1
|
Igbokwe CJ, Shao F, Yan Z, Quaisie J, Ezeorba TPC, Duan Y, Hu K, Cai M, Zhang H. Binding mechanism of metal ions (Ca 2+, Cu 2+ and Mg 2+) with tetrapeptide FFDR: A combined experimental and quantum chemistry approach. Food Chem 2025; 483:144191. [PMID: 40250292 DOI: 10.1016/j.foodchem.2025.144191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/15/2025] [Accepted: 04/01/2025] [Indexed: 04/20/2025]
Abstract
A previous study demonstrated that a tetrapeptide FFDR derived from coix seed possesses antioxidant properties. In continuation of the study, Density Functional Theory (DFT) was employed to investigate the molecular-level complexation behaviour of FFDR with Ca2+, Cu2+, and Mg2+. DFT predictions were validated using spectroscopy and cellular model. The electronic properties revealed that Mg-FFDR, with its lower energy gap (1.733 eV), exhibits higher reactivity compared to Ca-FFDR which displayed higher stability (8.180 eV). The Quantum Theory of Atoms in Molecules (QTAIM) showed positive Laplacian values for all metal‑oxygen bonds, indicating the presence of coordination bonds characteristic of closed-shell interactions. Results from 1H NMR spectra revealed J-coupling patterns consistent with metal coordination for Mg and Ca-peptide complexes. FTIR spectra displayed distinct changes in the vibrational frequencies of functional groups involved in metal binding for all complexes. Both Mg-FFDR and Ca-FFDR demonstrated significant ROS scavenging activities, and enhanced SOD and CAT activities in HepG2 cells. These findings serve as a baseline for the rational design of metal-peptide complexes as functional foods or nutraceuticals.
Collapse
Affiliation(s)
- Chidimma Juliet Igbokwe
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China; Department of Food Science and Technology, Faculty of Agriculture, University of Nigeria Nsukka, Nigeria
| | - Feng Shao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ziqi Yan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Janet Quaisie
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China; Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria; Department of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, Birmingham, United Kingdom
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Kai Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Meihong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Haihua Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
2
|
Samai S, Direm A, Parlak C. Pyrazinamide-based Co(II), Ni(II) and Cu(II) complexes: DFT exploration of structure, reactivity properties and in silico ADMET profiles. J Mol Model 2024; 30:410. [PMID: 39576379 DOI: 10.1007/s00894-024-06202-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/31/2024] [Indexed: 12/15/2024]
Abstract
CONTEXT In this paper, we present a theoretical study on the complexation of Co(II), Ni(II), and Cu(II) with a pyrazinamide ligand (PZA), which plays an important role in the treatment of tuberculosis and has biological and pharmacological benefits. It is a hybrid organic/inorganic material involving coordination between a metal ion and PZA ligand containing different coordination sites. This allows it to have different binding modes with metal ions and, therefore, provides a versatile ability to coordinate with metals. This study aimed to optimize the structures of the [M(PZA)2Cl2] complexes using density functional theory (DFT) at the B3LYP/6-311G + (d,p) level and the M06-2X functional is a high-nonlocality functional of double the amount of nonlocal exchange 2X. Various properties, including geometrical parameters, natural bonding orbital (NBO) to determine atomic charges, HOMO-LUMO energies, electronic properties, reactivity (ELF, LOL), NCI-RDG, and molecular electrostatic potential (MEP) on the surfaces of key metal-PZA complexes were determined and described. The AIM method has also been used to examine the chemical bonds. Furthermore, an in silico analysis aiming to explore the ADMET profiles of the compounds under investigation revealed promising aqueous solubility, oral bioavailability and gastrointestinal absorption, in addition to favorable druglikeness non-toxic and non-carcinogenic characteristics. METHODS The DFT method was carried out using Gaussian 09 software and GaussView 5.0. Avogadro software was used to define the geometry of the complexes. The Multiwfn program was used to produce scatter plots of the reduced density gradient (RDG), non-covalent interactions (NCI), ELF, LOL, and to define the parameters selected for the topological analysis of the BCPs using Bader's AIM.
Collapse
Affiliation(s)
- Salima Samai
- Department of Matter Sciences, Faculty of Sciences and Technology, Abbes Laghrour University, 40000, Khenchela, Algeria.
