1
|
Franco L, Alves MA, Sant’Anna CMR, de Sena Bastos IT, Barroso RCR, Costa FN, Ferreira FF, Fraga CAM, Barreiro EJ, Lima L, Rodrigues DA, Pinheiro PDSM. Exploring the Conformational Effects of N- and C-Methylation of N-Acylhydrazones. ACS OMEGA 2025; 10:17993-18004. [PMID: 40352515 PMCID: PMC12059928 DOI: 10.1021/acsomega.5c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/26/2025] [Accepted: 04/09/2025] [Indexed: 05/14/2025]
Abstract
N-Acylhydrazones (NAH) are privileged structures in chemistry and medicinal chemistry. In this study, we describe the conformational effects of N- and C-methylated N-acylhydrazone derivatives, combining theoretical and experimental data analysis. Four N-acylhydrazone (NAH) derivatives (4-7) were synthesized and structurally characterized to investigate the impact of methylation on their conformational preferences and electronic properties. The structural characterization by NMR spectroscopy, including 2D techniques (HSQC, HMBC, and NOESY), confirmed the exclusive formation of (E)-diastereomers. Theoretical conformational analysis using density functional theory (DFT) calculations (CAM-B3LYP/6-31+G(d,p) with the C-PCM solvation model) revealed that N-methylation (6) significantly alters the preferred dihedral angle (O=C-N-X), inducing a shift from an antiperiplanar to a synperiplanar conformation. Notably, compound 7 showed two possible conformers in solution, anti and syn at the amide bond, and exhibited a greater deviation from planarity due to steric effects imposed by the two methyl groups, which disrupt conjugation within the NAH moiety. This was further supported by natural bond orbital (NBO) analysis, which demonstrated changes in electron density distribution, particularly at the carbonyl and imine carbons, correlating well with the calculated and experimental 13C NMR chemical shifts. Noncovalent interaction (NCI) analysis and powder X-ray diffraction provided additional evidence for these conformational trends, reinforcing the influence of methylation on NAH planarity. The findings highlight the steric and electronic consequences of methylation on NAH derivatives, which may have implications for their biological activity and molecular recognition properties.
Collapse
Affiliation(s)
- Lucas
Silva Franco
- Laboratório
de Avaliação e Síntese de Substâncias
Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
- Instituto
Nacional de Ciência e Tecnologia de Fármacos e Medicamentos
(INCT-INOFAR), CCS, Universidade Federal
do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ 21941-902, Brazil
| | - Marina Amaral Alves
- Instituto
Nacional de Ciência e Tecnologia de Fármacos e Medicamentos
(INCT-INOFAR), CCS, Universidade Federal
do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ 21941-902, Brazil
- Walter Mors
Institute of Research on Natural Products, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-599, Brazil
| | - Carlos Mauricio R. Sant’Anna
- Laboratório
de Avaliação e Síntese de Substâncias
Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
- Instituto
Nacional de Ciência e Tecnologia de Fármacos e Medicamentos
(INCT-INOFAR), CCS, Universidade Federal
do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ 21941-902, Brazil
- Departamento
de Química Fundamental, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ 23970-000, Brazil
| | | | | | - Fanny Nascimento Costa
- Center
for
Natural and Human Sciences, Federal University
of ABC, Santo André, SP 09210-580, Brazil
| | - Fabio Furlan Ferreira
- Center
for
Natural and Human Sciences, Federal University
of ABC, Santo André, SP 09210-580, Brazil
| | - Carlos A. M. Fraga
- Laboratório
de Avaliação e Síntese de Substâncias
Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
- Instituto
Nacional de Ciência e Tecnologia de Fármacos e Medicamentos
(INCT-INOFAR), CCS, Universidade Federal
do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ 21941-902, Brazil
| | - Eliezer J. Barreiro
- Laboratório
de Avaliação e Síntese de Substâncias
Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
- Instituto
Nacional de Ciência e Tecnologia de Fármacos e Medicamentos
(INCT-INOFAR), CCS, Universidade Federal
do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ 21941-902, Brazil
| | - Lídia
Moreira Lima
- Laboratório
de Avaliação e Síntese de Substâncias
Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
- Instituto
Nacional de Ciência e Tecnologia de Fármacos e Medicamentos
(INCT-INOFAR), CCS, Universidade Federal
do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ 21941-902, Brazil
| | - Daniel A. Rodrigues
- School of
Pharmacy and Biomolecular Sciences (PBS), Royal College of Surgeons in Ireland, first Floor Ardilaun House Block B 111 St Stephen’s
Green, Dublin D02 YN77, Ireland
| | - Pedro de Sena M. Pinheiro
- Laboratório
de Avaliação e Síntese de Substâncias
Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
- Instituto
Nacional de Ciência e Tecnologia de Fármacos e Medicamentos
(INCT-INOFAR), CCS, Universidade Federal
do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
2
|
Pathak S, Singh VK, Gupta PK, Mahapatra AK, Giri R, Sahu R, Sharma R, Garg N. Exploring the role of pomalidomide in androgen-dependent prostate cancer: a computational analysis. Mol Divers 2024:10.1007/s11030-024-11081-7. [PMID: 39708063 DOI: 10.1007/s11030-024-11081-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024]
Abstract
Prostate cancer (PC) is among the most prevalent cancers in males. It is the leading cause of death in men, in around 48 out of 185 countries. Increased androgen receptor (AR) activity is the key factor contributing to the development or progression of newly diagnosed cases of prostate cancer. Over time, numerous compounds targeting AR have been identified, presenting encouraging avenues for suppressing its hyperactivity. In our investigation, we used the GEPIA tool to study the importance of AR in the context of prostate cancer. This tool integrates the data from TCGA and GTEx in the gene expression pattern analysis and their clinical relevance. This analysis evaluates overall survival, disease-free survival, and transcripts per million (TPM) analysis of AR in PC. We performed docking and simulation for FDA-approved anticancer drugs to assess their potential interactions with the AR. We also conducted a comprehensive analysis of drugs using a quantum calculation (DFT) which provides electronic properties, chemical reactivity, and stability using the HOMO-LUMO energy gap. This study suggests that repurposed synthetic anticancer drugs could be better options for treating prostate cancer by inhibiting AR. In this work, we have shown the potential of pomalidomide, a synthetic anticancer drug, as a potential candidate for androgen-dependent PC treatment.
