1
|
Choroba K, Filipe B, Świtlicka A, Penkala M, Machura B, Bieńko A, Cordeiro S, Baptista PV, Fernandes AR. In Vitro and In Vivo Biological Activities of Dipicolinate Oxovanadium(IV) Complexes. J Med Chem 2023. [PMID: 37311060 DOI: 10.1021/acs.jmedchem.3c00255] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The work is focused on anticancer properties of dipicolinate (dipic)-based vanadium(IV) complexes [VO(dipic)(N∩N)] bearing different diimines (2-(1H-imidazol-2-yl)pyridine, 2-(2-pyridyl)benzimidazole, 1,10-phenanthroline-5,6-dione, 1,10-phenanthroline, and 2,2'-bipyridine), as well as differently 4,7-substituted 1,10-phenanthrolines. The antiproliferative effect of V(IV) systems was analyzed in different tumors (A2780, HCT116, and HCT116-DoxR) and normal (primary human dermal fibroblasts) cell lines, revealing a high cytotoxic effect of [VO(dipic)(N∩N)] with 4,7-dimethoxy-phen (5), 4,7-diphenyl-phen (6), and 1,10-phenanthroline (8) against HCT116-DoxR cells. The cytotoxicity differences between these complexes can be correlated with their different internalization by HCT116-DoxR cells. Worthy of note, these three complexes were found to (i) induce cell death through apoptosis and autophagy pathways, namely, through ROS production; (ii) not to be cytostatic; (iii) to interact with the BSA protein; (iv) do not promote tumor cell migration or a pro-angiogenic capability; (v) show a slight in vivo anti-angiogenic capability, and (vi) do not show in vivo toxicity in a chicken embryo.
Collapse
Affiliation(s)
- Katarzyna Choroba
- University of Silesia, Institute of Chemistry, Szkolna 9, 40-006 Katowice, Poland
| | - Beatriz Filipe
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Anna Świtlicka
- University of Silesia, Institute of Chemistry, Szkolna 9, 40-006 Katowice, Poland
| | - Mateusz Penkala
- University of Silesia, Institute of Chemistry, Szkolna 9, 40-006 Katowice, Poland
| | - Barbara Machura
- University of Silesia, Institute of Chemistry, Szkolna 9, 40-006 Katowice, Poland
| | - Alina Bieńko
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Sandra Cordeiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Pedro V Baptista
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Alexandra R Fernandes
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| |
Collapse
|
2
|
Komeili G, Ghasemi F, Rezvani AR, Ghasemi K, Khadem Sameni F, Hashemi M. The effects of a new antidiabetic glycinium [(pyridine-2, 6-dicarboxylato) oxovanadate (V)] complex in high-fat diet of streptozotocin-induced diabetic rats. Arch Physiol Biochem 2022; 128:80-86. [PMID: 31517539 DOI: 10.1080/13813455.2019.1663218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE The present study aimed to evaluate the antidiabetic effects of glycinium [(pyridine-2, 6-dicarboxylato) oxovanadate (V)] complex in type 2 diabetes rat model. MATERIALS AND METHODS Rats were allocated into 6 groups. Group I, nondiabetic rats; Group II, diabetic rats; Group III, diabetic rats receiving an intraperitoneal (i.p.) injection of metformin (45 mg/kg); Groups IV, V and VI were diabetic rats receiving i.p. injection of 5, 10, and 20 mg/kg of the complex for 3 weeks, respectively. Fasting blood glucose (FBG), insulin, liver enzymes, malondialdehyde (MDA), total antioxidant capacity (TAC), lipid profile, and HbA1c were measured. RESULTS AST, ALT and GGT activities and MDA levels were increased, while TAC was decreased in diabetic animals. Treatment of diabetic rats improved the HOMA-IR and returned HbA1c level to the normal value as well as elevated TAC and reduced MDA level. CONCLUSION We found that the complex possesses antidiabetic properties in experimental diabetes.
