1
|
Venkatesh G, Vennila P, Kaya S, Ahmed SB, Sumathi P, Siva V, Rajendran P, Kamal C. Synthesis and Spectroscopic Characterization of Schiff Base Metal Complexes, Biological Activity, and Molecular Docking Studies. ACS OMEGA 2024; 9:8123-8138. [PMID: 38405527 PMCID: PMC10882688 DOI: 10.1021/acsomega.3c08526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/27/2024]
Abstract
New cobalt(II), copper(II), and zinc(II) Schiff metal complexes were synthesized by the condensation reaction of 4-nitrobenzene-1,2-diamine with 3-4-(diethylamino)-2-hydroxybenzaldehyde. Fourier transform infrared, nuclear magnetic resonance, ultraviolet-visible, electron paramagnetic resonance, and high-resolution electrospray ionization mass spectrometry and powder X-ray diffraction were used to characterize the synthesized H2L and its metal complexes. Conductance measurements, magnetic moment estimation, and metal estimation have all been determined and discussed. The electrochemical properties of the synthesized compounds have been determined and discussed using cyclic voltammetry. The molecular structures of H2L and its metal complexes have been optimized using the B3LYP functional and the 6-31G (d,p) basis set, and their parameters have been discussed. The quantum chemical properties of these synthesized compounds have been predicted through charge distribution and molecular orbital analysis. The biological properties of the synthesized compounds' antioxidant, antifungal, and antibacterial activity have been studied and discussed. Furthermore, H2L and its complexes have been docked with HER2-associated target proteins in breast cancer.
Collapse
Affiliation(s)
- Ganesan Venkatesh
- Department
of Chemistry, Muthayammal Memorial College
of Arts and Science, Namakkal, Tamil Nadu 637408, India
| | - Palanisamy Vennila
- Department
of Chemistry, Thiruvalluvar Government Arts
College, Rasipuram, Tamil Nadu 637 401, India
| | - Savas Kaya
- Department
of Chemistry, Cumhuriyet University, Sivas 58140, Turkey
| | - Samia Ben Ahmed
- Department
of Chemistry, College of Sciences, King
Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Paramasivam Sumathi
- Department
of Chemistry, Gobi Arts & Science College, Erode, Tamil Nadu 638452, India
| | - Vadivel Siva
- Department
of Physics, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | - Premkumar Rajendran
- Department
of Physics, N.M.S.S.V.N. College, Madurai, Tamil Nadu 625019, India
| | - Chennapan Kamal
- Department
of Chemistry, Mahendra College of Engineering, Salem, Tamil Nadu 636106, India
| |
Collapse
|
2
|
Medimagh M, Ben Mleh C, ISSAOUI N, Raja M, Kazachenko AS, Al-Dossary OM, Roisnel T, Kumar N, Marouani H. Bonding and noncovalent interactions effects in 2,6-dimethylpiperazine-1,4-diium oxalate oxalic acid: DFT calculation, topological analysis, NMR and molecular docking studies. Z PHYS CHEM 2024; 238:147-172. [DOI: 10.1515/zpch-2023-0354] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Abstract
The pharmaceutical proprieties of the 2,6-dimethylpiperazine-1,4-diium oxalate oxalic acid compound have been studied and the relevant drug design has been considered. The investigated organic compound with formula (2,6-(CH3)C4H10N2)2(C2O4)2·H2C2O4 (2DPOA) has been synthesized by slow evaporation technique at room temperature of a molar ratio 3:2 mix of oxalic acid and 2,6-dimethylpiperazine. Then 2DPOA has been characterized by IR, 13C NMR, UV–visible and the DFT calculation at the B3LYP level of theory has been made. The molecular structure and parameters (bond angles and lengths) of the molecule have been optimized using the Gaussian 09 software and compared with the XRD data. The atoms-in-molecules (AIM), electron localization function (ELF), and localized orbital locator (LOL) methods have been utilized to determine the types and nature of noncovalent interactions present within the 2DPOA molecule. These methods offer insights into the characteristics and behavior of these interactions. Furthermore, the presence of these interactions has been confirmed through the Hirshfeld Surface (HS) and reduced density gradient (RDG) analysis. The NBO analysis is employed to assess the charge exchange occurring within the studied compound. The molecular reactive sites have been examined using the molecular potential surface and Mulliken atomic charges. The energy gap between HOMO–LUMO and chemical properties of 2DPOA have been determined within the frontier molecular orbital theory. The UV–Vis spectrum of the 2DPOA molecule has been recorded and examined. The calculated and experimental infrared absorption and nuclear magnetic resonance spectra of 2DPOA molecule have been investigated. Finally, the molecular docking simulation has been used to find novel inhibitors and drugs for the cancer and epilepsy disease treatment.
