1
|
Sonawane PM, Jain N, Kim J, Jeong Park S, Mulay SV, Balasaheb Nimse S, Churchill DG. A Novel Methacryloyl-Masked NIR Fluorescent Probe for Detection of Cysteine and Its Application in Bioimaging. Chemistry 2025; 31:e202402840. [PMID: 39563473 DOI: 10.1002/chem.202402840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Cysteine (Cys) detection is recognized as an essential element in this investigation due to the critical function of Cys in several physiological processes in living organisms. A new NIR fluorescent probe SNC-Cys has been synthesized by incorporating a five-membered malononitrile derivatized ring as an electron withdrawing group, and a methacryloyl group detection moiety for cysteine. After adding Cys, SNC-Cys shows an emission of 654 nm and further works as a "Turn-on" probe via ICT photomechanism. SNC-Cys has high sensitivity and selectivity for Cys (LOD=0.46 μM) and can discriminate it from other closely related amino acids, molecules with structural similarity, and in some cases very close functional group likeness. Thus, these results allow the effective imaging of Cys in living A549 cells which indicates good cell permeability and high applicability in live cell imaging. This study anticipates that SNC-Cys could be an aid in the detection of Cys-relevant diseases.
Collapse
Affiliation(s)
- Prasad M Sonawane
- Department of Chemistry, Molecular Logic Gate Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Neha Jain
- Department of Chemistry, Molecular Logic Gate Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - JunHyuk Kim
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Su Jeong Park
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Sandip V Mulay
- Department of Chemistry, Molecular Logic Gate Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Satish Balasaheb Nimse
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon, 24252, Republic of Korea
| | - David G Churchill
- Department of Chemistry, Molecular Logic Gate Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST), Therapeutic Bioengineering Section) 29 1 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
2
|
Treto-Suárez MA, Hidalgo-Rosa Y, Saavedra-Torres M, Koivisto BD, Mena Ulecia K, Páez-Hernández D, Zarate X, Schott E. Tunable optical properties of isoreticular UiO-67 MOFs for photocatalysis: a theoretical study. Dalton Trans 2024; 53:11310-11325. [PMID: 38898805 DOI: 10.1039/d4dt01017e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A theoretical study of the reported photocatalytic systems based on Zr-based MOF (UiO-67) with biphenyl-4,4'-dicarboxylic acid (bpdc) and 2,2'-bipyridine-5,5'-dicarboxylic acid (bpydc) as linkers was performed. Quantum chemical calculations were carried out to understand the optical properties of the materials and to facilitate the rational design of new UiO-67 derivatives with potentially improved features as photocatalysts under ambient conditions. Hence, the effect of the structural modifications on the optical properties was studied considering different designs based on the nature of the linkers: in 1 only the bpdc linker was considered, or the mixture 1 : 1 between bpdc and bpydc linkers (labeled as 1A). Also, substituents R, -NH2, and -SH, were included in the 1A MOF only over the bpdc linker (labeled as 1A-bpdc-R) and on both bpdc and bpydc linkers (labeled as 1A-R). Thus a family of six isoreticular UiO-67 derivatives was theoretically characterized using Density Functional Theory (DFT) calculations on the ground singlet (S0) and first excited states (singlet and triplet) using Time-Dependent Density Functional Theory (TD-DFT), multiconfigurational post-Hartree-Fock method via Complete Active Space Self-Consistent Field (CASSCF). In addition, the use of periodic DFT calculations suggest that the energy transfer (ET) channel between bpdc and bpydc linkers might generate more luminescence quenching of 1A when compare to 1. Besides, the results suggest that the 1A-R (R: -SH and NH2) can be used under ambient conditions; however, the ET exhibited by 1A, cannot take place in the same magnitude in these systems. These ET can favor the photocatalytic reduction of a potential metal ion, that can coordinate with the bpydc ligand, via LMCT transition. Consequently, the MOF might be photocatalytically active against molecules of interest (such as H2, N2, CO2, among others) with photo-reduced metal ions. These theoretical results serve as a useful tool to guide experimental efforts in the design of new photocatalytic MOF-based systems.
Collapse
Affiliation(s)
- Manuel A Treto-Suárez
- Departamento de Física y Química, Facultad de Ingeniería, IDETECO, Universidad Autónoma de Chile, Av. Alemania 01090, 4810101-Temuco, Chile.
| | - Yoan Hidalgo-Rosa
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, 8580745, Chile
| | - Mario Saavedra-Torres
- Millennium Nucleus in Catalytic Processes towards Sustainable Chemistry (CSC), Chile
| | - Bryan D Koivisto
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Karel Mena Ulecia
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Ave. Rudecindo Ortega 02950, Temuco, Chile
| | - Dayán Páez-Hernández
- Doctorado en Fisicoquímica Molecular, Center of Applied Nanosciences (CANS), Universidad Andres Bello, Ave. República #275, Santiago de Chile, Chile
| | - Ximena Zarate
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Santiago, Chile
| | - Eduardo Schott
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile.