Collapse
Affiliation(s)
- Shivani Pathak
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Vipendra Kumar Singh
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, D.C., USA
| | | | | | - Rajanish Giri
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| | - Rashmi Sahu
- Ayurinformatics Laboratory, All India Institute of Ayurveda, New Delhi, India
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishjya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
3
|
Mahboubi-Rabbani M, Abdolghaffari AH, Ghesmati M, Amini A, Zarghi A. Selective COX-2 inhibitors as anticancer agents: a patent review (2018-2023). Expert Opin Ther Pat 2024; 34:733-757. [PMID: 38958471 DOI: 10.1080/13543776.2024.2373771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION COX-2 is a crucial enzyme in the manufacture of prostaglandins. The enzyme's metabolites might have an important function as regulators of the inflammatory response and other medical conditions such as cancer. Selective COX-2 inhibitors are believed to enhance or reverse the response of cancer chemotherapeutics. AREAS COVERED This study addresses the chemical structures as well as the antitumor activity of new COX-2 inhibitors produced in the recent five years, aiming to provide an insight into the mechanism of COX-2 induced PGE2 powerful signal in cancer development. EXPERT OPINION The significance of selective COX-2 inhibitors as an efficient superfamily of compounds with anti-inflammatory, anti-Alzheimer's, anti-Parkinson's disease, and anticancer properties has piqued the passion of academics in the field of drug development. Long-term usage of selective COX-2 inhibitors, such as celecoxib has been proven in clinical trials to lower the incidence of several human malignancies. Furthermore, celecoxib has the potential to greatly increase the effectiveness of chemotherapy. Our extensive understanding of selective COX-2 inhibitor SAR may aid in the development of safer and more effective selective COX-2 inhibitors as cancer chemopreventive agents. This review focuses on the different structural classes of selective COX-2 inhibitors, with a particular emphasis on their SAR.
Collapse
Affiliation(s)
- Mohammad Mahboubi-Rabbani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Ghesmati
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Amini
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Govada GV, Pal S, Panjacharam P, Bhatt HS, Kumar S, Lin CC, Wang SK, Reddy SR. Pd(II)-Catalyzed Site-Selective Cross Coupling Reaction: Synthesis of Highly Fluorescent Aryl-Formyl-Chromenes and its Iminoantipyrine Analogues as Selective AChE Inhibitors. Chem Biodivers 2024; 21:e202400719. [PMID: 38958461 DOI: 10.1002/cbdv.202400719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/21/2024] [Indexed: 07/04/2024]
Abstract
A versatile and efficient chemo selective synthesis of 4-aryl-3-formyl-2H-chromenes (AFC) was undertaken using Pd-catalyzed cross-coupling conditions. The key oxidative transmetalation was successfully applied to a significant range of substitutions on the chromene moiety and aryl ring in Ar(BOH)3, accommodating both electron-rich and electron-deficient groups. These π-extended scaffolds exhibited green-yellow fluorescence with a large Stokes shift and high quantum yield. Measurement of photophysical properties revealed that the compound with methoxy substitution in the chromene ring, 3t, caused a significant bathochromic shift. The AFCs obtained from this method can be transformed into biologically active 4-aryl-3-iminoantipyrine-2H-chromenes (AAC) through functionalization of the formyl chromenes. The AFCs and AACs with methoxy substitutions (3t and 4e) were docked against AChE inhibition, and compound 4e had the lowest binding energy of -11.20 kcal/mol. DFT calculations performed on representative compounds revealed that compound 4e is more reactive than 3t, which is in accordance with the docking studies.
Collapse
Affiliation(s)
- Grace Victoria Govada
- Advanced Catalysis laboratory, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Sanjivani Pal
- Advanced Catalysis laboratory, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Paranimuthu Panjacharam
- Advanced Catalysis laboratory, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Harshil Samir Bhatt
- Centre for Bio Separation Technology, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Sanjit Kumar
- Department of Biotechnology, School of Interdisciplinary Education and Research, Guru Ghasidas Vishwavidyalaya (Central university), Bilaspur, India
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Sheng-Kai Wang
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300, Taiwan
| | | |
Collapse
|
5
|
Yang QH, Shi M, Wei Y. A New Method of Constructing Methyleneindene and Quinoline Frameworks from Methylenecyclopropanes. Chem Asian J 2024; 19:e202400411. [PMID: 38719729 DOI: 10.1002/asia.202400411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/07/2024] [Indexed: 07/22/2024]
Abstract
In this paper, we have established an operationally convenient protocol for the rapid construction of polysubstituted methyleneindene and quinoline derivatives under mild conditions. This new synthetic method is achieved through the conversion of acetyl-substituted methylenecyclopropanes with TsOH ⋅ H2O and ortho-amino-substituted methylenecyclopropanes with aromatic aldehyde and TsOH ⋅ H2O, respectively. A variety of transformations of the obtained products was demonstrated. The plausible reaction mechanisms were also proposed.
Collapse
Affiliation(s)
- Qu-Hang Yang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Lu, Shanghai, 200032, China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Lu, Shanghai, 200032, China
| |
Collapse
|
6
|
Cavalcante BRR, Freitas RD, Siquara da Rocha LO, Santos RSB, Souza BSDF, Ramos PIP, Rocha GV, Gurgel Rocha CA. In silico approaches for drug repurposing in oncology: a scoping review. Front Pharmacol 2024; 15:1400029. [PMID: 38919258 PMCID: PMC11196849 DOI: 10.3389/fphar.2024.1400029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction: Cancer refers to a group of diseases characterized by the uncontrolled growth and spread of abnormal cells in the body. Due to its complexity, it has been hard to find an ideal medicine to treat all cancer types, although there is an urgent need for it. However, the cost of developing a new drug is high and time-consuming. In this sense, drug repurposing (DR) can hasten drug discovery by giving existing drugs new disease indications. Many computational methods have been applied to achieve DR, but just a few have succeeded. Therefore, this review aims to show in silico DR approaches and the gap between these strategies and their ultimate application in oncology. Methods: The scoping review was conducted according to the Arksey and O'Malley framework and the Joanna Briggs Institute recommendations. Relevant studies were identified through electronic searching of PubMed/MEDLINE, Embase, Scopus, and Web of Science databases, as well as the grey literature. We included peer-reviewed research articles involving in silico strategies applied to drug repurposing in oncology, published between 1 January 2003, and 31 December 2021. Results: We identified 238 studies for inclusion in the review. Most studies revealed that the United States, India, China, South Korea, and Italy are top publishers. Regarding cancer types, breast cancer, lymphomas and leukemias, lung, colorectal, and prostate cancer are the top investigated. Additionally, most studies solely used computational methods, and just a few assessed more complex scientific models. Lastly, molecular modeling, which includes molecular docking and molecular dynamics simulations, was the most frequently used method, followed by signature-, Machine Learning-, and network-based strategies. Discussion: DR is a trending opportunity but still demands extensive testing to ensure its safety and efficacy for the new indications. Finally, implementing DR can be challenging due to various factors, including lack of quality data, patient populations, cost, intellectual property issues, market considerations, and regulatory requirements. Despite all the hurdles, DR remains an exciting strategy for identifying new treatments for numerous diseases, including cancer types, and giving patients faster access to new medications.