Collapse
Affiliation(s)
- Gholamreza Komeili
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fatemeh Ghasemi
- Department of Chemistry, Faculty of Sciences, Sistan and Baluchestan University, Zahedan, Iran
| | - Ali Reza Rezvani
- Department of Chemistry, Faculty of Sciences, Sistan and Baluchestan University, Zahedan, Iran
| | - Khaled Ghasemi
- Department of Chemistry, Faculty of Sciences, Sistan and Baluchestan University, Zahedan, Iran
| | | | - Mohammad Hashemi
- Genetics of Non-communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
3
|
Al-Salmi FA, Hamza RZ. RETRACTED: Efficacy of Vanadyl Sulfate and Selenium Tetrachloride as Anti-Diabetic Agents against Hyperglycemia and Oxidative Stress Induced by Diabetes Mellitus in Male Rats. Curr Issues Mol Biol 2021; 44:94-104. [PMID: 35723386 PMCID: PMC8929014 DOI: 10.3390/cimb44010007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 01/11/2023] Open
Abstract
The use of metals in medicine has grown in popularity in clinical and commercial settings. In this study, the immune-protecting effects and the hypoglycemic and antioxidant activity of vanadyl sulfate (VOSO4) and/or selenium tetrachloride (Se) on oxidative injury, DNA damage, insulin resistance, and hyperglycemia were assessed. Fifty male albino rats were divided into five groups, and all treatments were administrated at 9:00 a.m. daily for 60 successive days: control, STZ (Streptozotocin; 50 mg/kg of STZ was given to 6 h fasted animals in a single dose, followed by confirmation of diabetic state occurrence after 72 h by blood glucose estimation at >280 mg/dl), STZ (Diabetic) plus administration of VOSO4 (15 mg/kg) for 60 days, STZ (Diabetic) plus administration of selenium tetrachloride (0.87 mg/Kg), and STZ plus VOSO4 and, after 1/2 h, administration of selenium tetrachloride at the above doses. The test subjects' blood glucose, insulin hormone, HbA1C, C-peptide, antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, myeloperoxidase, and xanthine oxidase), markers of lipid peroxidation (MDA), and histological sections of pancreatic tissues were evaluated, and a comet assay was performed. Histological sections in pancreas tissues were treated as indicators of both VOSO4 and selenium tetrachloride efficacy, either alone or combined, for the alleviation of STZ toxicity. The genotoxicity of diabetes mellitus was assessed, and the possible therapeutic roles of VOSO4 or selenium tetrachloride, or both, on antioxidant enzymes were studied. The findings show that the administration of VOSO4 with selenium tetrachloride reduced oxidative stress to normal levels, lowered blood glucose levels, and elevated insulin hormone. Additionally, VOSO4 with selenium tetrachloride had a synergistic effect and significantly decreased pancreatic genotoxicity. The data clearly show that both VOSO4 and selenium tetrachloride inhibit pancreatic and DNA injury and improve the oxidative state in male rats, suggesting that the use of VOSO4 with selenium tetrachloride is a promising synergistic potential ameliorative agent in the diabetic animal model.
Collapse
Affiliation(s)
| | - Reham Z. Hamza
- Biology Department, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| |
Collapse
|
4
|
Li JQ, Li RN, Li MX, Shao M, He X. Enhancing water stability in Co(II) coordination polymers from their structural transformation by temperature-controlling and their dye degradation property. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Prasad HN, Ananda A, Najundaswamy S, Nagashree S, Mallesha L, Dayananda B, Jayanth H, Mallu P. Design, synthesis and molecular docking studies of novel piperazine metal complexes as potential antibacterial candidate against MRSA. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Cheng L, Huang H, Lin Z, Yang Y, Yuan Q, Hu L, Wang C, Chen Q. N and O multi-coordinated vanadium single atom with enhanced oxygen reduction activity. J Colloid Interface Sci 2021; 594:466-473. [PMID: 33774402 DOI: 10.1016/j.jcis.2021.03.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 12/16/2022]
Abstract
Recently, atomically dispersed transition-metal single atom in nitrogen-doped carbon matrix as electrocatalysts has aroused general interest. However, there is no report about vanadium single atom for ORR in the literature. According to d-band center theory for transition-metals, the performance of catalysts is regulated by the electronic structure of the catalytic center which determines the intermediate adsorption kinetics. Indeed, the valence of vanadium is variable, its electron structure could be modulated by an appropriate coordination structure. Here, a novel method is developed to prepare the N and O co-coordinated vanadium single atom (V-N1O4) embedded in the carbon matrix. The catalyst displays a half-wave potential of 865 mV in base solution which surpasses 20% Pt/C, and also shows a high power density of 180 mW/cm2 in Zn-air batteries. DFT calculations reveal that the N and O coordination configuration could regulate the electron structure and geometry of vanadium to boost the electrocatalytic activity.
