhammad Afzal Khan (Shaheed), Boys Degree College Afzalpur, Mirpur, (Affiliated with Mirpur University of Science and Technology (MUST) 10250-Mirpur AJK Pakistan
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 P.O. Box 80203 Saudi Arabia.,Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University Jeddah 21589 P.O. Box 80203 Saudi Arabia
| | - Sara Figueirêdo de AlcântaraMorais
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo Av. Prof. Lineu Prestes 748, São Paulo 05508-000 Brazil
| | - Ataualpa A C Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo Av. Prof. Lineu Prestes 748, São Paulo 05508-000 Brazil
| |
Collapse
|
18
|
Khalid M, Momina, Imran M, Rehman MFU, Braga AAC, Akram MS. Molecular engineering of indenoindene-3-ethylrodanine acceptors with A2-A1-D-A1-A2 architecture for promising fullerene-free organic solar cells. Sci Rep 2021; 11:20320. [PMID: 34645887 PMCID: PMC8514561 DOI: 10.1038/s41598-021-99308-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/14/2021] [Indexed: 12/03/2022] Open
Abstract
Considering the increased demand and potential of photovoltaic devices in clean, renewable electrical and hi-tech applications, non-fullerene acceptor (NFA) chromophores have gained significant attention. Herein, six novel NFA molecules IBRD1-IBRD6 have been designed by structural modification of the terminal moieties from experimentally synthesized A2-A1-D-A1-A2 architecture IBR for better integration in organic solar cells (OSCs). To exploit the electronic, photophysical and photovoltaic behavior, density functional theory/time dependent-density functional theory (DFT/TD-DFT) computations were performed at M06/6-311G(d,p) functional. The geometry, electrical and optical properties of the designed acceptor molecules were compared with reported IBR architecture. Interestingly, a reduction in bandgap (2.528-2.126 eV), with a broader absorption spectrum, was studied in IBR derivatives (2.734 eV). Additionally, frontier molecular orbital findings revealed an excellent transfer of charge from donor to terminal acceptors and the central indenoindene-core was considered responsible for the charge transfer. Among all the chromophores, IBRD3 manifested the lowest energy gap (2.126 eV) with higher λmax at 734 and 745 nm in gaseous phase and solvent (chloroform), respectively due to the strong electron-withdrawing effect of five end-capped cyano groups present on the terminal acceptor. The transition density matrix map revealed an excellent charge transfer from donor to terminal acceptors. Further, to investigate the charge transfer and open-circuit voltage (Voc), PBDBT donor polymer was blended with acceptor chromophores, and a significant Voc (0.696-1.854 V) was observed. Intriguingly, all compounds exhibited lower reorganization and binding energy with a higher exciton dissociation in an excited state. This investigation indicates that these designed chromophores can serve as excellent electron acceptor molecules in organic solar cells (OSCs) that make them attractive candidates for the development of scalable and inexpensive optoelectronic devices.
Collapse
Affiliation(s)
- Muhammad Khalid
- Department of Chemistry, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Momina
- Department of Chemistry, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | | | - Ataualpa Albert Carmo Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. LineuPrestes 748, São Paulo, 05508-000, Brazil
| | - Muhammad Safwan Akram
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK.
- National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK.
| |
Collapse
|
19
|
Siddique SA, Arshad M, Naveed S, Mehboob MY, Adnan M, Hussain R, Ali B, Siddique MBA, Liu X. Efficient tuning of zinc phthalocyanine-based dyes for dye-sensitized solar cells: a detailed DFT study. RSC Adv 2021; 11:27570-27582. [PMID: 35480647 PMCID: PMC9037920 DOI: 10.1039/d1ra04529f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022] Open
Abstract
The growing energy demand speed up the designing of competent photovoltaic materials. Herein, five zinc phthalocyanine-based donor materials T1–T5 are designed by substituting various groups (isopropoxy, cyano, fluoro, methoxycarbonyl, and dicyanomethyl) around zinc phthalocyanine. B3LYP/6-31G (d,p) level density functional theory (DFT) was used to investigate the optoelectronic properties of five zinc phthalocyanine-based dyes T1–T5 for dye-sensitized solar cells. The designed molecule T1 shows maximum absorption wavelength (λmax) in the absorption spectrum at 708.89 and 751.88 nm both in gaseous state and in THF (tetrahydrofuran) solvent. The Eg value of T1 (1.86 eV) is less than reference R, indicating a greater charge transfer rate for T1 among the molecules. The values of open-circuit voltages achieved with acceptor polymer PC71BM are higher than R except for T1 and are 0.69 V, 1.95 V, 1.20 V, 1.44 V, and 1.84 V for T1, T2, T3, T4, and T5, respectively. The lower the reorganization energy, the higher the charge transfer for T1 due to its lower hole mobility (0.06297 eV) than R. Thus, the designed T1–T5 molecules are expected to exhibit superior performance in dye-sensitized solar cells. We used a quantum chemical approach to investigate the optoelectronic properties of dyes T1–T5 for dye-sensitized solar cells using DFT and TD-DFT computation. The newly designed molecules exhibited outstanding photovoltaic and optoelectronic properties.![]()