- Laboratory of Structures, Properties and Interatomic Interactions LASPI2A, Faculty of Sciences and Technology, Abbes Laghrour University, 40000, Khenchela, Algeria.
| | - Amani Direm
- Department of Matter Sciences, Faculty of Sciences and Technology, Abbes Laghrour University, 40000, Khenchela, Algeria.
- Laboratory of Structures, Properties and Interatomic Interactions LASPI2A, Faculty of Sciences and Technology, Abbes Laghrour University, 40000, Khenchela, Algeria.
| | - Cemal Parlak
- Department of Physics, Science Faculty, Ege University, Izmir, 35040, Turkey
| |
Collapse
|
3
|
Wang Z, Zhang A, Hua T, Chen X, Zhu M, Guo Z, Song Y, Yang G, Li S, Feng J, Li M, Yan W. Revealing the interaction forms between Hg(II) and group types (-Cl, -CN, -NH 2, -OH, -COOH) in functionalized Poly(pyrrole methane)s for efficient mercury removal. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124049. [PMID: 38692386 DOI: 10.1016/j.envpol.2024.124049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
To explore the impact of different functional groups on Hg(II) adsorption, a range of poly(pyrrole methane)s functionalized by -Cl, -CN, -NH2, -OH and -COOH were synthesized and applied to reveal the interaction between different functional groups and mercury ions in water, and the adsorption mechanism was revealed through combined FT-IR, XPS, and DFT calculations. The adsorption performance can be improved to varying degrees by the incorporation of functional groups. Among them, the oxygen-containing functional groups (-OH and -COOH) exhibit stronger affinity for Hg(II) and can increase the adsorption capacity from 180 mg g-1 to more than 1400 mg g-1 at 318 K, with distribution coefficient (Kd) exceeding 105 mL g-1. The variations in the capture and immobilization capabilities of functionalized poly(pyrrole methane)s predominantly stem from the unique interactions between their functional groups and mercury ions. In particular, oxygen-containing -OH and -COOH effectively capture Hg(OH)2 through hydrogen bonding, and further deprotonate to form the -O-Hg-OH and -COO-Hg-OH complexes which are more stable than those obtained from other functionalized groups. Finally, the ecological safety has been fully demonstrated through bactericidal and bacteriostatic experiments to prove the functionalized poly(pyrrole methane)s can be as an environmentally friendly adsorbent for purifying contaminated water.
Collapse
Affiliation(s)
- Zhenyu Wang
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Aijing Zhang
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tingyu Hua
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xin Chen
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Mengyuan Zhu
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Ziyu Guo
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yanna Song
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Guorui Yang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shanshan Li
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiangtao Feng
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Mingtao Li
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Wei Yan
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
4
|
Chérif I, Gassoumi B, Ayachi H, Echabaane M, Caccamo MT, Magazù S, Said AH, Taoufik B, Ayachi S. A theoretical and electrochemical impedance spectroscopy study of the adsorption and sensing of selected metal ions by 4-morpholino-7-nitrobenzofuran. Heliyon 2024; 10:e26709. [PMID: 38439845 PMCID: PMC10909671 DOI: 10.1016/j.heliyon.2024.e26709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024] Open
Abstract
The selectivity of a novel chemosensor, based on a modified nitrobenzofurazan referred to as NBD-Morph, has been investigated for the detection of heavy metal cations (Co2+, Pb2+, Mg2+, Ag+, Cu2+, Hg2+, Ni2+, and Zn2+). The ligand, 4-morpholino-7-nitrobenzofurazan (NBD-Morph), was characterized using spectroscopic techniques including FT-IR and 1H NMR. Vibrational frequencies obtained from FT-IR and proton NMR (1H) chemical shifts were accurately predicted employing the density functional theory (DFT) at the B3LYP level of theory. Furthermore, an examination of the structural, electronic, and quantum chemical properties was conducted and discussed. DFT calculations were employed to explore the complex formation ability of the NBD-Morph ligand with Co2+, Pb2+, Mg2+, Ag+, Cu2+, Hg2+, Ni2+, and Zn2+ metal cations. The comparison of adsorption energies for all possible conformations reveals that NBD-Morph exhibits sensitivity and selectivity towards metal ions, including Pb2+, Cu2+, Ag+, and Ni2+. However, an assessment of their reactivity using QTAIM topological parameters demonstrated the ligand's greater complexation ability toward Cu2+ or Ni2+ than those formed by Pb2+ or Ag+. Additionally, molecular electrostatic potential (MEP), Hirshfeld surfaces, and their associated 2D-fingerprint plots were applied to a detailed study of the inter-molecular interactions in NBD-Morph-X (X = Pb2+, Cu2+, Ag+, Ni2+) complexes. The electron localization function (ELF) and the localized-orbital locator (LOL) were generated to investigate the charge transfer and donor-acceptor interactions within the complexes. Electrochemical analysis further corroborates the theoretical findings, supporting the prediction of NBD-Morph's sensory ability towards Ni2+ metal cations. In conclusion, NBD-Morph stands out as a promising sensor for Ni2+.
