1
|
Bourang S, Noruzpour M, Jahanbakhsh Godekahriz S, Ebrahimi HAC, Amani A, Asghari Zakaria R, Yaghoubi H. Application of nanoparticles in breast cancer treatment: a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6459-6505. [PMID: 38700795 DOI: 10.1007/s00210-024-03082-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/02/2024] [Indexed: 09/25/2024]
Abstract
It is estimated that cancer is the second leading cause of death worldwide. The primary or secondary cause of cancer-related mortality for women is breast cancer. The main treatment method for different types of cancer is chemotherapy with drugs. Because of less water solubility of chemotherapy drugs or their inability to pass through membranes, their body absorbs them inadequately, which lowers the treatment's effectiveness. Drug specificity and pharmacokinetics can be changed by nanotechnology using nanoparticles. Instead, targeted drug delivery allows medications to be delivered to the targeted sites. In this review, we focused on nanoparticles as carriers in targeted drug delivery, their characteristics, structure, and the previous studies related to breast cancer. It was shown that nanoparticles could reduce the negative effects of chemotherapy drugs while increasing their effectiveness. Lipid-based nanocarriers demonstrated notable results in this instance, and some products that are undergoing various stages of clinical trials are among the examples. Nanoparticles based on metal or polymers demonstrated a comparable level of efficacy. With the number of cancer cases rising globally, many researchers are now looking into novel treatment approaches, particularly the use of nanotechnology and nanoparticles in the treatment of cancer. In order to help clinicians, this article aimed to gather more information about various areas of nanoparticle application in breast cancer therapy, such as modifying their synthesis and physicochemical characterization. It also sought to gain a deeper understanding of the mechanisms underlying the interactions between nanoparticles and biologically normal or infected tissues.
Collapse
Affiliation(s)
- Shima Bourang
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mehran Noruzpour
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Sodabeh Jahanbakhsh Godekahriz
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hossein Ali Ca Ebrahimi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Amin Amani
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Rasool Asghari Zakaria
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hashem Yaghoubi
- Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| |
Collapse
|
2
|
Tabtimsai C, Watkhaolam S, Palasri S, Rakrai W, Kaewtong C, Wanno B. Ibuprofen adsorption and detection of pristine, Fe-, Ni-, and Pt-doped boron nitride nanotubes: A DFT investigation. J Mol Graph Model 2023; 126:108654. [PMID: 39491861 DOI: 10.1016/j.jmgm.2023.108654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 11/05/2024]
Abstract
The main challenge has been focused on ibuprofen drug detection and adsorption of boron nitride nanotube (BNNT) doping with transition metal (TM = Fe, Ni, and Pt) atoms using the density functional theory calculation in gas and water phases. The geometrical structures, adsorption energies, solvation energies, and electronic properties were examined. The optimized geometries show that the ibuprofen molecule oriented itself at different bond distances and angles with respect to BNNT surface. The calculated results display exothermic adsorption processes for all ibuprofen/BNNT and ibuprofen/TM-doped BNNT complexes. Ibuprofen molecule can absorb on the Fe-, Ni-, and Pt-doped BNNTs via a stronger interaction than those of pristine BNNT in both gas and water phases in which the Fe doping on N site of BNNT shows the strongest interaction with ibuprofen molecule. The H (head) site of ibuprofen molecule to BNNT surface shows stronger interaction than M (middle) and T (tail) sites. The short of adsorption distance and the large of charge transfer correspond to the high adsorption strength of TM-doped BNNTs toward ibuprofen molecule. Charge analysis confirms the partial charge transfer occurring from the ibuprofen molecule to the BNNTs. The solvation energies in water solution reveal that the ibuprofen molecule adsorbed on TM-doped BNNTs is more soluble than pristine BNNT. The work functions of BNNTs are reduced by ibuprofen adsorption. A short recovery times and suitable desorption temperatures are observed for the ibuprofen desorption on pristine BNNT and TM-doped BNNT surfaces. After ibuprofen adsorption, the energy levels and energy gaps of Fe-, Ni-, and Pt-doped BNNTs are changed in which Ni doping on B atom of BNNT displays the largest change. The quantum molecular characteristics of BNNT will be changed after ibuprofen adsorption. The orbital distributions are occurred around the ibuprofen molecule and doping site. The alteration in the density of states for TM-doped BNNT is considerably more pronounced compared to the pristine BNNT. Drawing from the achieved outcomes, it can be inferred that when employed for the delivery of ibuprofen in biological media, Fe-, Ni-, and Pt-doped BNNTs exhibits the greater suitability for the adsorption and detection of the ibuprofen molecule compared to pristine BNNT.