Collapse
Affiliation(s)
- Mouna Medimagh
- Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences , University of Monastir , Monastir 5079 , Tunisia
| | - Cherifa Ben Mleh
- Laboratory of Chemistry of Materials (LR13ES08), Faculty of Sciences of Bizerte , University of Carthage , Bizerte , 7021 , Tunisia
| | - Noureddine ISSAOUI
- Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences , University of Monastir , Monastir 5079 , Tunisia
| | - Murugesan Raja
- Department of Physics , Government Thirumagal Mills College , Gudiyatham , Vellore 632602 , India
| | - Aleksandr S. Kazachenko
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS” , Akademgorodok, 50/24 , Krasnoyarsk , 660036 , Russia
- Siberian Federal University , Svobodny Av., 79 , Krasnoyarsk , 660041 , Russia
| | - Omar M. Al-Dossary
- Department of Physics and Astronomy , College of Science, King Saud University , PO Box 2455 , Riyadh 11451 , Saudi Arabia
| | - Thierry Roisnel
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, Univ. Rennes , F-35000 Rennes , France
| | - Naveen Kumar
- Department of Chemistry , Maharshi Dayanand University , Rohtak , India
| | - Houda Marouani
- Laboratory of Chemistry of Materials (LR13ES08), Faculty of Sciences of Bizerte , University of Carthage , Bizerte , 7021 , Tunisia
| |
Collapse
|
3
|
Arumugam T, Ramalingam A, Guerroudj AR, Sambandam S, Boukabcha N, Chouaih A. Conformation and vibrational spectroscopic analysis of 2,6-bis(4-fluorophenyl)-3,3-dimethylpiperidin-4-one (BFDP) by DFT method: A potent anti-Parkinson's, anti-lung cancer, and anti-human infectious agent. Heliyon 2023; 9:e21315. [PMID: 37954314 PMCID: PMC10637958 DOI: 10.1016/j.heliyon.2023.e21315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
The potential of 2,6-bis(4-fluorophenyl)-3,3-dimethylpiperidin-4-one (BFDP) as an anti-Parkinson's, anti-lung cancer, and anti-human infectious agent was extensively assessed in the current study. To accomplish this, the compound BFDP was synthesised and analysed using several spectroscopic approaches, such as NMR, mass and FT-IR spectral studies. The computational calculations for the molecule were carried out using density functional theory (DFT) at the B3LYP/6-311G++ (d,p) level of theory. A X-ray diffraction (XRD) study allows us to analyse the crystalline structure of our BFDP molecule. Intermolecular interactions were assessed using 3D Hirshfeld surfaces (3D-HS) and 2D fingerprint plots. AIM and NCI-RDG were done using quantum calculations and the DFT technique, and topological ELF and LOL, as well as vibrational parameters, have been obtained. The thermodynamic and thermal properties of the BFDP compound were determined. To investigate the pharmacokinetic characteristics of BFDP, a molecular docking study and an in silico ADMET study were done.