Collapse
Affiliation(s)
- Bruno Raphael Ribeiro Cavalcante
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Pathology and Forensic Medicine of the School of Medicine, Federal University of Bahia, Salvador, Brazil
| | - Raíza Dias Freitas
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Social and Pediatric Dentistry of the School of Dentistry, Federal University of Bahia, Salvador, Brazil
| | - Leonardo de Oliveira Siquara da Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Pathology and Forensic Medicine of the School of Medicine, Federal University of Bahia, Salvador, Brazil
| | | | - Bruno Solano de Freitas Souza
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Pablo Ivan Pereira Ramos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Center of Data and Knowledge Integration for Health (CIDACS), Salvador, Brazil
| | - Gisele Vieira Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Clarissa Araújo Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Pathology and Forensic Medicine of the School of Medicine, Federal University of Bahia, Salvador, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador, Brazil
- Department of Propaedeutics, School of Dentistry of the Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
7
|
Mandal A, Khan AT. Recent advancement in the synthesis of quinoline derivatives via multicomponent reactions. Org Biomol Chem 2024; 22:2339-2358. [PMID: 38444342 DOI: 10.1039/d4ob00034j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The synthesis of quinoline derivatives through multicomponent reactions (MCRs) has emerged as an efficient and versatile strategy in organic synthesis. MCRs offer the advantage of constructing complex molecular architectures in a single step, utilising multiple starting materials in a convergent manner. This review provides an overview of recent advancements in the field of quinoline synthesis via MCRs. Various MCRs, such as the Povarov reaction, the Gewald reaction, and the Ugi reaction have been successfully employed for the synthesis of diverse quinoline scaffolds. These methodologies not only showcase high atom economy but also allow the incorporation of structural diversity into the final products. The versatility of MCRs enables the introduction of functional groups and substitution patterns tailored to specific applications. This review highlights the significance of quinoline derivatives in medicinal chemistry, materials science, and other interdisciplinary areas. The continuous innovation and development of novel MCR-based approaches for quinoline synthesis hold great promise for the rapid and efficient generation of valuable compounds with a wide range of biological and physicochemical properties.
Collapse
Affiliation(s)
- Arnab Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Abu Taleb Khan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| |
Collapse
|
8
|
Hassan SS, Aly SA, Al-Sulami AI, Albohy SAH, Salem MF, Nasr GM, Abdalla EM. Synthesis, characterization, PXRD studies, and theoretical calculation of the effect of gamma irradiation and antimicrobial studies on novel Pd(II), Cu(II), and Cu(I) complexes. Front Chem 2024; 12:1357330. [PMID: 38410818 PMCID: PMC10894937 DOI: 10.3389/fchem.2024.1357330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024] Open
Abstract
The main objective of this study is to synthesize and characterize of a new three complexes of Pd (II), Cu (II), and Cu (I) metal ions with novel ligand ((Z)-2-(phenylamino)-N'-(thiophen-2-ylmethylene)acetohydrazide) H2LB. The structural composition of new compounds was assessed using several analytical techniques including FT-IR, 1H-NMR, electronic spectra, powder X-ray diffraction, and thermal behavior analysis. The Gaussian09 program employed the Density Functional Theory (DFT) approach to optimize the geometry of all synthesized compounds, therefore obtaining the most favorable structures and crucial parameters. An investigation was conducted to examine the impact of γ-irradiation on ligands and complexes. Before and after γ-irradiation, the antimicrobial efficiency was investigated for the activity of ligands and their chelates. The Cu(I) complex demonstrated enhanced antibacterial activity after irradiation, as well as other standard medications such as ampicillin and gentamicin. Similarly, the Cu(I) complex exhibited superior activity against antifungal species relative to the standard drug Nystatin. The docking investigation utilized the target location of the topoisomerase enzyme (2xct) chain A.
Collapse
Affiliation(s)
- Safaa S. Hassan
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Samar A. Aly
- Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat, Egypt
| | - Ahlam I. Al-Sulami
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Salwa A. H. Albohy
- Chemistry Department, Faculty of Science (Girls), Al-Azhar University, Nasr, Cairo, Egypt
| | - Mohamed F. Salem
- Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat, Egypt
| | - Ghada M. Nasr
- Department of Molecular Diagnostics and Therapeutics, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat, Egypt
| | - Ehab M. Abdalla
- Chemistry Department, Faculty of Science, New Valley University, El-Kharga, Egypt
| |
Collapse
|
9
|
Govada GV, Rajasekhara Reddy S. Synthesis and in Silico Study of Novel Benzisoxazole-Chromene Derivatives as Potent Inhibitors of Acetylcholinesterase: Metal-Free Site-Selective C-N Bond Formation via Aza-Michael Reaction. Chem Biodivers 2023; 20:e202300573. [PMID: 37415329 DOI: 10.1002/cbdv.202300573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023]
Abstract
An efficient metal-free approach for site selective C-N coupling reaction of benzo[d]isoxazole and 2H-chromene derivatives has been designed and developed against AchE. This nitrogen containing organo-base promoted methodology, which is both practical and environmentally friendly, provides an easy and suitable pathway for synthesizing Benzisoxazole-Chromene (BC) possessing poly heteroaryl moieties. The synthesized BC derivatives 4 a-n was docked into the active sites of AChE to obtain more perception into the binding modes of the compounds. Out of them, compound 4 a and 4 l displayed potent activity and high selectivity against the AChE inhibition. Final docking results indicates that compound 4 l showed the lowest binding energy of -11.2260 kcal/mol with AChE. The synthesized BC analogs would be potential candidates for promoting suitable studies in medicinal chemistry research.