Collapse
Affiliation(s)
- Chanukorn Tabtimsai
- Computational Chemistry Center for Nanotechnology and Department of Chemistry, Faculty of Science and Technology, Rajabhat Maha Sarakham University, Muang, Maha Sarakham, 44000, Thailand
| | - Sitthichai Watkhaolam
- Computational Chemistry Center for Nanotechnology and Department of Chemistry, Faculty of Science and Technology, Rajabhat Maha Sarakham University, Muang, Maha Sarakham, 44000, Thailand
| | - Sutasinee Palasri
- Computational Chemistry Center for Nanotechnology and Department of Chemistry, Faculty of Science and Technology, Rajabhat Maha Sarakham University, Muang, Maha Sarakham, 44000, Thailand
| | - Wandee Rakrai
- Computational Chemistry Center for Nanotechnology and Department of Chemistry, Faculty of Science and Technology, Rajabhat Maha Sarakham University, Muang, Maha Sarakham, 44000, Thailand
| | - Chatthai Kaewtong
- Multidisplinary Research Unit of Pure and Applied Chemistry, Department of Chemistry, Faculty of Science, Mahasarakham University, Kantharawichai, Maha Sarakham, 44150, Thailand
| | - Banchob Wanno
- Multidisplinary Research Unit of Pure and Applied Chemistry, Department of Chemistry, Faculty of Science, Mahasarakham University, Kantharawichai, Maha Sarakham, 44150, Thailand; Supramolecular Chemistry Research Unit, Department of Chemistry, Faculty of Science, Mahasarakham University, Kantharawichai, Maha Sarakham, 44150, Thailand.
| |
Collapse
|
3
|
Ayati A, Tanhaei B, Beiki H, Krivoshapkin P, Krivoshapkina E, Tracey C. Insight into the adsorptive removal of ibuprofen using porous carbonaceous materials: A review. CHEMOSPHERE 2023; 323:138241. [PMID: 36841446 DOI: 10.1016/j.chemosphere.2023.138241] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Over the last decade, the removal of pharmaceuticals from aquatic bodies has garnered substantial attention from the scientific community. Ibuprofen (IBP), a non-steroidal anti-inflammatory drug, is released into the environment in pharmaceutical waste as well as medical, hospital, and household effluents. Adsorption technology is a highly efficient approach to reduce the IBP in the aquatic environment, particularly at low IBP concentrations. Due to the exceptional surface properties of carbonaceous materials, they are considered ideal adsorbents for the IBP removal of, with high binding capacity. Given the importance of the topic, the adsorptive removal of IBP from effluent using various carbonaceous adsorbents, including activated carbon, biochar, graphene-based materials, and carbon nanostructures, has been compiled and critically reviewed. Furthermore, the adsorption behavior, binding mechanisms, the most effective parameters, thermodynamics, and regeneration methods as well as the cost analysis were comprehensively reviewed for modified and unmodified carbonaceous adsorbents. The compiled studies on the IBP adsorption shows that the IBP uptake of some carbon-based adsorbents is significantly than that of commercial activated carbons. In the future, much attention is needed for practical utilization and upscaling of the research findings to aid the management and sustainability of water resource.
Collapse
Affiliation(s)
- Ali Ayati
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia.