Collapse
Affiliation(s)
- Thangamani Arumugam
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
- Centre for Material Chemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Arulraj Ramalingam
- Department of Electrical and Computer Engineering, National University of Singapore, 117 583, Singapore
| | - Ahlam Roufieda Guerroudj
- Laboratory of Technology and Solid Properties (LTPS), Abdelhamid Ibn Badis University of Mostaganem, 27000 Mostaganem, Algeria
| | - Sivakumar Sambandam
- Research and Development Centre, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
- BPJ College of Arts and Science, Kozhai, Srimushnam, Cuddalore 608703, Tamil Nadu, India
| | - Nourdine Boukabcha
- Laboratory of Technology and Solid Properties (LTPS), Abdelhamid Ibn Badis University of Mostaganem, 27000 Mostaganem, Algeria
- Chemistry Department, Faculty of Exact Sciences and Informatic, Hassiba Benbouali University, Chlef, 02000, Algeria
| | - Abdelkader Chouaih
- Laboratory of Technology and Solid Properties (LTPS), Abdelhamid Ibn Badis University of Mostaganem, 27000 Mostaganem, Algeria
| |
Collapse
|
4
|
Balu R, Panneerselvam A, Devendrapandi G, Rajabathar JR, Al-Lohedan HA, Al-Dhayan DM. Theoretical and experimental spectroscopic studies and analysis for wave function on N-phenylmorpholine-4-carboxamide benzene-1,2-diamine with computational techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 301:122988. [PMID: 37321138 DOI: 10.1016/j.saa.2023.122988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
The present study focuses on structural and chemical analyses of N-phenylmorpholine-4-carboxamide benzene-1,2-diamine (PMCBD) using quantum computational methods. The calculated bond angle, length, and dihedral angle between atoms were compared with measured values. The observed and stimulated FT-IR (Fourier Transform Infrared Spectroscopy) spectra parameters for vibrational wavenumbers and their associated PED (Potential Energy Distribution) values in percentage have been obtained from VEDA4 software. The electronic transitions of PMCBD were discussed by TD-SCF/DFT/B3LYP based on the 6-311++G(d,p) basis set with solvents such as chloroform, ethanol, and dimethyl sulfoxide (DMSO) and gas. Density functional computations were used to study the band energy between HOMO and LUMO using the B3LYP/6-311++G(d,p) level. Mulliken analysis and natural population analysis were used for a better understanding of charge levels on different atoms such as N, H and O. The natural bonding orbital (NBO) analysis proved helpful in studying molecular and bond strengths. (NBO). The ESP acquired data on the molecule's size, shape, charge density distribution, and chemical reactivity site. This was done by mapping electron density on the surface with electrostatic potential. Non-linear optical detection of PMCBD was also discussed. Aside from the electron localization function map, state densities are also mapped using Multiwfn software, a wave function analyzer.
Collapse
Affiliation(s)
- Ranjith Balu
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu 602105, India.
| | | | - Gautham Devendrapandi
- Department of Polymer Science, University of Madras, Guindy, Chennai 602105, Tamil Nadu, India
| | - Jothi Ramalingam Rajabathar
- Surfactant Research Chair, Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Hamad A Al-Lohedan
- Surfactant Research Chair, Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Dhaifallah M Al-Dhayan
- Surfactant Research Chair, Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Zochedh A, Chandran K, Priya M, Sultan AB, Kathiresan T. Molecular simulation of Naringin combined with experimental elucidation – Pharmaceutical activity and Molecular docking against Breast cancer. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
6
|
Parthiban A, Sachithanandam V, Sarangapany S, Misra R, Muthukrishnan P, Jeyakumar TC, Purvaja R, Ramesh R. Green synthesis of gold nanoparticles using quercetin biomolecule from mangrove plant, Ceriops tagal: Assessment of antiproliferative properties, cellular uptake and DFT studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Eşme A. Structural, spectral characterization, and topological study of (E)-5-(diethylamino)-2-((3,5-dinitrophenylimino)methyl)phenol. Struct Chem 2022. [DOI: 10.1007/s11224-022-01956-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Jeelani A, Muthu S, Ramesh P, Irfan A. Experimental spectroscopic, molecular structure, electronic solvation, biological prediction and topological analysis of 2, 4, 6-tri (propan-2-yl) benzenesulfonyl chloride: An antidepressant agent. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Alp M, Yurdakul S, Erdem B. Experimental and Theoretical Vibrational Spectroscopic Investigations, DFT quantum chemical analysis, Biological activities and Molecular docking on 4,4′-Dimethoxy-2,2′-Bipyridine. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Sukanya SH, Venkatesh T, Aditya Rao SJ, Pandith A. An efficient p-TSA catalyzed synthesis of some new substituted-(5-hydroxy-3-phenylisoxazol-4-yl)-1,3-dimethyl-1H-chromeno[2,3-d]pyrimidine-2,4(3H,5H)-dione/3,3-dimethyl-2H-xanthen-1(9H)-one scaffolds and evaluation of their pharmacological and computational investigations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