Collapse
Affiliation(s)
- Grace Victoria Govada
- Advanced Catalysis laboratory, Vellore Institute of Technology (VIT), 632014, Vellore, India
| | | |
Collapse
|
10
|
Nandakumar V, Sundarasamy A, Adhigaman K, Ramasamy SS, Paulpandi M, Kodiveri Muthukaliannan G, Narayanasamy A, Thangaraj S. Anti-proliferative activity of nitroquinolone fused acylhydrazones as non-small cell human lung cancer agents. RSC Med Chem 2023; 14:1331-1343. [PMID: 37484570 PMCID: PMC10357927 DOI: 10.1039/d3md00165b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/16/2023] [Indexed: 07/25/2023] Open
Abstract
A new series of 8-nitroquinolone-based aromatic heterocyclic acyl hydrazones have been synthesised and characterised through various spectroscopic techniques. They were theoretically examined for molecular docking with various proteins related to the apoptosis of the non-small cell lung cancer cell line A549. The results indicate that the possible modes of interaction of all the synthesised compounds are compatible for use as anti-proliferative drugs. Also, the drug-likeness of the compounds was examined through theoretical ADMET analysis, which indicated good gastrointestinal absorption as well as low toxicity. Selected compounds were evaluated for their in vitro anti-cancer activity using A549, MCF-7 and HeLa cell lines through an MTT assay to determine cytotoxicity. Compounds 3c, 3a and 11c exhibited significant cytotoxicity towards A549 cells in the order of 3c (15.3 ± 0.7) > 3a (15.8 ± 0.1) > 11c (17.1 ± 0.2), whereas all the compounds show insignificant toxicity on normal human embryonic kidney cells up to a concentration of 200 μM. The best compounds among the series (3c and 11c) were chosen for further detection of apoptosis through fluorescence microscopic techniques using AO/EtBr and DAPI. The reduced DNA synthesis during the cell cycle was also investigated through flow cytometric techniques. The results indicate that the compounds possess significant anticancer properties due to the activation of the mitochondrial mediated intrinsic pathway.
Collapse
Affiliation(s)
- Vandana Nandakumar
- School of Chemical Sciences, Department of Chemistry, Bharathiar University Coimbatore Tamil Nadu 641046 India
| | - Amsaveni Sundarasamy
- School of Chemical Sciences, Department of Chemistry, Bharathiar University Coimbatore Tamil Nadu 641046 India
| | - Kaviyarasu Adhigaman
- School of Chemical Sciences, Department of Chemistry, Bharathiar University Coimbatore Tamil Nadu 641046 India
| | - Sentamil Selvi Ramasamy
- School of Chemical Sciences, Department of Chemistry, Bharathiar University Coimbatore Tamil Nadu 641046 India
| | - Manickam Paulpandi
- Disease Proteomics laboratory, School of Life Sciences, Department of Zoology, Bharathiar University Coimbatore Tamil Nadu 641046 India
| | | | - Arul Narayanasamy
- Disease Proteomics laboratory, School of Life Sciences, Department of Zoology, Bharathiar University Coimbatore Tamil Nadu 641046 India
| | - Suresh Thangaraj
- School of Chemical Sciences, Department of Chemistry, Bharathiar University Coimbatore Tamil Nadu 641046 India
| |
Collapse
|
11
|
Haq IU, Ali I, Khan KM, Chigurupati S, Habib A, Salar U, Ahmad M, Konanki S, Felemban SG, Taha M, Haq ZU. New arylidene-linked chromane-2,4-dione analogs as potential leads for diabetic management; syntheses, α-amylase inhibitory, and radical scavenging activities. CHEMICAL PAPERS 2023; 77:2581-2604. [DOI: 10.1007/s11696-022-02648-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023]
|
12
|
Abu-Hashem AA, Gouda MA, Abdelgawad AA. Vilsmeier-Haack Cyclisation as a Facile Synthetic Route to Thieno [2,3- b]
Quinolines (Part I). LETT ORG CHEM 2023; 20:197-220. [DOI: 10.2174/1570178619666220922105259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Quinoline ring system is extensively dispensed in natural products, especially in alkaloids.
Moreover, thieno[2,3-b]quinolines have vast biological activities, including urea transporter inhibition,
anti-microbial, antitumor, antioxidant, anti-inflammatory, and antiproliferative EGFR tyrosine
kinase inhibition. Vilsmeier-Haack is considered the most facile and promising set of synthetic routes,
leading to 2-chloro-3-formylquinolines through Vilsmeier-Haack cyclisation of N- arylacetamides,
which are subsequently used as key intermediates for the synthesis of thieno[2,3-b]quinolones
(Tqs). Many varieties of thieno[2,3-b]quinolines (Tqs) ring systems, specifically concerning medicinal
chemistry, have been developed over the past decade. In light of these facts, this review presents a
systematic and comprehensive survey of the method of preparation and the chemical reactivity of
thieno[2,3-b]quinolines through the Vilsmeier-Haack reaction. In this study, the methods of preparation
and the chemical reactivity of (Tqs) by using the Vilsmeier-Haack reaction are discussed. Since
the beginning of the 21st century, they have been advancing towards synthesizing substituted Tqs. It
can be concluded that substituted Tqs can be used as building blocks for the synthesis of polyfunctionalized
heterocyclic compounds with pharmacological interest.
Collapse
Affiliation(s)
- Ameen A. Abu-Hashem
- Department of Chemistry, Faculty of Science, Jazan University, 45142 Jazan, Saudi Arabia
| | - Moustafa A. Gouda
- Department of Chemistry,
Faculty of Science and Arts, Taibah University, Ulla, Medina, Saudi Arabia
- Department of Chemistry, Faculty of Science,
Mansoura University, Mansoura 35516, Egypt
| | - Ahmed A.M. Abdelgawad
- Department of Chemistry, Faculty of Science, Jazan University, 45142 Jazan, Saudi Arabia
| |
Collapse
|
13
|
Kassab AE. Anticancer agents incorporating the N-acylhydrazone scaffold: Progress from 2017 to present. Arch Pharm (Weinheim) 2023; 356:e2200548. [PMID: 36638264 DOI: 10.1002/ardp.202200548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023]
Abstract
The N-acylhydrazone motif has been shown to be particularly adaptable and promising in the area of medicinal chemistry and drug development, due to its significant biological and pharmacological characteristics. Moreover, N-acylhydrazones are appealing synthetic and biological tools because of their simple and straightforward synthesis. This scaffold has emerged as a fundamental building block for the synthesis of bioactive compounds. Particularly, the N-acylhydrazone scaffold served as a base for the synthesis of a number of potent anticancer agents acting via different mechanisms. An updated summary of the anticancer activity of N-acylhydrazone derivatives described in the literature (from 2017 to 2022) is provided in the current review. It discusses the structure-activity relationship (SAR) of N-acylhydrazone derivatives exhibiting anticancer potential, which could be helpful in designing and developing new derivatives as effective antiproliferative candidates in the future.