Collapse
Affiliation(s)
- Imen Chérif
- Laboratory of Physico-Chemistry of Materials (LR01ES19), Faculty of Sciences, Avenue of the Environment 5019 Monastir, University of Monastir, Tunisia
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale Ferdinando Stagno D'Alcontres No. 31, S. Agata, 98166, Messina, Italy
| | - Bouzid Gassoumi
- Laboratoire Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences, Université de Monastir, Avenue de l’Environnement, 5019, Monastir, Tunisia
| | - Hajer Ayachi
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11ES39), Faculté des Sciences, Université de Monastir, Avenue de l’Environnement, 5019, Monastir, Tunisia
| | - Mosaab Echabaane
- CRMN, Centre de Recherche en Microélectronique et Nanotechnologie de Sousse, Nanomisene, LR16CRMN01, 4054, Sousse, Tunisie
| | - Maria Teresa Caccamo
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale Ferdinando Stagno D'Alcontres No. 31, S. Agata, 98166, Messina, Italy
| | - Salvatore Magazù
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale Ferdinando Stagno D'Alcontres No. 31, S. Agata, 98166, Messina, Italy
| | - Ayoub Haj Said
- Laboratoire Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences, Université de Monastir, Avenue de l’Environnement, 5019, Monastir, Tunisia
| | - Boubaker Taoufik
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11ES39), Faculté des Sciences, Université de Monastir, Avenue de l’Environnement, 5019, Monastir, Tunisia
| | - Sahbi Ayachi
- Laboratory of Physico-Chemistry of Materials (LR01ES19), Faculty of Sciences, Avenue of the Environment 5019 Monastir, University of Monastir, Tunisia
| |
Collapse
|
5
|
Zhang C, Li H, Yang Y, Zhou X, Zhuang D, Liu W, Wang K, Wang P, Zhang W, Bai Y, Ma H, Gao B, Wang R. Induced mechanism of phosphatase hormesis by Cd ions and rhizosphere metabolites of Trifolium repens L. CHEMOSPHERE 2023; 344:140219. [PMID: 37741368 DOI: 10.1016/j.chemosphere.2023.140219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Rhizosphere phosphatases can exhibit hormetic effects in response to cadmium (Cd) ion stimulation. However, understanding the mechanisms underlying hormesis effects on soil ecosystems is challenging as studies on hormesis are usually specific to an organism, cell, or organ. To comprehensively investigate the mechanism of phosphatase hormesis, this study utilized in situ zymography and metabolomics to analyze the rhizosphere of Trifolium repens L. (white clover). Zymograms showed that rhizosphere phosphatase displayed a hormetic effect in 10 mg kg-1 Cd contaminated soil, with a hotspot area 1.8 times larger than non-Cd contaminated soil and a slight increase in enzyme activity. Nevertheless, the phosphatase activity was substantially suppressed upon elevating the Cd concentration in the soil to 50 mg kg-1. Differential metabolite identification and KEEG pathway enrichment analysis revealed that both rhizosphere organic acids and amino acid compounds positively affected phosphatase activity, and both were able to stabilize complexation with Cd ions via carboxyl groups. Besides, molecular docking models suggested that Cd ions act as cofactors to induce the formation of hydrogen bonds between amino acids/organic acids and phosphatase residues to form a triplet complex with a more stable structure, thereby improving phosphatase activity. The results indicated that amino acids and organic acids are heavily enriched in the rhizosphere of white clover and form a particular structure with soil Cd ions and phosphatase, which is essential for inducing the phosphatase hormesis as a detoxification mechanism in the rhizosphere micro-ecosystem.