H J Al-Qaisi Z, Al-Garawi ZS, M Al-Karawi AJ, Jasim Hammood A, Mosaad Abdallah A, Clegg W, Mohamed GG. Antiureolytic activity of new water-soluble thiadiazole derivatives: Spectroscopic, DFT, and molecular docking studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:120971. [PMID: 35152095 DOI: 10.1016/j.saa.2022.120971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/29/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Two new water-soluble thiadiazole compounds are prepared and characterized with various techniques. These compounds, 5-amino-1,3,4-thiadiazole hydrochloride (1) and 5-amino-3-(N-propane-2-imine)-1,3,4-thiadiazole chloride salt (2) were synthesized via Mannich reaction, and characterized by microelemental analysis, and some spectroscopic means (FTIR, UV-Vis, 1H NMR, 13C NMR and mass), in addition to single-crystal X-ray diffraction for compound 2. DFT calculations were conducted to study their geometry optimization, vibrational spectra, MEP maps, and NBO analysis. In addition, TD-DFT calculations were performed to study their absorption spectra. The prepared compounds were tested against Jack beans urease enzyme (in vitro) to indicate their antiureolytic activity potency. The activity of the enzyme was measured under optimal conditions, before and after mixing with the prepared organic compounds. The results showed that both compounds have potentially inhibited the enzyme activity with respect to their IC50 values: 13.76 µM ± 0.15 for 1, and 18.81 µM ± 0.18 for 2. These values are even lower than that of thiourea (21.40 ± 0.21 µM) as a standard inhibitor. The inhibition activity of urease enzyme was confirmed by a Lineweaver-Burk plot. According to the kinetic parameters obtained from the Lineweaver-Burk plot, the inhibition of urease enzyme by compounds 1 and 2 seems to be non-competitive. Molecular docking studies of the prepared compounds 1 and 2 were performed in order to interpret the obtained biological results and to investigate their interactions with the urease enzyme active site. These studies reveal that compounds 1 and 2 are good candidates as inhibitors for urease enzyme. Moreover, compound 1 exhibits a higher promising inhibition activity.
Collapse
Affiliation(s)
- Zyad H J Al-Qaisi
- Department of Chemistry, College of Science, Mustansiriyah University, P.O. Box 46010, Baghdad, Iraq
| | - Zahraa S Al-Garawi
- Department of Chemistry, College of Science, Mustansiriyah University, P.O. Box 46010, Baghdad, Iraq
| | - Ahmed Jasim M Al-Karawi
- Department of Chemistry, College of Science, Mustansiriyah University, P.O. Box 46010, Baghdad, Iraq.
| | - Ali Jasim Hammood
- Department of Chemistry, College of Science, Mustansiriyah University, P.O. Box 46010, Baghdad, Iraq; Ministry of Education, Karkh-2, Baghdad, Iraq
| | - Abanoub Mosaad Abdallah
- Narcotic Research Department, National Center for Social and Criminological Research (NCSCR), Giza 11561, Egypt
| | - William Clegg
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE17RU, UK
| | - Gehad G Mohamed
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
12
|
Upendranath K, Venkatesh T, Arthoba Nayaka Y, Shashank M, Nagaraju G. Optoelectronic, DFT and current-voltage performance of new Schiff base 6-nitro-benzimidazole derivatives. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Clara TH, Prasana JC, Prabhu N, Rizwana BF. Spectroscopic profiling and molecular docking of novel chalcone derivative (2E)-1-(3,4-dimethoxyphenyl)-3-(4-n-propyloxyphenyl)-2-propen-1-one- A prospective respiratory drug. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Janani S, Rajagopal H, Muthu S, Javed S, Irfan A. Structural, electronic properties (different solvents), chemical reactivity, ELF, LOL, spectroscopic insights, molecular docking and in vitro anticancer activity studies on methyl (4-nitro-1-imidazolyl)acetate. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Upendranath K, Venkatesh T, Shashank M, Nagaraju G, Pasha KMM. One-pot synthesis of some new 7‑hydroxy-5-(4-substitutedphenyl)-9-methyl-1,5-dihydro-2H-dipyrimido[1,2-a:4′,5′-d]pyrimidine-2,4(3H)‑dione derivatives and it's optoelectronic, DFT, photocatalytic studies and latent fingerprint applications. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Upendranath K, Venkatesh T, Vinuth M. Development and visualization of level II, III features of latent fingerprints using some new 4-(4-substitutedphenyl)-6-(4-substitutedphenyl)-2-oxo-1,2-dihydropyridine-3-carbonitrile derivatives: Synthesis, characterization, optoelectronic and DFT studies. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Chithra S, Mani G, Kumar M, Muthu S, Saral A, Asif FB, Irfan A. Anti-microbial activity, molecular profiling, electronic properties and molecular docking investigations of 5–[1-hydroxy–2–(isopropylamino)ethyl] benzene–1,3–diol. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Clara TH, Jonathan DR, Ragu R, NizamMohideen M, Prasana JC. Crystal structure, physico-chemical and third order nonlinear traits of the novel (2E)-1-(3,4-dimethoxyphenyl)-3-(4-propoxyphenyl) prop-2-en-1-one (DMPP) chalcone single crystal. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