Collapse
Affiliation(s)
- Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
14
|
Mohsin NUA, Aslam S, Ahmad M, Irfan M, Al-Hussain SA, Zaki MEA. Cyclooxygenase-2 (COX-2) as a Target of Anticancer Agents: A Review of Novel Synthesized Scaffolds Having Anticancer and COX-2 Inhibitory Potentialities. Pharmaceuticals (Basel) 2022; 15:ph15121471. [PMID: 36558921 PMCID: PMC9783503 DOI: 10.3390/ph15121471] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer is a serious threat to human beings and is the second-largest cause of death all over the globe. Chemotherapy is one of the most common treatments for cancer; however, drug resistance and severe adverse effects are major problems associated with anticancer therapy. New compounds with multi-target inhibitory properties are targeted to surmount these challenges. Cyclooxygenase-2 (COX-2) is overexpressed in cancers of the pancreas, breast, colorectal, stomach, and lung carcinoma. Therefore, COX-2 is considered a significant target for the synthesis of new anticancer agents. This review discusses the biological activity of recently prepared dual anticancer and COX-2 inhibitory agents. The most important intermolecular interactions with the COX-2 enzyme have also been presented. Analysis of these agents in the active area of the COX-2 enzyme could guide the introduction of new lead compounds with extreme selectivity and minor side effects.
Collapse
Affiliation(s)
- Noor ul Amin Mohsin
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Sana Aslam
- Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
- Correspondence: (M.A.); (M.E.A.Z.)
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Sami A. Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Correspondence: (M.A.); (M.E.A.Z.)
| |
Collapse
|
15
|
Dushanan R, Weerasinghe S, Dissanayake DP, Senthilinithy R. Implication of Ab Initio, QM/MM, and molecular dynamics calculations on the prediction of the therapeutic potential of some selected HDAC inhibitors. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2097672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ramachandren Dushanan
- Department of Chemistry, Faculty of Natural Sciences, The Open University of Sri Lanka, Nugegoda, Sri Lanka
| | - Samantha Weerasinghe
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | | | - Rajendram Senthilinithy
- Department of Chemistry, Faculty of Natural Sciences, The Open University of Sri Lanka, Nugegoda, Sri Lanka
| |
Collapse
|
16
|
Elganzory HH, Hassan SS, Aly SA, Abdalla EM. Synthesis, Characterization, PXRD Studies, Theoretical Calculation, and Antitumor Potency Studies of a Novel N,O-Multidentate Chelating Ligand and Its Zr(IV), V(IV), Ru(III), and Cd(II) Complexes. Bioinorg Chem Appl 2022; 2022:2006451. [PMID: 38435083 PMCID: PMC10908574 DOI: 10.1155/2022/2006451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/30/2022] [Accepted: 06/01/2022] [Indexed: 03/05/2024] Open
Abstract
A new series of Zr(IV), V(IV), Ru(III), and Cd(II) complexes with the ligand N-((5-hydroxy-4-oxo-4H-pyran-3-yl)methylene)-2-(p-tolylamino)acetohydrazide (H2L) have been prepared. FT-IR, 1H-NMR, electronic spectra, powder X-ray, and thermal behavior methods were applied to elucidate the structural composition of new compounds. Geometry optimization for all synthesized compounds was conducted using the Gaussian09 program via the DFT method, to obtain optimal structures and essential parameters. Moreover, the antibacterial and antitumor activity of the ligand and its complexes were studied, where the Cd(II) complex acquires probably the best antibacterial activity followed by the Ru(III) complex towards bacterial species than others when using ampicillin and gentamicin were used as standard drugs. The complexes exhibited interestingly antitumor potential against the MCF-7 breast cancer cell line. The cytotoxicity of the new complexes has been arranged to follow the order: Ru(III) complex > Cd(II) complex > Zr(IV) complex > V(IV) complex > ligand. Molecular docking was performed on the active site of ribosyltransferase and obtained good results. Structure-based molecular docking is used to identify a potential therapeutic inhibitor for NUDT5.
Collapse
Affiliation(s)
- Hussein H. Elganzory
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Safaa S. Hassan
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Samar A. Aly
- Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat 32958, Egypt
| | - Ehab M. Abdalla
- Chemistry Department, Faculty of Science, New Valley University, Alkharga 72511, Egypt
| |
Collapse
|
17
|
Sing LC, Roy A, Hui LY, Mun CS, Rajak H, Karunakaran R, Ravichandran V. Multi-targeted molecular docking, drug-likeness and ADMET studies of derivatives of few quinoline- and acridine-based FDA-approved drugs for anti-breast cancer activity. Struct Chem 2022. [DOI: 10.1007/s11224-022-01878-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Van de Walle T, Cools L, Mangelinckx S, D'hooghe M. Recent contributions of quinolines to antimalarial and anticancer drug discovery research. Eur J Med Chem 2021; 226:113865. [PMID: 34655985 DOI: 10.1016/j.ejmech.2021.113865] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022]
Abstract
Quinoline, a privileged scaffold in medicinal chemistry, has always been associated with a multitude of biological activities. Especially in antimalarial and anticancer research, quinoline played (and still plays) a central role, giving rise to the development of an array of quinoline-containing pharmaceuticals in these therapeutic areas. However, both diseases still affect millions of people every year, pointing to the necessity of new therapies. Quinolines have a long-standing history as antimalarial agents, but established quinoline-containing antimalarial drugs are now facing widespread resistance of the Plasmodium parasite. Nevertheless, as evidenced by a massive number of recent literature contributions, they are still of great value for future developments in this field. On the other hand, the number of currently approved anticancer drugs containing a quinoline scaffold are limited, but a strong increase and interest in quinoline compounds as potential anticancer agents can be seen in the last few years. In this review, a literature overview of recent contributions made by quinoline-containing compounds as potent antimalarial or anticancer agents is provided, covering publications between 2018 and 2020.