Collapse
Affiliation(s)
- Chenxi Zhang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China; Ministry of Education Key Laboratory of Eco-Restoration of Regional Contaminated Environment, Shenyang University, China.
| | - Yue Yang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Xulun Zhou
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Damiao Zhuang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Wengang Liu
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Kaixuan Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Pengkai Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Wenxin Zhang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Yaran Bai
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Haotian Ma
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Bingqian Gao
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Rui Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
6
|
U NKP, K JV, K M. Complexation behaviour of piceatannol ligand with Ti(IV) and Zr(IV) metal ions: a combined DFT and deep learning investigation. Struct Chem 2023. [DOI: 10.1007/s11224-023-02153-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
7
|
Chen L, Lyu Y, Zhang X, Zheng L, Li Q, Ding D, Chen F, Liu Y, Li W, Zhang Y, Huang Q, Wang Z, Xie T, Zhang Q, Sima Y, Li K, Xu S, Ren T, Xiong M, Wu Y, Song J, Yuan L, Yang H, Zhang XB, Tan W. Molecular imaging: design mechanism and bioapplications. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
8
|
Almodarresiyeh HA, Shahab S, Kaviani S, Kuvaeva ZI, Karankevich HG, Markovich MM, Kaminskaya VA, Filippovich L, Sheikhi M. Synthesis, DFT, Spectroscopic Studies and Electronic Properties of Novel Arginine Derivatives. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2023. [DOI: 10.1134/s1990793123010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
9
|
Sohal N, Basu S, Maity B. Deciphering the Mechanism of Undoped and Heteroatom Doped-Carbon Dots for Detection of Lead Ions at Nanomolar Level. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Neenu Krishna P, Muraleedharan K. Metal chelation ability of Protocatechuic acid anion with 210Po84; A theoretical insight. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Fabrication of modified alginate-based biocomposite hydrogel microspheres for efficient removal of heavy metal ions from water. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Kretzschmar J, Brendler E, Wagler J. Phenylarsonic acid-DMPS redox reaction and conjugation investigated by NMR spectroscopy and X-ray diffraction. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103837. [PMID: 35248761 DOI: 10.1016/j.etap.2022.103837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
The reaction between 2,3-dimercaptopropane-1-sulfonate (DMPS, unithiol) and four phenylarsonic(V) acids, i.e. phenylarsonic acid (PAA), 4-hydroxy-3-nitrophenylarsonic acid (HNPAA), 2-aminophenylarsonic acid (o-APAA) and 4-aminophenylarsonic acid (p-APAA), is investigated in aqueous solution. The pentavalent arsenic compounds are reduced by DMPS to their trivalent analogs and instantly chelated by the vicinal dithiol, forming covalent As-S bonds within a five-membered chelate ring. The different types and positions of polar substituents at the aromatic ring of the arsonic acids influence the reaction rates in the same way as observed for reaction with glutathione (GSH), as well as the syn/anti molar ratio of the diastereomeric products, which was analyzed using time- and temperature-dependent nuclear magnetic resonance (NMR) spectroscopy. Addition of DMPS to the conjugate formed by a phenylarsonic(V) acid and the biologically relevant tripeptide GSH showed the immediate replacement of GSH by chelating DMPS, underlining the importance of dithiols as detoxifying agent.
Collapse
Affiliation(s)
- Jerome Kretzschmar
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Erica Brendler
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, 09599 Freiberg, Germany.
| | - Jörg Wagler
- Institute of Inorganic Chemistry, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| |
Collapse
|
13
|
Saqib M, Bashir S, Ali S, Hao R. Highly selective and sensitive detection of mercury (II) and dopamine based on the efficient electrochemiluminescence of Ru(bpy)32+ with acridine orange as a coreactant. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Facile synthesis of zinc-based organic framework for aqueous Hg (II) removal: Adsorption performance and mechanism. NANO MATERIALS SCIENCE 2021. [DOI: 10.1016/j.nanoms.2021.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Yang X, Wang C, Huang Y, Liu B, Liu Z, Huang Y, Cheng L, Huang Y, Zhang C. Foliar application of the sulfhydryl compound 2,3-dimercaptosuccinic acid inhibits cadmium, lead, and arsenic accumulation in rice grains by promoting heavy metal immobilization in flag leaves. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117355. [PMID: 34049132 DOI: 10.1016/j.envpol.2021.117355] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
Mixed pollution due to heavy metals (HMs), especially cadmium (Cd), lead (Pb), and arsenic (As), seriously endangers the safety of food produced in paddy soil. In the field experiments, foliar application of 2,3-dimercaptosuccinic acid (DMSA) at the flowering stage was found to significantly reduce the levels of Cd, Pb, total As, and inorganic As (iAs) in rice grains by 47.95%, 61.76%, 36.37%, and 51.24%, respectively, without affecting the concentration of metallonutrients, including Mn, K, Mg, Ca, Fe, and Zn. DMSA treatment significantly reduced the concentrations of Cd, Pb, and As in the panicle node, panicle neck, and rachis, while those in the flag leaves were significantly increased by up to 20.87%, 49.40%, and 32.67%, respectively. DMSA application promoted the transport of HM from roots and lower stalks to flag leaves with a maximum increase of 34.55%, 52.65%, and 46.94%, respectively, whereas inhibited the transport of HM from flag leaves to panicle, rachis, and grains. Therefore, foliar application of DMSA reduced Cd, Pb, and As accumulation in rice grains by immobilizing HMs in flag leaves. Thus, this strategy could act as a promising agronomic measure for the remediation of mixed HM contamination in paddy fields.