| | - Bahareh Tanhaei
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Hossein Beiki
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Pavel Krivoshapkin
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| | - Elena Krivoshapkina
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| | - Chantal Tracey
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| |
Collapse
|
4
|
Cortés-Arriagada D, Miranda-Rojas S, Camarada MB, Ortega DE, Alarcón-Palacio VB. The interaction mechanism of polystyrene microplastics with pharmaceuticals and personal care products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160632. [PMID: 36460102 DOI: 10.1016/j.scitotenv.2022.160632] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) have been detected in the hydrosphere, with hazardous implications in transporting coexisting water pollutants. Our knowledge about the interaction mechanisms that MPs establish with organic pollutants are still growing, which is essential to understand the adsorption properties of MPs and their relative stability with adsorbates. Here, we used classical (force field methods) and ab-initio (density functional theory) computational chemistry tools to characterize the interaction mechanisms between Polystyrene-MPs (PS-MPs) and pharmaceuticals/personal care products (PPCPs). Adsorption conformations and energies, thermochemistry, binding, and energy decomposition analyses were performed to obtain the quantitative mechanistic information. Our results show that PS-MPs have permanent dipoles, increasing the interaction with neutral PPCPs while repelling the charged pollutants; in all cases, a stable physisorption takes place. Moreover, PS-MPs increase their solubility upon pollutant adsorption due to an increase in the dipole moment, increasing their co-transport ability in aqueous environments. The stability of the PS-MPs/PPCPs complexes is further confirmed by thermochemical and molecular dynamics trajectory analysis as a function of temperature and pressure. The interaction mechanism of high pKa pollutants (pKa > 5) is due to a balanced contribution of electrostatic and dispersion forces, while the adsorption of low pKa pollutants (pKa < 5) maximizes the electrostatic forces, and steric repulsion effects explain their relative lower adsorption stability. In this regard, several pairwise intermolecular interactions are recognized as a source of stabilization in the PS-MPs/PPCPs binding: hydrogen bonding, π-π, OH⋯π, and CH⋯π, CCl⋯CH and CH⋯CH interactions. The ionic strength in solution slightly affects the adsorption stability of neutral PPCPs, while the sorption of charged pollutants is enhanced. This mechanistic information provides quantitative data for a better understanding of the interactions between organic pollutants and MPs, serving as valuable information for sorption/kinetic studies.
Collapse
Affiliation(s)
- Diego Cortés-Arriagada
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago, Chile.
| | - Sebastián Miranda-Rojas
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Avenida República 275, Santiago, Chile
| | - María Belén Camarada
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; Centro Investigación en Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela E Ortega
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, General Gana 1702, Santiago, 8370854, Chile
| | - Victoria B Alarcón-Palacio
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| |
Collapse
|
5
|
Bağlayan Ö, Parlak C, Dikmen G, Alver Ö. The quest of the most stable structure of a carboxyfullerene and its drug delivery limits: A DFT and QTAIM approach. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
6
|
Alikahi N, Daraei B, Torkian L, Shekarchi M. Application of the Quetiapine Templated Molecular Imprinted Polymer in Its Extraction from Human Blood Plasma; an Experimental and Density Functional Theory Study. ChemistrySelect 2022. [DOI: 10.1002/slct.202203741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Naghmeh Alikahi
- Department of applied Chemistry South Tehran Branch Islamic Azad University Tehran Iran
| | - Bahram Daraei
- Department of Toxicology and pharmacology School of pharmacy Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Leila Torkian
- Department of applied Chemistry South Tehran Branch Islamic Azad University Tehran Iran
- Research Center of Modeling and Optimization in Science and Engineering Islamic Azad University, South Tehran Branch Tehran Iran
| | - Maryam Shekarchi
- Food and Drug Laboratory Research Centre Food and Drug Organization MOH&ME Tehran, Postal code 1113615911 Iran
| |
Collapse
|
7
|
Hoseini chehreghani SF, Aberoomand Azar P, Shekarchi M, Daraei B. Synthesis, evaluation of drug delivery potential, and the quantum chemical investigation on a molecular imprinted polymer for quetiapine antipsychotic; a joint experimental and density functional theory study. Front Chem 2022; 10:1001685. [PMID: 36311434 PMCID: PMC9614046 DOI: 10.3389/fchem.2022.1001685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/16/2022] [Indexed: 12/01/2022] Open
Abstract
In this project, the quetiapine drug was used as the template for synthesis of a molecular imprinted polymer (MIP). The polymerization approach for preparation of this composite was precipitation, where methacrylic acid (MAA), ethylene glycol dimethacrylate (EGDMA), and 2,2-azobisissobutyronitrile (AIBN) were used as the functional monomer, the cross-linker, and the initiator, respectively. Scanning electron microscopy (SEM) showed that the diameter of the nanoparticles is about 70 nm. The adsorption rates of quetiapine to the MIP host were evaluated at different pHs, and the results showed that the highest adsorption values were obtained at pH = 7. Moreover, the kinetics of the adsorption process was detected to follow the Langmuir isotherm (R2 = 0.9926) and the pseudo-second-order kinetics (R2 = 0.9937). The results confirmed the high capability of the synthesized MIPs as pharmaceutical carriers for quetiapine. Furthermore, the kinetics of the drug release from the MIP follows the Higuchi model at the pHs of 5.8-6.8 and the Korsmeyer-Peppas model at the pHs of 1.2-5. Finally, in light of the density functional theory (DFT)-based quantum chemical descriptors, the polymer-quetiapine drug complex was designed and investigated. The results showed that there is a strong interaction between the host (polymer) and the guest (drug) due to several hydrogen bonds and other intermolecular (polar) interactions.