Collapse
Affiliation(s)
- Tim Van de Walle
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Lore Cools
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Sven Mangelinckx
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| |
Collapse
|
19
|
Asadi P, Alvani M, Hajhashemi V, Rostami M, Khodarahmi G. Design, synthesis, biological evaluation, and molecular docking study on triazine based derivatives as anti-inflammatory agents. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Alagumuthu M, Srivastava V, Shah M, Arumugam S, Sonaimuthu M, Arumugam NA. Pro- and Anti-Inflammatory Cytokine Expression Levels in Macrophages; An Approach to Develop Indazolpyridin-Methanones as a Novel Inflammation Medication. Antiinflamm Antiallergy Agents Med Chem 2021; 19:425-435. [PMID: 31878864 PMCID: PMC7579299 DOI: 10.2174/1871523019666191226104724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/16/2019] [Accepted: 12/01/2019] [Indexed: 01/01/2023]
Abstract
Background: Macrophages play a serious part in the instigation, upkeep, and resolution of inflammation. They are activated or deactivated during inflammation progression. Activation signals include cytokines (IF-γ, granulocyte-monocyte colony-stimulating factor (GM-CSF), and TNF-α), extracellular matrix proteins, and other chemical mediators. Activated macrophages are deactivated by anti-inflammatory cytokines (IL-10 and TGF-β (transforming growth factor-beta) and cytokine antagonists that are mainly produced by macrophages. Based on this, the present study aimed to develop novel (E)-Benzylidene-indazolpyridin methanones (Cpd-1-10) as effective anti-inflammatory agents by analyzing pro- and anti-inflammatory cytokine levels in macrophages. Objectives: To determine the anti-inflammatory effect of indazolpyridin-methanones by examining pro- and anti-inflammatory interleukin levels in J77A.1 macrophages. Methods: Expression of cytokines such as TNF-α, IL-1β, IL-6 and IL-10 serum levels measured by ELISA method. Anti-cancer and cytotoxicity studies were carried out by MTT assay. COX-2 seems to be associated with cancers and atypical developments in the duodenal tract. So, a competitive ELISA based COX-2 inhibition assay was done. To validate the inhibitory potentials and to get more insight into the interaction of COX-2 with Cpd1-10, molecular docking was performed. Results: Briefly, the COX-2 inhibitory relative activity was found to be in between the range of 80-92% (Diclofenac showed 84%, IC50 0.95 µM). Conclusion: Cytotoxicity effect of the compounds against breast cancer cell lines found excellent and an extended anticancer study ensured that these compounds are also alternative therapeutic agents against breast cancer. Among all the tested cancer cell lines, the anti-cancer effect on breast cancer was exceptional for the most active compounds Cpd5 and Cpd9.
Collapse
Affiliation(s)
| | | | - Manisha Shah
- School of Bio-Science & Technology, VIT University, Vellore-632014, India
| | - Sivakumar Arumugam
- School of Bio-Science & Technology, VIT University, Vellore-632014, India
| | | | | |
Collapse
|
21
|
Ghanim AM, Rezq S, Ibrahim TS, Romero DG, Kothayer H. Novel 1,2,4-triazine-quinoline hybrids: The privileged scaffolds as potent multi-target inhibitors of LPS-induced inflammatory response via dual COX-2 and 15-LOX inhibition. Eur J Med Chem 2021; 219:113457. [PMID: 33892270 DOI: 10.1016/j.ejmech.2021.113457] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
Based on the observed pharmacophoric structural features for the reported dual COX/15-LOX inhibitors and inspired by the abundance of COX/LOX inhibitory activities reported for the 1,2,4-triazine and quinoline scaffolds, we designed and synthesized novel 1,2,4-triazine-quinoline hybrids (8a-n). The synthesized hybrids were evaluated in vitro as dual COXs/15-LOX inhibitors. The new triazine-quinoline hybrids (8a-n) exhibited potent COX-2 inhibitory profiles (IC50 = 0.047-0.32 μM, SI ∼ 20.6-265.9) compared to celecoxib (IC50 = 0.045 μM, SI ∼ 326). Moreover, they revealed potent inhibitory activities against 15-LOX enzyme compared to reference quercetin (IC50 = 1.81-3.60 vs. 3.34 μM). Hybrid 8e was the most potent and selective dual COX-2/15-LOX inhibitor (COX-2 IC50 = 0.047 μM, SI = 265.9, 15-LOX IC50 = 1.81 μM). These hybrids were further challenged by their ability to inhibit NO, ROS, TNF-α, IL-6 inflammatory mediators, and 15-LOX product, 15-HETE, production in LPS-activated RAW 264.7 macrophages cells. Compound 8e was the most potent hybrid in reducing ROS and 15-HETE levels showing IC50 values of 1.02 μM (11-fold more potent than that of celecoxib, IC50 = 11.75 μM) and 0.17 μM (about 43 times more potent than celecoxib, IC50 = 7.46 μM), respectively. Hybrid 8h exhibited an outstanding TNF-α inhibition with IC50 value of 0.40 μM which was about 25 times more potent than that of celecoxib and diclofenac (IC50 = 10.69 and 10.27 μM, respectively). Docking study of the synthesized hybrids into the active sites of COX-2 and 15-LOX enzymes ensures their favored binding affinity. To our knowledge, herein we reported the first 1,2,4-triazine-quinoline hybrids as dual COX/15-LOX inhibitors.
Collapse
Affiliation(s)
- Amany M Ghanim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Samar Rezq
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Egypt; Departments of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA; Mississippi Center for Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA; Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, USA; Cardio Renal Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Tarek S Ibrahim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Damian G Romero
- Departments of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA; Mississippi Center for Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA; Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, USA; Cardio Renal Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hend Kothayer
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Egypt.
| |
Collapse
|
22
|
Sharma S, Singh A, Sharma S, Sharma R, Singh J, Kinarivala N, Nepali K, Liou JP. Tailored Quinolines Demonstrate Flexibility to Exert Antitumor Effects through Varied Mechanisms-A Medicinal Perspective. Anticancer Agents Med Chem 2021; 21:288-315. [PMID: 32900354 DOI: 10.2174/1871520620666200908104303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/24/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Quinoline is considered to be a privileged heterocyclic ring owing to its presence in diverse scaffolds endowed with promising activity profiles. In particular, quinoline containing compounds have exhibited substantial antiproliferative effects through the diverse mechanism of actions, which indicates that the heteroaryl unit is flexible as well as accessible to subtle structural changes that enable its inclusion in chemically distinct anti-tumor constructs. METHODS Herein, we describe a medicinal chemistry perspective on quinolines as anticancer agents by digging into the peer-reviewed literature as well as patents published in the past few years. RESULTS This review will serve as a guiding tool for medicinal chemists and chemical biologists to gain insights about the benefits of quinoline ring installation to tune the chemical architectures for inducing potent anticancer effects. CONCLUSION Quinoline ring containing anticancer agents presents enough optimism and promise in the field of drug discovery to motivate the researchers towards the continued explorations on such scaffolds. It is highly likely that adequate efforts in this direction might yield some potential cancer therapeutics in the future.