Collapse
Affiliation(s)
- Ling Cheng
- Department of Materials Science & Engineering, University of Science and Technology of China, Jinzhai Road NO.96, Hefei, Anhui 230026, PR China
| | - Hao Huang
- Department of Materials Science & Engineering, University of Science and Technology of China, Jinzhai Road NO.96, Hefei, Anhui 230026, PR China
| | - Zhiyu Lin
- Department of Materials Science & Engineering, University of Science and Technology of China, Jinzhai Road NO.96, Hefei, Anhui 230026, PR China
| | - Yang Yang
- Department of Materials Science & Engineering, University of Science and Technology of China, Jinzhai Road NO.96, Hefei, Anhui 230026, PR China
| | - Qing Yuan
- Department of Materials Science & Engineering, University of Science and Technology of China, Jinzhai Road NO.96, Hefei, Anhui 230026, PR China
| | - Lin Hu
- The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Changlai Wang
- Department of Materials Science & Engineering, University of Science and Technology of China, Jinzhai Road NO.96, Hefei, Anhui 230026, PR China; Department of Materials Science and Engineering, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Qianwang Chen
- Department of Materials Science & Engineering, University of Science and Technology of China, Jinzhai Road NO.96, Hefei, Anhui 230026, PR China; The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China.
| |
Collapse
|
7
|
Fontaine J, Tavernier G, Morin N, Carpéné C. Vanadium-dependent activation of glucose transport in adipocytes by catecholamines is not mediated via adrenoceptor stimulation or monoamine oxidase activity. World J Diabetes 2020; 11:622-643. [PMID: 33384769 PMCID: PMC7754167 DOI: 10.4239/wjd.v11.i12.622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/12/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Benzylamine and methylamine activate glucose uptake in adipocytes. For tyramine, this effect has even been extended to cardiomyocytes. AIM To investigate the effects of catecholamines and other amines on glucose uptake. METHODS A screening compared 25 biogenic amines on 2-deoxyglucose (2-DG) uptake activation in rat adipocytes. Pharmacological approaches and transgenic mouse models were then used to decipher the mode of action of several hits. RESULTS In rat adipocytes, insulin stimulation of 2-DG uptake was reproduced with catecholamines. 100 µmol/L or 1 mmol/L adrenaline, noradrenaline, dopamine and deoxyepinephrine, maximally activated hexose transport only when sodium orthovanadate was added at 100 µmol/L. Such activation was similar to that already reported for benzylamine, methylamine and tyramine, well-recognized substrates of semicarbazide-sensitive amine oxidase (SSAO) and monoamine oxidase (MAO). Several, but not all, tested agonists of β-adrenoreceptors (β-ARs) also activated glucose transport while α-AR agonists were inactive. Lack of blockade by α- and β-AR antagonists indicated that catecholamine-induced 2-DG uptake was not mediated by AR stimulation. Adipocytes from mice lacking β1-, β2- and β3-ARs (triple KO) also responded to millimolar doses of adrenaline or noradrenaline by activating hexose transport in the presence of 100 µmol/L vanadate. The MAO blocker pargyline, and SSAO inhibitors did not block the effects of adrenaline or noradrenaline plus vanadate, which were blunted by antioxidants. CONCLUSION Catecholamines exert unexpected insulin-like actions in adipocytes when combined with vanadium. For limiting insulin resistance by activating glucose consumption at least in fat stores, we propose that catecholamine derivatives combined with vanadium can generate novel complexes that may have low toxicity and promising anti-diabetic properties.