Collapse
Affiliation(s)
| | - Parviz Aberoomand Azar
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Shekarchi
- Food and Drug Laboratory Research Center, Food and Drug Organization, MOH and ME, Tehran, Iran
| | - Bahram Daraei
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Synergistic effect of Si-doping and Fe2O3-encapsulation on drug delivery and sensor applications of γ-graphyne nanotube toward favipiravir as an antiviral for COVID-19: A DFT study. J INDIAN CHEM SOC 2022. [PMCID: PMC9356577 DOI: 10.1016/j.jics.2022.100666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this work, the behavior of favipiravir (FAV) adsorption on the pristine (2,2) graphyne-based γ-nanotube (GYNT) was theoretically studied. Also, the Si-doped form (Si-GYNT) and its composite with encapsulated Fe2O3 (Fe2O3@Si-GYNT) were investigated within density functional theory (DFT) calculations, using M05 functionals and B3LYP. It was found that FAV is weakly to moderately adsorb on the bare GYNT and Si-GYNT tube, releasing the energy of 2.2 to 19.8 kcal/mol. After FAV adsorption, the bare tube's electronic properties are changed. Localized impurity is induced at the valence and conduction levels by encapsulating a tiny Fe2O3 cluster. As such, the target composite becomes a magnetic material. The binding energy between the Fe2O3@Si-GYNT and the FAV molecule becomes substantially stronger (Ead = -25.2 kcal/mol). We developed a drug release system in target parts of body, during protonation in the low pH of injured cells, detaching the FAV from the tube surface. The drug's reaction mechanism with Fe2O3@Si-GYNT shifts from covalence in the normal environment to hydrogen bonding in an acidic matrix. The optimized structure's natural bond orbital, quantum molecular descriptors, LUMO, HOMO and energy gap were also investigated. The recovery time can be reduced to less than 10 s by increasing the working temperature properly during the experimental test.
Collapse
|
9
|
Sharma A, Kumar N, Sillanpää M, Makgwane PR, Kumar S, Kumari K. Carbon nano-structures and functionalized associates: Adsorptive detoxification of organic and inorganic water pollutants. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
|
11
|
Esrafili MD, Khan AA. Alkali metal decorated C 60 fullerenes as promising materials for delivery of the 5-fluorouracil anticancer drug: a DFT approach. RSC Adv 2022; 12:3948-3956. [PMID: 35425459 PMCID: PMC8981040 DOI: 10.1039/d1ra09153k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/23/2022] [Indexed: 12/12/2022] Open
Abstract
The development of effective drug delivery vehicles is essential for the targeted administration and/or controlled release of drugs. Using first-principles calculations, the potential of alkali metal (AM = Li, Na, and K) decorated C60 fullerenes for delivery of 5-fluorouracil (5FU) is explored. The adsorption energies of the 5FU on a single AM atom decorated C60 are -19.33, -16.58, and -14.07 kcal mol-1 for AM = Li, Na, and K, respectively. The results, on the other hand, show that up to 12 Li and 6 Na or K atoms can be anchored on the exterior surface of the C60 fullerene simultaneously, each of which can interact with a 5FU molecule. Because of the moderate adsorption energies and charge-transfer values, the 5FU can be simply separated from the fullerene at ambient temperature. Furthermore, the results show that the 5FU may be easily protonated in the target cancerous tissues, which facilitates the release of the drug from the fullerene. The inclusion of solvent effects tends to decrease the 5FU adsorption energies in all 5FU-fullerene complexes. This is the first report on the high capability of AM decorated fullerenes for delivery of multiple 5FU molecules utilizing a C60 host molecule.