Collapse
Affiliation(s)
- Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Arshdeep Singh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jagjeet Singh
- School of Pharmacy, University of Queensland, Brisbane, QLD, Australia
| | - Nihar Kinarivala
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jing P Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
23
|
Yadav P, Shah K. Quinolines, a perpetual, multipurpose scaffold in medicinal chemistry. Bioorg Chem 2021; 109:104639. [PMID: 33618829 DOI: 10.1016/j.bioorg.2021.104639] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
Quinoline is a versatile pharmacophore, a privileged scaffold and an outstanding fused heterocyclic compound with a wide range of pharmacological prospective such as anticancer, anti-inflammatory, antibacterial, antiviral drug and superlative moiety in drug discovery. The quinoline hybrids have already been shown excellent results with new targets with a different mode of actions as an inhibitor of cell proliferation by cell cycle arrest, apoptosis, angiogenesis, disruption of cell migration and modulation. This review emphasized the mode of action, structure activity relationship and molecular docking to reveal the various active pharmacophores of quinoline hybrids accountable for novel anticancer, anti-inflammatory, antibacterial and miscellaneous activities. Therefore, several quinoline candidates are under clinical trials for the treatment of certain diseases, for example ferroquine (antimalarial), dactolisib (antitumor) and pelitinib (EGFR TK inhibitors) etc. Plenty of research has been summarized the recent advances of quinoline derivatives and explore the various therapeutic prospects of this moiety. This review would help the researchers to strategically design diverse novel quinoline derivatives for the development of clinically viable drug candidates for the treatment of incurable diseases.
Collapse
Affiliation(s)
- Pratibha Yadav
- Institute of Pharmaceutical Research, GLA University, Mathura, UP 281406, India
| | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura, UP 281406, India.
| |
Collapse
|
24
|
Wu BX, Chang HY, Liao YS, Yeh MY. Synthesis, photochemical isomerization and photophysical properties of hydrazide–hydrazone derivatives. NEW J CHEM 2021. [DOI: 10.1039/d0nj05172a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structure–property relationships for the hydrazide–hydrazone derivatives were investigated to provide new insights into the design of photo-responsive materials.
Collapse
Affiliation(s)
- Bao-Xing Wu
- Department of Chemistry
- Chung Yuan Christian University
- Chung-Li
- Taiwan
| | - Hsin-Yueh Chang
- Department of Chemistry
- Chung Yuan Christian University
- Chung-Li
- Taiwan
| | - Yi-Shun Liao
- Department of Chemistry
- Chung Yuan Christian University
- Chung-Li
- Taiwan
| | - Mei-Yu Yeh
- Department of Chemistry
- Chung Yuan Christian University
- Chung-Li
- Taiwan
| |
Collapse
|
25
|
Mohassab AM, Hassan HA, Abdelhamid D, Gouda AM, Youssif BGM, Tateishi H, Fujita M, Otsuka M, Abdel-Aziz M. Design and synthesis of novel quinoline/chalcone/1,2,4-triazole hybrids as potent antiproliferative agent targeting EGFR and BRAF V600E kinases. Bioorg Chem 2020; 106:104510. [PMID: 33279248 DOI: 10.1016/j.bioorg.2020.104510] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/10/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
New quinoline / chalcone hybrids containing 1,2,4-triazole moiety have been designed, synthesized and their structures elucidated and confirmed by various spectroscopic techniques. The designed compounds showed moderate to good activity on different NCI 60 cell lines in a single-dose assay with a growth inhibition rate ranging from 50% to 94%. Compounds 7b, 7d, 9b, and 9d were the most active compounds in most cancer cell lines with a growth inhibition percent between 77% and 94%. Newly synthesized hybrids were evaluated for their anti-proliferative activity against a panel of four human cancer cell lines. Compounds 7a, 7b, 9a, 9b, and 9d showed promising antiproliferative activities. These compounds were further tested for their inhibitory potency against EGFR and BRAFV600E kinases with erlotinib as a reference drug. The molecular docking study of compounds 7a, 7b, 9a, 9b, and 9d revealed nice fitting into the active site of EGFR and BRAFV600E kinases. Compounds 7b, 9b, and 9d displayed the highest binding affinities and similar binding pattern to those of erlotinib.