Spectroscopic (FT-IR, FT-Raman, UV-Vis) molecular structure, electronic, molecular docking, and thermodynamic investigations of indole-3-carboxylic acid by DFT method. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Govindammal M, Prasath M, Kamaraj S, Muthu S, Selvapandiyan M. Exploring the molecular structure, vibrational spectroscopic, quantum chemical calculation and molecular docking studies of curcumin: A potential PI3K/AKT uptake inhibitor. Heliyon 2021; 7:e06646. [PMID: 33898809 PMCID: PMC8056428 DOI: 10.1016/j.heliyon.2021.e06646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/16/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
The IUPAC name of curcumin is (1E, 6E)-1,7-Bis(4-hydroxy-3methoxyphenyl) hepta-1,6-e-3,5-dione (7B3M5D) and is characterized by spectroscopic profiling with FT-IR and FT-Raman spectra obtained both experimentally and theoretically. PED analysis was done for the confirmation of minimum energy obtained in the title compound. Optimized geometrical parameters are compared with experimental values obtained for 7B3M5D by utilizing B3LYP functional employing 6–311++G (d,p) level of theory. The HOMO-LUMO, MEP, and Fukui function analysis has been used to elucidate the information regarding charge transfer within the molecule. The stabilization energy and charge delocalization of the 7B3M5D were performed by NBO analysis. This article assesses that the title compound act as a potential inhibitor of the PI3K/AKT inhibitor through in silico studies, like molecular docking, molecular dynamics (MD), ADMET prediction and also this molecule obeys Lipinski's rule of five. 7B3M5D was docked effectively in the active site of PI3K/AKT inhibitor.
Collapse
Affiliation(s)
- M Govindammal
- Department of Physics, Periyar University PG Extension Centre, Dharmapuri, 636701, India
| | - M Prasath
- Department of Physics, Periyar University PG Extension Centre, Dharmapuri, 636701, India
| | - S Kamaraj
- Department of Biotechnology, Periyar University PG Extension Centre, Dharmapuri, India
| | - S Muthu
- Department of Physics, Arignar Anna Govt. Arts College, Cheyyar, 604407, Tamilnadu, India
| | - M Selvapandiyan
- Department of Physics, Periyar University PG Extension Centre, Dharmapuri, 636701, India
| |
Collapse
|
21
|
Spectroscopic (FT-IR, FT-Raman) investigations, quantum chemical calculations, ADMET and molecular docking studies of phloretin with B-RAF inhibitor. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01576-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
FT-IR and FT-Raman investigation, quantum chemical studies, molecular docking study and antimicrobial activity studies on novel bioactive drug of 1-(2,4-Dichlorobenzyl)-3-[2-(3-(4-chlorophenyl)-5-(4-(propan-2-yl)phenyl-4,5-dihydro-1H-pyrazol-1-yl]-4-oxo-4,5-dihydro-1,3-thiazol-5(4H)-ylidence]-2,3-dihydro-1H-indol-2-one. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
23
|
Govindammal M, Prasath M. Vibrational spectra, Hirshfeld surface analysis, molecular docking studies of (RS)-N,N-bis(2-chloroethyl)-1,3,2-oxazaphosphinan-2-amine 2-oxide by DFT approach. Heliyon 2020; 6:e04641. [PMID: 32904270 PMCID: PMC7452535 DOI: 10.1016/j.heliyon.2020.e04641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/11/2020] [Accepted: 08/03/2020] [Indexed: 01/06/2023] Open
Abstract
The Cyclophosphamide (CYC) is used as an anti cancer agent. It is chemically known as (RS)-N,N-bis(2-chloroethyl)-1,3,2-oxazaphosphinan-2-amine 2-oxide. The vibrational assignments survey of the CYC was implemented by employing FT-IR and FT-Raman spectroscopic investigation and the results are compared with theoretical features. The optimized geometrical parameters, IR intensity and Raman Activity of the vibrational bands of CYC were determined from the B3LYP functional with 6-311++G (d, p) level of theory. In the current work, quantum chemical calculations were adopted to contemplate the vibrational assignments of CYC and the outcomes are compared with experimental findings. Molecular Electrostatic Potential (MEP) and HOMO-LUMO energies are very effective in the examination of charge transfer and distribution of the molecular structure. The molecular orbital contributions were evaluated by using the Total Density of States (TDOS). The analysis of Natural Bond Orbital (NBO), Mulliken population and Fukui function studies were done. Intermolecular interaction of the title compound was examined through Hirshfeld surface analysis. The evaluation of drug-likeness was accomplished in accordance with Lipinski's Rule of Five and molecular descriptors were utilized to predict the ADMET profiles of the CYC molecule. The recent research studies reports that the structural and bio-activity of the CYC was affirmed by the docking analysis of CYC with protein PI3K/AKT inhibitor, it acts as anti-lung cancer agent.