Collapse
Affiliation(s)
- Mehdi D Esrafili
- Department of Chemistry, Faculty of Basic Sciences, University of Maragheh P. O. Box 55136-553 Maragheh Iran
| | - Adnan Ali Khan
- Centre for Computational Materials Science, University of Malakand Chakdara Pakistan
- Department of Chemistry, University of Malakand Chakdara Pakistan
| |
Collapse
|
12
|
Effects of B and N doping/codoping on the adsorption behavior of C60 fullerene towards aspirin: A DFT investigation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Parlak C, Alver Ö, Bağlayan Ö. Quantum mechanical simulation of Molnupiravir drug interaction with Si-doped C60 fullerene. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Oba SN, Ighalo JO, Aniagor CO, Igwegbe CA. Removal of ibuprofen from aqueous media by adsorption: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146608. [PMID: 34030311 DOI: 10.1016/j.scitotenv.2021.146608] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Ibuprofen (IBP) is a non-steroidal anti-inflammatory drug released into the environment through hospital and medical effluents, pharmaceutical wastewater and veterinary use. The aim of this paper is to review the empirical findings on the adsorption of IBP from aqueous media. A preliminary ecotoxicological assessment confirmed the environmental risk of IBP in the aqueous environment. Open literature works considered in this review were for the past decade (2010-2020). Carbon-based adsorbents are the best class of adsorbent for the uptake of IBP and the highest reported maximum adsorption capacity (qmax) for IBP is 496.1 mg/g by SWCNTs. The range of adsorption capacities for IBP uptake in this review is between 0.0496 and 496.1 mg/g. The mechanism of uptake is majorly by hydrophobic interactions, π - π stacking, hydrogen bonds, electrostatic interactions and dipole-dipole interaction. IBP uptake was best fit to a wide variety of isotherm models but was well suited to the pseudo-second order kinetics model. The thermodynamics of IBP uptake depends majorly on the nature of the adsorbent and desorption from the solid phase is based on an appropriate choice of the eluent. Knowledge gaps were observed in used adsorbent disposal and process improvement. In the future, interest would increase in scale-up, industrial applications and practical utilisation of the research findings which would help in sustainable water resource management.
Collapse
Affiliation(s)
- Stephen N Oba
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria.
| | - Joshua O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria; Department of Chemical Engineering, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria.
| | - Chukwunonso O Aniagor
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria.
| | - Chinenye Adaobi Igwegbe
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria.
| |
Collapse
|
15
|
Lei X, Huang L, Liu K, Ouyang L, Shuai Q, Hu S. Facile one-pot synthesis of hierarchical N-doped porous carbon for efficient ibuprofen removal. J Colloid Interface Sci 2021; 604:823-831. [PMID: 34303175 DOI: 10.1016/j.jcis.2021.07.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 11/27/2022]
Abstract
Developing high-performance materials for the efficient removal of pharmaceutical contaminants from polluted water has gained tremendous attention but is still a huge challenge. Herein, various N-doped porous carbons (NPCs) were fabricated via a facile and solvent-free pyrolysis strategy by using a mixture of melamine, hexamethylenetetramine, Pluronic F 127, and ZnCl2 as precursor. The resulting NPCs featuring large specific surface areas (803-1002 m2/g) and high nitrogen content (3.79-5.24%) were used as efficient adsorbent for the capture of ibuprofen (IBP) from water. Due to the combination of abundant mesoporous and microporous structure as well as high nitrogen content, the adsorption equilibrium was achieved within 60 min and the adsorption capacity was calculated to be 113 mg/g. Furthermore, it was found that the adsorption capacity exhibited a good correlation with the nitrogen content. In addition, the adsorption capacity of the resulting NPC was well-maintained even after 4 cycles due to its superior stability. The study is expected to encourage the rational design and synthesis of versatile heteroatom-doped porous carbons for practical application in the field of environmental remediation.
Collapse
Affiliation(s)
- Xiaoqing Lei
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China
| | - Lijin Huang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China.
| | - Ke Liu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China
| | - Lei Ouyang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China
| | - Qin Shuai
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China
| | - Shenghong Hu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China.