Collapse
Affiliation(s)
- Sabir Ali Siddique
- Center for Organic Chemistry, School of Chemistry, University of the Punjab Lahore-54590 Pakistan
| | - Muhammad Arshad
- Institute of Chemistry, The Islamia University of Bahawalpur, Baghdad-ul-Jadeed Campus Bahawalpur-63100 Pakistan
| | - Sabiha Naveed
- Center for Organic Chemistry, School of Chemistry, University of the Punjab Lahore-54590 Pakistan
| | | | - Muhammad Adnan
- Graduate School, Department of Chemistry, Chosun University 501-759 Gwangju Republic of Korea
| | - Riaz Hussain
- Department of Chemistry, University of Okara Okara-56300 Pakistan
| | - Babar Ali
- Department of Physics, University of Okara Okara-56300 Pakistan
| | | | - Xin Liu
- State Key Laboratory of Fine Chemicals, Department of Chemistry, Dalian University of Technology Dalian 116024 P. R. China
| |
Collapse
|
20
|
Macalik L, Wandas M, Sąsiadek W, Lorenc J, Lisiecki R, Hanuza J. Molecular structure and spectroscopic properties of new neodymium complex with 3-bromo-2-chloro-6-picolinic N-oxide showing the ligand-to-metal energy transfer. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.128967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Siddique SA, Siddique MBA, Hussain R, Liu X, Mehboob MY, Irshad Z, Adnan M. Efficient tuning of triphenylamine-based donor materials for high-efficiency organic solar cells. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.113045] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Bilal Ahmed Siddique M, Hussain R, Ali Siddique S, Yasir Mehboob M, Irshad Z, Iqbal J, Adnan M. Designing Triphenylamine‐Configured Donor Materials with Promising Photovoltaic Properties for Highly Efficient Organic Solar Cells. ChemistrySelect 2020. [DOI: 10.1002/slct.202001989] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Riaz Hussain
- Department of Chemistry University of Okara Okara 56300 Pakistan
| | | | | | - Zobia Irshad
- Graduate School, Department of Chemistry Chosun University Gwangju 501-759 R. O. Korea
| | - Javed Iqbal
- Department of Chemistry University of Agriculture 38000 Faisalabad Pakistan
| | - Muhammad Adnan
- Graduate School, Department of Chemistry Chosun University Gwangju 501-759 R. O. Korea
| |
Collapse
|
23
|
Designing dithienothiophene (DTT)-based donor materials with efficient photovoltaic parameters for organic solar cells. J Mol Model 2019; 25:222. [DOI: 10.1007/s00894-019-4108-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/26/2019] [Indexed: 11/25/2022]
|
24
|
Althagafi II, Gaffer HE. Synthesis, molecular modeling and antioxidant activity of new phenolic bis-azobenzene derivatives. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.01.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Kollur SP, Castro JO, Frau J, Glossman-Mitnik D. Chemical synthesis, spectroscopic studies, chemical reactivity properties and bioactivity scores of an azepin-based molecule. J Mol Struct 2019; 1180:300-306. [DOI: 10.1016/j.molstruc.2018.11.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Karmakar U, Samanta R. Pd(II)-Catalyzed Direct Sulfonylation of Benzylamines Using Sodium Sulfinates. J Org Chem 2019; 84:2850-2861. [DOI: 10.1021/acs.joc.8b03098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ujjwal Karmakar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
27
|
Goszczycki P, Stadnicka KM, Musielak B, Ostrowska K. Cobalt(II), copper(II), and zinc(II) isostructural, pseudotetrahedral, racemic complexes of pyrrolo[2,3-b]quinoxaline with bis(2-thienylmethyl)propylenediamine chain: Synthesis, crystal structure, spectroscopy. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Khojasteh V, Kakanejadifard A, Zabardasti A, Azarbani F. Spectral, structural, solvatochromism, biological and computational investigation of some new azo–azomethines containing N-alkylpyridinium salts. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Synthesis, X-ray structure, FT-IR, NMR (13C/1H), UV–Vis spectroscopy, TG/DTA study and DFT calculations on 2-(benzo[d]thiazol-2-ylthio)-1-((1s, 3s)-3-mesityl-3-methylcyclobutyl) ethan-1-one. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.06.080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
30
|
The Construction and Application of C=S Bonds. Top Curr Chem (Cham) 2018; 376:31. [DOI: 10.1007/s41061-018-0209-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/24/2018] [Indexed: 01/30/2023]
|
31
|
Chahkandi M, Bhatti MH, Yunus U, Rehman N, Nadeem M, Tahir MN, Zakria M. Novel cocrystal of N-phthaloyl-β-alanine with 2,2–bipyridyl: Synthesis, computational and free radical scavenging activity studies. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.09.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|