Collapse
Affiliation(s)
- M. Govindammal
- Department of Physics, Periyar University PG Extension Centre, Dharmapuri, 636701, India
| | - M. Prasath
- Department of Physics, Periyar University PG Extension Centre, Dharmapuri, 636701, India
| |
Collapse
|
24
|
Manjusha P, Prasana JC, Muthu S, Rizwana BF. Spectroscopic elucidation (FT-IR, FT-Raman and UV-visible) with NBO, NLO, ELF, LOL, drug likeness and molecular docking analysis on 1-(2-ethylsulfonylethyl)-2-methyl-5-nitro-imidazole: An antiprotozoal agent. Comput Biol Chem 2020; 88:107330. [PMID: 32711354 DOI: 10.1016/j.compbiolchem.2020.107330] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 11/26/2022]
Abstract
1-(2-ethylsulfonylethyl)-2-methyl-5-nitro-imidazole (1EMI) C8H13N3O4S also known as Tinidazole, selected for its antiprotozoal property is extensively used for spectroscopic elucidations and computational aspects using density functional methods. Along with spectral conclusions, further investigations on fundamental reactive properties such as electrical, optical, nonlinear combined with DFT simulations were performed. Molecular docking procedure supports the results of chosen appropriate antiprotozoal agent based on ligand-protein interactions. Experimental and simulated (B3LYP/6-311++G (d,p)) IR and Raman spectra showed concurrence. NLO analysis through first order hyperpolarizability parameter helps in finding the potential of 1EMI as a good NLO candidate. Charge delocalization and the stability of the compound were discussed using natural bond orbital (NBO) analysis. Furthermore, Electron localization function (ELF), local orbital locator (LOL), and Frontier molecular orbitals (FMO) were studied. Besides, Mulliken population analysis on atomic charges, Energy gap, chemical potential, global hardness, softness, ionization potential, electronegativity, electrophilicity index along thermodynamic parameters (enthalpy, entropy and heat capacity) have been calculated. Drug likeness parameters and molecular docking approach enabled to check pharmaceutical potential and biological activity of 1EMI. The biological activity of 1EMI through ligand and protein interactions have been confirmed theoretically for the treatment of Malaria, Invasive aspergillosis and Mycobacterium tuberculosis with respect to chosen proteins. Three different activity targets and protein interactions are quite successful revealing the bond distances, intermolecular energy, binding energy and inhibition constant. 2D interaction profile image of the two maximum interacted proteins and also Ramachandran plot used to show stereochemistry of selected protein. The activities of 1EMI were studied in accordance with literature survey and the results were presented.