Collapse
Affiliation(s)
- Jessica Fontaine
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, INSERM UMR1048, Université Paul Sabatier Toulouse III, Toulouse 31432, France
| | - Geneviève Tavernier
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, INSERM UMR1048, Université Paul Sabatier Toulouse III, Toulouse 31432, France
| | - Nathalie Morin
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, INSERM UMR1048, Université Paul Sabatier Toulouse III, Toulouse 31432, France
- INSERM UMR 1139 Faculté de Pharmacie, Université de Paris, Paris 75006, France
| | - Christian Carpéné
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, INSERM UMR1048, Université Paul Sabatier Toulouse III, Toulouse 31432, France
| |
Collapse
|
8
|
Li RN, Guo XH, Shao M, Li MX, He X. Cluster-based Cd(II) coordination polymers: Step-wise synthesis, structure, and luminescence. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
9
|
El‐Megharbel SM, Hamza RZ, Gobouri AA, Refat MS. Synthesis of new antidiabetic agent by complexity between vanadyl (II) sulfate and vitamin B1: Structural, characterization, anti‐DNA damage, structural alterations and antioxidative damage studies. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4892] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Samy M. El‐Megharbel
- Chemistry Department, Faculty of ScienceTaif University PO Box 888, Al‐Hawiah Taif 21974 Saudi Arabia
- Chemistry Department, Faculty of ScienceZagazig University Zagazig 44519 Egypt
| | - Reham Z. Hamza
- Zoology Department, Faculty of ScienceZagazig University Zagazig 44519 Egypt
- Biology Department, Faculty of ScienceTaif University Taif 21974 Saudi Arabia
| | - Adil A. Gobouri
- Chemistry Department, Faculty of ScienceTaif University PO Box 888, Al‐Hawiah Taif 21974 Saudi Arabia
| | - Moamen S. Refat
- Chemistry Department, Faculty of ScienceTaif University PO Box 888, Al‐Hawiah Taif 21974 Saudi Arabia
- Chemistry Department, Faculty of Science, Port SaidPort Said University Egypt
| |
Collapse
|
10
|
Nagendra Prasad HS, Manukumar HM, Karthik CS, Mallesha L, Mallu P. A novel copper (II) PAmPiCaT complex (cPAmPiCaTc) as a biologically potent candidate: A contraption evidence against methicillin-resistant Staphylococcus aureus (MRSA) and a molecular docking proof. Bioorg Med Chem 2019; 27:841-850. [PMID: 30718062 DOI: 10.1016/j.bmc.2019.01.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 01/23/2023]
Abstract
Increasing in the alarm against the resistant bacteria due to the failure of antibiotics, thereby the need of more efficiency/potent molecule to treat infections. In the present investigation, series of piperazine derivatives 5(a-l) compounds were synthesized and they were characterised by different spectral techniques such as 1H NMR, 13C NMR, IR and LCMS. A novel copper complex (cPAmPiCaTc) was developed for the first time by using potent analog 5e and characterized by IR and LCMS. The cPAmPiCaTc evaluated for antibacterial activity and showed excellent antimicrobial effect (12 ± 0.08 mm, ZOI) at MIC 20 µg/mL against MRSA compared to standard antibiotics streptomycin and bacitracin at MIC 10 µg/mL. The results show promising anti-staphylococcal action against MRSA which confirmed by membrane damage, bioelectrochemistry, gene regulation (SarA and DHFR), and in silico molecular docking studies. Further, the cPAmPiCaTc also showed excellent blood compatibility and this result pave the way for interesting metallodrug therapeutics in future against MRSA infections.
Collapse
Affiliation(s)
- H S Nagendra Prasad
- Department of Chemistry, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, Mysuru 570 006, Karnataka, India
| | - H M Manukumar
- Department of Chemistry, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, Mysuru 570 006, Karnataka, India
| | - C S Karthik
- Department of Chemistry, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, Mysuru 570 006, Karnataka, India
| | - L Mallesha
- PG Department of Chemistry, JSS College of Arts, Commerce and Science, Mysuru 570025, Karnataka, India
| | - P Mallu
- Department of Chemistry, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, Mysuru 570 006, Karnataka, India.