Collapse
Affiliation(s)
- Aliaa M Mohassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Heba A Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| | - Dalia Abdelhamid
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Ahmed M Gouda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Drug Discovery, Science Farm Ltd., 1-7-30 Kuhonji, Chuo-ku, Kumamoto 862-0976, Japan
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| |
Collapse
|
26
|
El‐saied FA, Shakdofa MM, Al‐Hakimi AN, Shakdofa AM. Transition metal complexes derived from
N
′‐(4‐fluorobenzylidene)‐2‐(quinolin‐2‐yloxy) acetohydrazide: Synthesis, structural characterization, and biocidal evaluation. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fathy A. El‐saied
- Department of Chemistry, Faculty of Science Menoufia University Shebin El‐Kom Egypt
| | - Mohamad M.E. Shakdofa
- Department of Chemistry, College of Science and Arts, Khulais University of Jeddah Saudi Arabia
- Inorganic Chemistry Department National Research Centre P.O. 12622, El‐Bohouth St., Dokki Cairo Egypt
| | - Ahmed N. Al‐Hakimi
- Department of Chemistry, College of Science Qassim University Saudi Arabia
- Department of Chemistry, Faculty of Science Ibb University Ibb Yemen
| | - Adel M.E. Shakdofa
- Department of Chemistry, Faculty of Science Menoufia University Shebin El‐Kom Egypt
| |
Collapse
|
27
|
Synthesis, DFT calculations, biological investigation, molecular docking studies of β-lactam derivatives. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127891] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
28
|
Bilavendran JD, Manikandan A, Thangarasu P, Sivakumar K. Synthesis and biological activities of nitro‐hydroxy‐phenylquinolines; validation of antibiotics effect over DNA gyrase inhibition and antimicrobial activity. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- J D. Bilavendran
- Research and Development CentreBharathiar University Coimbatore India
| | - Alagumuthu Manikandan
- Department of BiotechnologySchool of Bio‐Sciences and Technology, VIT University Vellore India
| | | | - K Sivakumar
- Department of ChemistryAdhiyamaan College of Engineering India
| |
Collapse
|
29
|
Dennis Bilavendran J, Manikandan A, Thangarasu P, Sivakumar K. Synthesis and discovery of pyrazolo-pyridine analogs as inflammation medications through pro- and anti-inflammatory cytokine and COX-2 inhibition assessments. Bioorg Chem 2019; 94:103484. [PMID: 31796215 DOI: 10.1016/j.bioorg.2019.103484] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/08/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022]
Abstract
This article briefs about the efforts taken to synthesis, characterize and develop (E)-5-methyl-2-phenyl-3-(thiophen-2-yl)-7-(thiophen-2-ylmethylene)-3,3a,4,5,6,7-hexahydro-2H-pyrazolo[4,3-c]pyridine and their analogs. In the two-step reaction, the first step is the synthesis of (3Z,5E)-1-methyl-3,5-bis(thiophen-2-ylmethylene)piperidin-4-one derivatives (3a-l) by stirring the mixture of 1-methylpiperidin-4-one and substituted thiophene-carbaldehydes in presence of methanol. In the second and final step, compounds 3a-l were refluxed with phenyl-hydrazine to achieve the target compounds (E)-5-methyl-2-phenyl-3-(thiophen-2-yl)-7-(thiophen-2-ylmethylene)-3,3a,4,5,6,7-hexahydro-2H-pyrazolo[4,3-c]pyridine and their analogs (5a-l) in good yield. These compounds were used to assess their inflammation regulation properties in macrophages by executing quantitative pro-inflammatory and anti-inflammatory proteins such as TNF-α, IL-1β, IL6, and IL-10 respectively. In silico and in vitro COX-2 inhibition studies helped to understand the molecular interaction or plausible mechanism during the inflammation regulation that showed by the compounds. In the results, among the 12-member family of pyrazolo-pyridines (5a-l), 5a, 5b, 5g, and 5j were showed excellent in silico binding affinity (1-10 nM), least binding energy (-12.45 to -14.27 kcal/mol) and in vitro COX-2 inhibition (relative percentage activity maximum 96.42%). Thus, these compounds perhaps to be future anti-inflammatory drugs.
Collapse
Affiliation(s)
- J Dennis Bilavendran
- Research and Development Centre, Bharathiar University, Coimbatore 641046, India
| | - A Manikandan
- Department of Biotechnology, School of Bio-Sciences and Technology, VIT University, Vellore 632014, India.
| | - P Thangarasu
- Research and Development Centre, Bharathiar University, Coimbatore 641046, India
| | - K Sivakumar
- Research and Development Centre, Bharathiar University, Coimbatore 641046, India; Department of Chemistry, Adhiyamaan College of Engineering, Hosur 635109, India.
| |
Collapse
|
30
|
Sudhapriya N, Manikandan A, Kumar MR, Perumal P. Cu-mediated synthesis of differentially substituted diazepines as AChE inhibitors; validation through molecular docking and Lipinski’s filter to develop novel anti-neurodegenerative drugs. Bioorg Med Chem Lett 2019; 29:1308-1312. [DOI: 10.1016/j.bmcl.2019.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/21/2019] [Accepted: 04/03/2019] [Indexed: 02/08/2023]
|
31
|
N-Acylhydrazones as drugs. Bioorg Med Chem Lett 2018; 28:2797-2806. [DOI: 10.1016/j.bmcl.2018.07.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/05/2018] [Accepted: 07/08/2018] [Indexed: 01/09/2023]
|
32
|
Marine natural products for multi-targeted cancer treatment: A future insight. Biomed Pharmacother 2018; 105:233-245. [PMID: 29859466 DOI: 10.1016/j.biopha.2018.05.142] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 12/28/2022] Open
Abstract
Cancer is world's second largest alarming disease, which involves abnormal cell growth and have potential to spread to other parts of the body. Most of the available anticancer drugs are designed to act on specific targets by altering the activity of involved transporters and genes. As cancer cells exhibit complex cellular machinery, the regeneration of cancer tissues and chemo resistance towards the therapy has been the main obstacle in cancer treatment. This fact encourages the researchers to explore the multitargeted use of existing medicines to overcome the shortcomings of chemotherapy for alternative and safer treatment strategies. Recent developments in genomics-proteomics and an understanding of the molecular pharmacology of cancer have also challenged researchers to come up with target-based drugs. The literature supports the evidence of natural compounds exhibiting antioxidant, antimitotic, anti-inflammatory, antibiotic as well as anticancer activity. In this review, we have selected marine sponges as a prolific source of bioactive compounds which can be explored for their possible use in cancer and have tried to link their role in cancer pathway. To prove this, we revisited the literature for the selection of cancer genes for the multitargeted use of existing drugs and natural products. We used Cytoscape network analysis and Search tool for retrieval of interacting genes/ proteins (STRING) to study the possible interactions to show the links between the antioxidants, antibiotics, anti-inflammatory and antimitotic agents and their targets for their possible use in cancer. We included total 78 pathways, their genes and natural compounds from the above four pharmacological classes used in cancer treatment for multitargeted approach. Based on the Cytoscape network analysis results, we shortlist 22 genes based on their average shortest path length connecting one node to all other nodes in a network. These selected genes are CDKN2A, FH, VHL, STK11, SUFU, RB1, MEN1, HRPT2, EXT1, 2, CDK4, p14, p16, TSC1, 2, AXIN2, SDBH C, D, NF1, 2, BHD, PTCH, GPC3, CYLD and WT1. The selected genes were analysed using STRING for their protein-protein interactions. Based on the above findings, we propose the selected genes to be considered as major targets and are suggested to be studied for discovering marine natural products as drug lead in cancer treatment.
Collapse
|
33
|
Kumar M R, Alagumuthu M, V VD. Synthesis and Molecular Drug Efficacy of Indoline-based Dihydroxy-thiocarbamides: Inflammation Regulatory Property Unveiled over COX-2 Inhibition, Molecular Docking, and Cytotoxicity Prospects. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rajesh Kumar M
- Department of Chemistry; Bishop Heber College; Tiruchirappalli India
| | - Manikandan Alagumuthu
- Department of Biotechnology, School of Bio-Sciences and Technology; VIT University; Vellore 632014 India
| | | |
Collapse
|