Collapse
Affiliation(s)
- P Manjusha
- Department of Physics, S.D.N.B Vaishnav College for Women, Chromepet, Chennai, 600 044, Tamilnadu, India; Department of Physics, Madras Christian College, Chennai, 600 059, Tamilnadu, India; University of Madras, Chepauk, Chennai, 600 005, Tamilnadu, India
| | | | - S Muthu
- Department of Physics, Arignar Anna Government Arts College, Cheyyar, 604 407, Tamilnadu, India; Department of Physics, Puratchi Thalaivar Dr.M.G.R Govt. Arts and Science College, Uthiramerur, 603406, Tamilnadu, India.
| | - B Fathima Rizwana
- Department of Physics, Madras Christian College, Chennai, 600 059, Tamilnadu, India
| |
Collapse
|
25
|
Nagaraja O, Bodke YD, Pushpavathi I, Ravi Kumar S. Synthesis, characterization and biological investigations of potentially bioactive heterocyclic compounds containing 4-hydroxy coumarin. Heliyon 2020; 6:e04245. [PMID: 32637685 PMCID: PMC7330081 DOI: 10.1016/j.heliyon.2020.e04245] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/19/2020] [Accepted: 06/15/2020] [Indexed: 11/29/2022] Open
Abstract
In this paper, we have reported the synthesis of a series of heterocyclic azo dyes containing 4-hydroxy coumarin by diazo-coupling reaction. The structural aspect of the newly synthesized compounds was accomplished by various physico-chemical techniques like UV-Visible, FT-IR, NMR, and mass spectrometry. The computational calculations and geometrical optimization of the newly synthesized azo dyes were investigated by using Gaussian software with the help of Density functional theory (DFT)/B3LYP method using 6-31G(d,p) basis set at gaseous phase. Also, the quantum chemical parameters were evaluated to understand the structural activity concept of the dyes. The pharmacological efficacy of the azo dyes was investigated by antimicrobial, antitubercular, DNA cleavage and in silico molecular docking studies. All the newly synthesized compounds were able to exhibit significant inhibitory activity against tested microbes. Further, the in silico molecular docking showed effective binding properties of the compounds against RpsA target receptor.
Collapse
Affiliation(s)
- O Nagaraja
- Department of PG Studies and Research in Industrial Chemistry, School of Chemical Sciences, Kuvempu University, JnanaSahyadri, Shankaraghatta-577451, Karnataka, India
| | - Yadav D Bodke
- Department of PG Studies and Research in Chemistry, School of Chemical Sciences, Kuvempu University, JnanaSahyadri, Shankaraghatta-577451, Karnataka, India
| | - Itte Pushpavathi
- Department of PG Studies and Research in Industrial Chemistry, School of Chemical Sciences, Kuvempu University, JnanaSahyadri, Shankaraghatta-577451, Karnataka, India
| | - S Ravi Kumar
- Department of PG Studies and Research in Biotechnology, School of Bio Sciences, Kuvempu University, JnanaSahyadri, Shankaraghatta-577451, Karnataka, India
| |
Collapse
|
26
|
Viji A, Balachandran V, Babiyana S, Narayana B, Saliyan VV. Molecular docking and quantum chemical calculations of 4-methoxy-{2-[3-(4-chlorophenyl)-5-(4-(propane-2-yl) PHENYL)-4, 5-dihydro-1H-pyrazol-1-yl]- 1, 3-thiazol-4-yl}phenol. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127452] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
27
|
Manjusha P, prasana JC, Muthu S, Raajaraman BR. Density functional studies and spectroscopic analysis (FT-IR, FT-Raman, UV–visible, and NMR)with molecular docking approach on an antifibrotic drug Pirfenidone. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Saji RS, Prasana JC, Muthu S, George J, Kuruvilla TK, Raajaraman BR. Spectroscopic and quantum computational study on naproxen sodium. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 226:117614. [PMID: 31606674 DOI: 10.1016/j.saa.2019.117614] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/05/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
The spectroscopic (FT-IR, FT-Raman, NMR), electronic (UV--Vis.), structural and thermodynamical properties of an anti-inflammatory analgesic called Naproxen Sodium, (s)-6-methoxy-α-methyl-2-naphthaleneacetic acid sodium salt are submitted by using both experimental techniques and theoretical methods as quantum chemical calculations in this work. The equilibrium geometry and vibrational spectra are calculated by using DFT (B3LYP) with 6-311++G (d,p) basis set using GAUSSIAN 09. The vibrational wavenumbers are also corrected with scale factor to take better results for the calculated data. The HOMO-LUMO calculations are carried out on the title compound. The theoretical and experimental NMR peaks were found to be in good agreement. In addition, the detailed study on the Non-Bonding Orbitals, the excitation energies, AIM charges, condensed fukui calculations, thermodynamical properties, Localized Orbital Locator (LOL) and Electron Localization Function (ELF) are also performed. Furthermore, the study is extended to calculate the first order hyperpolarizability and to predict its NLO properties. The docking studies details helped on predicting the binding with different proteins.