Collapse
Affiliation(s)
- Xiaorong Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China.
| | - Changrong Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China.
| | - Yongchun Huang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China.
| | - Bin Liu
- Agricultural Resource and Environment Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China.
| | - Zhongqi Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China.
| | - Yizong Huang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China.
| | - Liulong Cheng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China.
| | - Yanfei Huang
- Agricultural Resource and Environment Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China.
| | - Changbo Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China.
| |
Collapse
|
16
|
Barzaga R, Lestón-Sánchez L, Aguilar-Galindo F, Estévez-Hernández O, Díaz-Tendero S. Synergy Effects in Heavy Metal Ion Chelation with Aryl- and Aroyl-Substituted Thiourea Derivatives. Inorg Chem 2021; 60:11984-12000. [PMID: 34308640 DOI: 10.1021/acs.inorgchem.1c01068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Detection and removal of metal ion contaminants have attracted great interest due to the health risks that they represent for humans and wildlife. Among the proposed compounds developed for these purposes, thiourea derivatives have been shown as quite efficient chelating agents of metal cations and have been proposed for heavy metal ion removal and for components of high-selectivity sensors. Understanding the nature of metal-ionophore activity for these compounds is thus of high relevance. We present a theoretical study on the interaction between substituted thioureas and metal cations, namely, Cd2+, Hg2+, and Pb2+. Two substituent groups have been chosen: 2-furoyl and m-trifluoromethylphenyl. Combining density functional theory simulations with wave function analysis techniques, we study the nature of the metal-thiourea interaction and characterize the bonding properties. Here, it is shown how the N,N'-disubstituted derivative has a strong affinity for Hg2+, through cation-hydrogen interactions, due to its greater oxidizing capacity.
Collapse
Affiliation(s)
- Ransel Barzaga
- Instituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, 10400 La Habana, Cuba.,Departmento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Lucia Lestón-Sánchez
- Departmento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Aguilar-Galindo
- Departmento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, Donostia-San Sebastián, E-20018, Spain
| | | | - Sergio Díaz-Tendero
- Departmento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Institute for Advanced Research in Chemical Science (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
17
|
Kaviani S, Shahab S, Sheikhi M, Khaleghian M, Al Saud S. Characterization of the binding affinity between some anti-Parkinson agents and Mn2+, Fe3+ and Zn2+ metal ions: A DFT insight. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
de Liss Meza López F, Khan S, da Silva MA, Anchieta Gomes Neto J, Picasso G, Sotomayor MDPT. Systematic study on the synthesis of novel ion-imprinted polymers based on rhodizonate for the highly selective removal of Pb(II). REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2020.104805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Masoome Sheikhi, Shahab S, Sharifi S, Kvasyuk E, Khaleghian M. Theoretical Study of Non-Bonded Interaction between Anticancer Drug Fludara and (2S,3R,4S,5S)-2-(Hydroxymethyl)-3,5-dimethyloxolane-3,4-diol: A DFT Study. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s003602442101026x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Adhikari S, Bhattacharjee T, Nath P, Das A, Jasinski JP, Butcher RJ, Maiti D. Bimetallic and trimetallic Cd(II) and Hg(II) mixed-ligand complexes with 1,1-dicyanoethylene-2,2-dithiolate and polyamines: Synthesis, crystal structure, Hirshfeld surface analysis, and antimicrobial study. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119877] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Siyamak Shahab, Sheikhi M, Filippovich L, Dikusar E, Darroudi M, Kaviani S, Atroshko M, Drachilovskaya M. Optimization, Spectroscopic (Excited States, UV/Vis, Polarization) Studies, FMO, ELF, LOL, QTAIM, NBO Analysis and Electronic Properties of Two New Azomethine Derivatives: A Theoretical and Experimental Investigations. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420090241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Wang Z, Wu S, Zhang Y, Miao L, Zhang Y, Wu A. Preparation of modified sodium alginate aerogel and its application in removing lead and cadmium ions in wastewater. Int J Biol Macromol 2020; 157:687-694. [DOI: 10.1016/j.ijbiomac.2019.11.228] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/16/2019] [Accepted: 11/28/2019] [Indexed: 01/24/2023]