| |
Collapse
|
11
|
A Novel Oxidovanadium (IV)-Orotate Complex as an Alternative Antidiabetic Agent: Synthesis, Characterization, and Biological Assessments. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8108713. [PMID: 30671472 PMCID: PMC6323442 DOI: 10.1155/2018/8108713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/03/2018] [Accepted: 12/09/2018] [Indexed: 12/02/2022]
Abstract
Diabetes is an increasingly common metabolic disorder with high comorbidity and societal and personal costs. Insulin replacement therapy is limited by a lack of oral bioavailability. Recent studies suggest vanadium has therapeutic potential. A newly synthesized complex between oxidovanadium (IV) and orotic acid (OAH3), [(OAH1)(VO)(NH3)2].3H2O, was characterized using spectroscopic and thermogravimetric techniques. In vivo potential was assessed in a streptozocin-induced rat model of diabetes. OAH3 acts as a bidentate ligand in the formation of the dark green, crystalline oxidovanadium (IV) complex in a square pyramidal configuration. Treatment with oxidovanadium (IV)-orotate in vivo significantly improved many biochemical parameters with minimal toxicity and restored pancreatic and hepatic histology. The results of the present work describe a safe, new compound for the treatment of diabetes.
Collapse
|
12
|
Nayebi R, Tarigh GD, Shemirani F. Electrostatically in situ binding of zwitterionic glycine on the surface of MGO for determination of nitrite in various real samples. Food Chem 2018; 276:255-261. [PMID: 30409592 DOI: 10.1016/j.foodchem.2018.10.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/09/2018] [Accepted: 10/08/2018] [Indexed: 01/28/2023]
Abstract
Zwitterionic dispersive magnetic solid phase extraction (ZI-DMSPE) was developed through in situ binding of glycine on the magnetic graphene oxide, electrostatically. This highly selective sorbent was applied for the determination and preconcentration of trace levels of nitrite in soil, sausage, water samples (tap, mineral, and rain), and vegetables (potato, onion, spinach, radish, and lettuce) prior to its determination by UV-Vis spectrophotometry. The major advantage of the method is the analyte adsorption in both acidic and basic media. The sorbent was characterized by SEM, XRD, EDS, and FT-IR. Several parameters affecting ZI-DMSPE were optimized. Under the optimal conditions, LOD and RSD were obtained 17 ng L-1 and 1.3% respectively. Preconcentration factor and sorption capacity of the proposed method were 666 and 238 mg g-1 respectively. Accuracy was assessed by comparing results with those obtained by direct determination using ion chromatography and spiked real samples.
Collapse
Affiliation(s)
- Reyhaneh Nayebi
- Department of Analytical Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Ghazale Daneshvar Tarigh
- Department of Analytical Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.
| | - Farzaneh Shemirani
- Department of Analytical Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.
| |
Collapse
|
13
|
Sánchez-Lara E, Treviño S, Sánchez-Gaytán BL, Sánchez-Mora E, Eugenia Castro M, Meléndez-Bustamante FJ, Méndez-Rojas MA, González-Vergara E. Decavanadate Salts of Cytosine and Metformin: A Combined Experimental-Theoretical Study of Potential Metallodrugs Against Diabetes and Cancer. Front Chem 2018; 6:402. [PMID: 30333969 PMCID: PMC6176007 DOI: 10.3389/fchem.2018.00402] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/20/2018] [Indexed: 01/15/2023] Open
Abstract
Cytosine, a DNA and RNA building-block, and Metformin, the most widely prescribed drug for the treatment of Type 2 Diabetes mellitus were made to react separately with ammonium or sodium metavanadates in acidic aqueous solutions to obtain two polyoxovanadate salts with a 6:1 ratio of cation-anion. Thus, compounds [HCyt]6[V10O28]·4H2O, 1 and [HMetf]6[V10O28]·6H2O, 2 (where HCyt = Cytosinium cation, [C4H6N3O]+ and HMetf = Metforminium cation, [C4H12N5]+) were obtained and characterized by elemental analysis, single crystal X-ray diffraction, vibrational spectroscopy (IR and Raman), solution 51V-NMR, thermogravimetric analysis (TGA-DTGA), as well as, theoretical methods. Both compounds crystallized in P1 ¯ space group with Z' = 1/2, where the anionic charge of the centrosymmetric ion [V10O28]6- is balanced by six Cytosinium and six Metforminium counterions, respectively. Compound 1 is stabilized by π-π stacking interactions coming from the aromatic rings of HCyt cations, as denoted by close contacts of 3.63 Å. On the other hand, guanidinium moieties from the non-planar HMetf in Compound 2 interact with decavanadate μ2-O atoms via N-H···O hydrogen bonds. The vibrational spectroscopic data of both IR and Raman spectra show that the dominant bands in the 1000-450 cm-1 range are due to the symmetric and asymmetric ν(V-O) vibrational modes. In solution, 51V-NMR experiments of both compounds show that polyoxovanadate species are progressively transformed into the monomeric, dimeric and tetrameric oxovanadates. The thermal stability behavior suggests a similar molecular mechanism regarding the loss of water molecules and the decomposition of the organic counterions. Yet, no changes were observed in the TGA range of 540-580°C due to the stability of the [V10O28]6- fragment. Dispersion-corrected density functional theory (DFT-D) calculations were carried out to model the compounds in aqueous phase using a polarized continuum model calculation. Optimized structures were obtained and the main non-covalent interactions were characterized. Biological activities of these compounds are also under investigation. The combination of two therapeutic agents opens up a window toward the generation of potential metalopharmaceuticals with new and exciting pharmacological properties.