| |
Collapse
|
3
|
Treto‐Suárez MA, Zarate X, Schott E. Structure and Electronic Properties of Metalloboranes with General Formula Cp*
3
(μ‐H)M
3
B
8
H
8
(M=Cr, Mo and W): The Effect of the Size of the Metal. ChemistrySelect 2022. [DOI: 10.1002/slct.202204009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Manuel A. Treto‐Suárez
- Instituto de Ciencias Químicas Aplicadas, Departamento de Física y Química, Facultad de Ingeniería Universidad Autónoma de Chile Av. Alemania 01090 4810101 – Temuco Chile
| | - Ximena Zarate
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería Universidad Autónoma de Chile, postCode/> <8900000> Santiago Chile
| | - Eduardo Schott
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC Pontificia Universidad Católica de Chile Avenida Vicuña Mackenna 4860 Santiago Chile
- ANID-Millennium Science Initiative Program-Millennium Nuclei on Catalytic Process Towards Sustainable Chemistry (CSC) 7820436 Santiago Chile
| |
Collapse
|
4
|
Development and application of a fluorescence turn-on probe for the nanomolar cysteine detection in serum and milk samples. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
5
|
Lee JS, Warkad SD, Shinde PB, Kuwar A, Nimse SB. A highly selective fluorescent probe for nanomolar detection of ferric ions in the living cells and aqueous media. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.09.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
6
|
Fedorowicz J, Cebrat M, Wierzbicka M, Wiśniewska P, Jalińska A, Dziomba S, Gdaniec M, Jaremko M, Jaremko Ł, Chandra K, Szewczuk Z, Sączewski J. Synthesis and evaluation of dihydro-[1,2,4]triazolo[4,3-a]pyridin-2-ium carboxylates as fixed charge fluorescent derivatization reagents for MEKC and MS proteomic analyses. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Sethupathi M, Jayamani A, Muthusankar G, Sakthivel P, Sekar K, Gandhi S, Sengottuvelan N, Gopu G, Selvaraju C. Colorimetric and fluorescence sensing of Zn 2+ ion and its bio-imaging applications based on macrocyclic "tet a" derivative. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 207:111854. [PMID: 32302821 DOI: 10.1016/j.jphotobiol.2020.111854] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 03/04/2020] [Accepted: 03/13/2020] [Indexed: 11/28/2022]
Abstract
We report on the synthesis and characterization of trans N, N'-di-substituted macrocyclic "tet a" probe (L) for metal ion sensing. Both the colorimetric and fluorescent titration studies are performed with different metal ions. The results have suggested that the probe L is very selective and sensitive towards Zn2+ ions with significant changes in color. The pendant armed macrocyclic "tet a" probe has exhibited 1.28× 105 M-1 binding constant and virtuous selectivity for Zn2+ ion than other common metal ions. The detection limit of the probe towards Zn2+ ion is 0.027 nM. The selective sensing of Zn2+ ion is efficiently reversible with EDTA, which is demonstrated for five cycles without losing sensitivity. The time-resolved single-photon counting (TCSPC) studies have determined the average lifetime value for the probe L and L+ Zn2+ ion of 1.29 and 2.96 ns, respectively. The theoretical DFT studies have well supported the experimental outcomes. The practical application of the probe in visualizing intracellular Zn2+ ion distribution in live Artemia salina has proved the low cytotoxicity and cell membrane permeability of probe, which makes it capable of sensing Zn2+ ion in HeLa cells. Thus, the probe L can act as a selective recognition of Zn2+ ion in living cell applications.
Collapse
Affiliation(s)
- Murugan Sethupathi
- Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | - Arumugam Jayamani
- Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi, Tamil Nadu 630003, India; Department of Chemistry, Faculty of Applied Sciences, Manav Rachna University, Faridabad, Haryana 121004, India
| | - Ganesan Muthusankar
- Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | - Perumal Sakthivel
- Department of Chemistry, Anna University - University College of Engineering, Dindigul, Tamil Nadu 624622, India
| | - Karuppannan Sekar
- Department of Chemistry, Anna University - University College of Engineering, Dindigul, Tamil Nadu 624622, India
| | - Sivaraman Gandhi
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, Karnataka 560065, India
| | - Nallathambi Sengottuvelan
- Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi, Tamil Nadu 630003, India.
| | - Gopalakrishnan Gopu
- Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | - Chellappan Selvaraju
- National Centre for Ultrafast Processes, University of Madras, Taramani Campus, Chennai, Tamil Nadu 600113, India
| |
Collapse
|
8
|
A first principle photo-induced electron transfer study on a quinolin schiff base as Al3+ chemosensor using TD-DFT method. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|