|
23
|
Sarikavak K, Kurtay G, Sevin F. Comparative cation sensing properties of a newly designed urea linked ferrocene-benzimidazole dyad: a DFT study. J Mol Model 2020; 26:50. [PMID: 32034531 DOI: 10.1007/s00894-020-4304-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/20/2020] [Indexed: 11/30/2022]
Abstract
Herein, our primary motivation was to elucidate the electronic and physicochemical properties of a novel molecular dyad consisting of ferrocene (Fc; electron donor), urea (u; linker), and amphoteric benzimidazole (BI; electron acceptor) entities. The sensor responses were investigated for various divalent transition metal cations (Mn2+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+) and the selectivity of this cationophore molecule (Fc-u-BI) to copper ion (Cu2+) was demonstrated by using B3LYP/LANL2DZ method. According to the thermochemical calculations, we justified that Fc-u-BI⋯Cu2+ reached to the lowest binding energy (∆E), enthalpy (∆H), and Gibbs free energy (∆G) changes. In the light of the calculated global descriptors, Fc-u-BI⋯Cu2+ was found to be the softer and thus the most reactive complex. The complex stabilities and their corresponding non-covalent interactions were also investigated by NBO and NCI analyses, respectively. The mechanistic insight into metal cation sensing by the modeled cationophore dyad.
Collapse
Affiliation(s)
- Kübra Sarikavak
- Faculty of Science, Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Gülbin Kurtay
- Faculty of Science, Department of Chemistry, Ankara University, Ankara, Turkey
| | - Fatma Sevin
- Faculty of Science, Department of Chemistry, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
24
|
Shahab S, Sheikhi M, Filippovich L, Alnajjar R, Ihnatovich Z, Laznev K, Strogova A, Atroshko M, Drachilovskaya M. Quantum-chemical modeling, spectroscopic (FT-IR, excited states, UV/Vis, polarization, and Dichroism) studies of two new benzo[d]oxazole derivatives. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Pfaff AR, Beltz J, King E, Ercal N. Medicinal Thiols: Current Status and New Perspectives. Mini Rev Med Chem 2020; 20:513-529. [PMID: 31746294 PMCID: PMC7286615 DOI: 10.2174/1389557519666191119144100] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 02/08/2023]
Abstract
The thiol (-SH) functional group is found in a number of drug compounds and confers a unique combination of useful properties. Thiol-containing drugs can reduce radicals and other toxic electrophiles, restore cellular thiol pools, and form stable complexes with heavy metals such as lead, arsenic, and copper. Thus, thiols can treat a variety of conditions by serving as radical scavengers, GSH prodrugs, or metal chelators. Many of the compounds discussed here have been in use for decades, yet continued exploration of their properties has yielded new understanding in recent years, which can be used to optimize their clinical application and provide insights into the development of new treatments. The purpose of this narrative review is to highlight the biochemistry of currently used thiol drugs within the context of developments reported in the last five years. More specifically, this review focuses on thiol drugs that represent the standard of care for their associated conditions, including N-acetylcysteine, 2,3-meso-dimercaptosuccinic acid, British anti-Lewisite, D-penicillamine, amifostine, and others. Reports of novel dosing regimens, delivery strategies, and clinical applications for these compounds were examined with an eye toward emerging approaches to address a wide range of medical conditions in the future.
Collapse
Affiliation(s)
- Annalise R. Pfaff
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, U.S.A
| | - Justin Beltz
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, U.S.A
| | - Emily King
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, U.S.A
| | - Nuran Ercal
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, U.S.A
| |
Collapse
|
26
|
DFT study of the application of polymers cellulose and cellulose acetate for adsorption of metal ions (Cd2+, Cu2+ and Cr3+) potentially toxic. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02926-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|