Collapse
Affiliation(s)
- Rinnu Sara Saji
- Department of Physics, Madras Christian College, East Tambaram, 600059, Tamil Nadu, India; University of Madras, Chennai, 600005, Tamilnadu, India
| | | | - S Muthu
- Department of Physics, Arignar Anna Government Arts College, Cheyyar, 604407, Tamil Nadu, India.
| | - Jacob George
- Department of Physics, Madras Christian College, East Tambaram, 600059, Tamil Nadu, India
| | - Tintu K Kuruvilla
- Department of Physics, Madras Christian College, East Tambaram, 600059, Tamil Nadu, India
| | - B R Raajaraman
- Department of Physics, Sri Venkateswara College of Engineering, Sriperumbudur, 602 117, Tamil Nadu, India
| |
Collapse
|
29
|
Kuruvilla TK, Muthu S, Prasana JC, George J, Sara Saji R, Geoffrey B, Host Antony David R. Molecular docking, spectroscopic studies on 4-[2-(Dipropylamino) ethyl]-1,3-dihydro-2H-indol-2-one and QSAR study of a group of dopamine agonists by density functional method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117185. [PMID: 31177005 DOI: 10.1016/j.saa.2019.117185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/02/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
Density functional theory is one of the most popular accepted computational quantum mechanical techniques used in the analysis of molecular structure and vibrational spectra. Experimental and theoretical investigations of the molecular structure, electronic and vibrational characteristics of 4-[2-(Dipropylamino) ethyl]-1,3-dihydro-2H-indol-2-one are presented in this work. The title compound was characterized using FT-IR, FT-Raman and UV-Vis spectroscopic techniques. The results were compared with the theoretical calculations obtained using DFT/B3LYP with 6-311++G(d,p) as basis sets and was found to be in good agreement. The complete optimization of the molecular geometry of the title compound was carried out. Further, the vibrational assignments and calculation of potential energy distribution (PED) were reported. NLO has emerged as a key factor in recent researches. Materials showing nonlinear optical properties form the basis of nonlinear optics and development of such materials plays an important role in the present scenario. The current work provides sufficient justification for the title compound to be selected as a good non-linear optical (NLO) candidate. The electronic properties were reported using TD-DFT approach. The HOMO (EHOMO = -5.96 eV), LUMO (ELUMO = -0.80 eV) energies, energy gap and electrophilicity (2.22) was calculated in order to understand the stability, reactivity and bioactivity of the compound under investigation. To comprehend the bonding interactions we have performed the total (TDOS), partial (PDOS) and overlap population or COOP (Crystal Orbital Overlap Population) density of states. The drug likeness values were analyzed to evaluate the potential of the title compound to be an active pharmaceutical component. As a positive proof the paper further explains the molecular docking studies of the said compound. In addition, the stereochemistry of the protein structure was checked using Ramachandran plot. The title compound is a directly acting dopamine D2 agonist. In order to establish relationship between molecular descriptors of compound and its biological activity, QSAR studies have been done within the framework of DFT for 10 dopamine agonist including the title compound. Hence, the research exploration provides requisite information pertaining to the geometry, stability, reactivity and bioactivity of the compound through spectroscopic and quantum chemical methods.
Collapse
Affiliation(s)
- Tintu K Kuruvilla
- Department of Physics, Madras Christian College, East Tambaram 600059, Tamil Nadu, India
| | - S Muthu
- Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604407, Tamil Nadu, India.
| | | | - Jacob George
- Department of Physics, Madras Christian College, East Tambaram 600059, Tamil Nadu, India
| | - Rinnu Sara Saji
- Department of Physics, Madras Christian College, East Tambaram 600059, Tamil Nadu, India
| | - Ben Geoffrey
- Department of Physics, Madras Christian College, East Tambaram 600059, Tamil Nadu, India
| | - R Host Antony David
- Bioinformatics Infrastructure Facility for BITSnet, Madras Christian College, East Tambaram 600059, Tamil Nadu, India
| |
Collapse
|
30
|
Electronic [UV–Visible] and vibrational [FT-IR] investigation and NMR spectroscopic analysis of some halogen substituted chromone (6-Fluorochromone, 6-Chlorochromone, 6-Bromochromone). J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|