Collapse
Affiliation(s)
- Eduardo Sánchez-Lara
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Brenda L. Sánchez-Gaytán
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Enrique Sánchez-Mora
- Instituto de Física “Luis Rivera Terrazas”, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - María Eugenia Castro
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | - Miguel A. Méndez-Rojas
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Puebla, Mexico
| | - Enrique González-Vergara
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
14
|
Tsave O, Yavropoulou MP, Kafantari M, Gabriel C, Yovos JG, Salifoglou A. Comparative assessment of metal-specific adipogenic activity in zinc and vanadium-citrates through associated gene expression. J Inorg Biochem 2018; 186:217-227. [PMID: 29966853 DOI: 10.1016/j.jinorgbio.2018.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/21/2018] [Accepted: 04/29/2018] [Indexed: 01/12/2023]
Abstract
Diabetes mellitus comprises a group of metabolic abnormalities due to insulin deficiency and/or resistance. Obesity contributes to diabetes, with a strong causal relationship existing between diabetes and insulin resistance, especially in patients with Diabetes mellitus II. Adipocytes emerge as key constituents of adipose tissue physiology. In their pre-mature form to mature state transformation, adipocytes fully exemplify one of the key adipogenic actions of insulin. Poised to a) gain insight into adipogenesis leading to antidiabetic factors, and b) investigate adipogenesis through careful examination of insulin contributions to interwoven mechanistic pathways, a systematic comparative study was launched involving well-defined metal-citrates (zinc and vanadium), the chemical reactivity of which was in line with their chemistry under physiological conditions. Selection of the specific compounds was based on their common aqueous coordination chemistry involving the physiological chelator citric acid. Cellular maturation of pre-adipocytes to their mature form was pursued in the presence-absence of insulin and employment of closely linked genetic targets, key to adipocyte maturation (Peroxisome proliferator-activated receptor gamma (PPAR-γ), Glucose transporter 1,3,4 (GLUT 1,3,4), Adiponectin (ADIPOQ), Glucokinase (GCK), and Insulin receptor (INS-R)). The results show a) distinct adipogenic biological profiles for the metalloforms involved in a dose-, time- and nature-dependent manner, and b) metal ion-specific adipogenic response-signals at the same or higher level than insulin toward all selected targets. Collectively, the foundations have been established for future exploitation of the distinct metal-specific adipogenic factors contributing to the functional maturation of adipose tissue and their use toward hyperglycemic control in Diabetes mellitus.
Collapse
Affiliation(s)
- O Tsave
- Laboratory of Inorganic Chemistry and Advanced Materials, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - M P Yavropoulou
- Division of Clinical and Molecular Endocrinology, 1(st) Department of Internal Medicine, AHEPA, University Hospital, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - M Kafantari
- Laboratory of Inorganic Chemistry and Advanced Materials, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - C Gabriel
- Laboratory of Inorganic Chemistry and Advanced Materials, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Center for Research of the Structure of Matter, Magnetic Resonance Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - J G Yovos
- Division of Clinical and Molecular Endocrinology, 1(st) Department of Internal Medicine, AHEPA, University Hospital, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - A Salifoglou
- Laboratory of Inorganic Chemistry and Advanced Materials, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|