| |
Collapse
|
16
|
Rahman H, Hossain MR, Ferdous T. The recent advancement of low-dimensional nanostructured materials for drug delivery and drug sensing application: A brief review. J Mol Liq 2020; 320:114427. [PMID: 33012931 PMCID: PMC7525470 DOI: 10.1016/j.molliq.2020.114427] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 01/07/2023]
Abstract
In this review article, we have presented a detailed analysis of the recent advancement of quantum mechanical calculations in the applications of the low-dimensional nanomaterials (LDNs) into biomedical fields like biosensors and drug delivery systems development. Biosensors play an essential role for many communities, e.g. law enforcing agencies to sense illicit drugs, medical communities to remove overdosed medications from the human and animal body etc. Besides, drug delivery systems are theoretically being proposed for many years and experimentally found to deliver the drug to the targeted sites by reducing the harmful side effects significantly. In current COVID-19 pandemic, biosensors can play significant roles, e.g. to remove experimental drugs during the human trials if they show any unwanted adverse effect etc. where the drug delivery systems can be potentially applied to reduce the side effects. But before proceeding to these noble and expensive translational research works, advanced theoretical calculations can provide the possible outcomes with considerable accuracy. Hence in this review article, we have analyzed how theoretical calculations can be used to investigate LDNs as potential biosensor devices or drug delivery systems. We have also made a very brief discussion on the properties of biosensors or drug delivery systems which should be investigated for the biomedical applications and how to calculate them theoretically. Finally, we have made a detailed analysis of a large number of recently published research works where theoretical calculations were used to propose different LDNs for bio-sensing and drug delivery applications.
Collapse
Affiliation(s)
- Hamidur Rahman
- Department of Physics, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Md Rakib Hossain
- Department of Physics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Tahmina Ferdous
- Department of Physics, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| |
Collapse
|
17
|
Almanassra IW, Kochkodan V, Ponnusamy G, Mckay G, Ali Atieh M, Al-Ansari T. Carbide Derived Carbon (CDC) as novel adsorbent for ibuprofen removal from synthetic water and treated sewage effluent. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:1375-1390. [PMID: 33312649 PMCID: PMC7721931 DOI: 10.1007/s40201-020-00554-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/24/2020] [Accepted: 09/29/2020] [Indexed: 05/13/2023]
Abstract
PURPOSE Pharmaceuticals are becoming one of the largest environmental concerns when it comes to the water treatment industry. Increased usage of these chemicals poses a serious risk to ecology and human health due to their leakage into surface waters. In the present study, carbide derived carbon (CDC) was used for the first time as a new adsorbent to remove ibuprofen from synthetic water and wastewater effluent. METHODS The morphology, chemical composition, surface area and surface charge of the CDC particles were investigated using the transmission electron microscopy, scanning electron microscopy, energy dispersive spectroscopy, Fourier transform infrared spectroscopy, BET analysis and zeta potential measurements. The effects of CDC dosage, temperature, initial pH and agitation speed on the adsorption process were examined by using batch adsorption experiments. Moreover, the adsorption kinetics, thermodynamics, and isotherms were investigated. RESULTS Adsorption and kinetic equilibrium data demonstrate that the adsorption of ibuprofen onto the CDC obeys the Langmuir isotherm model and the kinetics follow the pseudo-2nd order mechanism. The thermodynamic results reveal that ibuprofen adsorption is endothermic and spontaneous. The ibuprofen removal by CDC was mainly controlled by the electrostatic forces at high pH of the feed solution and by the dispersive interactions in acidic media. The ibuprofen removal is promoted at high temperature, high agitation speed and low pH. The highest adsorption capacity of ibuprofen onto the CDC was 367 mg/g at pH 3. Furthermore, the CDC efficiently removed ibuprofen from spiked treated sewage effluent. CONCLUSIONS The obtained data indicate that the CDC provides a fast and efficient adsorptive removal of ibuprofen both from a model aqueous solution and treated sewage effluent.
Collapse
Affiliation(s)
- Ismail W. Almanassra
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Viktor Kochkodan
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box 5825, Doha, Qatar
- Doha, Qatar
| | - Guhankumar Ponnusamy
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box 5825, Doha, Qatar
| | - Gordon Mckay
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Muataz Ali Atieh
- College of Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
- Desalination Research Group, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Tareq Al-Ansari
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Doha, Qatar
- Division of Engineering Management and Decision Sciences, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
18
|
Hou X, Ren Y, Fu F, Tian X. Doping atom to tune electronic characteristics and adsorption of cyclo[18] carbons: A theoretical study. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112922] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Motlagh NM, Rouhani M, Mirjafary Z. Aminated C20 fullerene as a promising nanosensor for detection of A-234 nerve agent. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Theoretical study on carbonaceous materials as high efficient carriers for crizotinib drug in liquid water by density functional theory approach. Struct Chem 2020. [DOI: 10.1007/s11224-020-01522-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|