1
|
Panicker RR, Sivaramakrishna A. Studies on synthesis and influence of sterically driven Ni(II)-terpyridine (NNN) complexes on BSA/DNA binding and anticancer activity. J Inorg Biochem 2024; 257:112553. [PMID: 38759263 DOI: 10.1016/j.jinorgbio.2024.112553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 05/19/2024]
Abstract
The present work demonstrates the synthesis, structural diversity and coordination behavior of some selected new Ni(II)-Tpy complexes. The structural analysis revealed the coordination of the selected terpyridine ligands with the core metal atom in two different modes via dimeric species (1:1 fashion) through the Cl-bridging and a bis(Tpy)-Ni complex (2:1 fashion). Perhaps the most striking manifestations of these Ni(II)-Tpy complexes are BSA/DNA binding ability and anticancer activity. In addition, the cytotoxicity studies of Tpy ligand (4-([2,2':6',2″-terpyridin]-4'-yl)phenyl 5-methylthiophene-2-carboxylate) and the Ni(II) complexes were carried out using lung cancer cell line (A549), breast cancer cell line (MCF-7) and normal cell line (Vero cell). The cytotoxicity results were compared with the cisplatin control group. Notably, bis-terpyridyl complex 3C (R = 4-([2,2':6',2″-terpyridin]-4'-yl)phenyl 4-isopropoxybenzoate) demonstrates better activity with the IC50 value of 23.13 ± 3 μm for A549 and 22.7 ± 3 for MCF-7. The DFT calculations reveal the significant energy differences of HOMO and LUMO for the ligands and their corresponding Ni(II) complexes. The Tpy ligands and Ni(II)-Tpy complexes were investigated for BSA binding and further all the Ni(II) complexes were analyzed for DNA binding studies.
Collapse
Affiliation(s)
- Rakesh R Panicker
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
2
|
Guesmi NE. Solvent Effect on the Photophysical Properties of Terpyridine Incorporating Pyrene Moiety: Estimation of Dipole Moments by Solvatochromic Shift Methods. J Fluoresc 2023; 33:2315-2326. [PMID: 37036630 DOI: 10.1007/s10895-023-03210-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023]
Abstract
The absorption and fluorescence emission spectra of terpyridine incorporating pyrene moiety (Tpy-pyr) have been recorded in extensive variety of solvents having different polarities. The effect of the solvent on the spectral characteristics are examined. It is shown that Tpy-pyr exhibit positive solvatochromism, large Stokes shift values in polar solvents, and fluorescence in the long wavelength region of the visible range. A linear increasing trend with Stokes shift indicates the presence of Tpy-pyr - solvent interaction. The acquired results could be attributed to the formation of excited states with intramolecular charge transfer. The fluorescence quantum yield was drastically reduced in polar protic solvents and the formation of the twisted states with charge transfer was proposed. Both ground and excited state dipole moments (µg and µe) were determined experimentally by Lippert-Mataga, Reichardt, Bilot-Kawski, Bakhshiev and Kawski-Chamma-Viallet solvatochromic methods analyzed on the base of the microscopic solvent polarity functions. The µg and µe dipole moment of Tpy-pyr estimated from density functional theory (DFT) and those determined experimentally from solvatochromic methods are compared and the results are discussed.
Collapse
Affiliation(s)
- Nizar El Guesmi
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, 21955, Makkah, Saudi Arabia.
| |
Collapse
|
3
|
Hajam TA, H S, Mashood Ahamed FM. Structural, vibrational spectroscopy, molecular docking, DFT studies and antibacterial activity of (E)-N1-(3-chlorobenzylidene)benzene-1,4-diamine. J Biomol Struct Dyn 2023; 41:6295-6312. [PMID: 35916271 DOI: 10.1080/07391102.2022.2106516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
In this work, (E)-N1-(3-chlorobenzylidene)benzene-1,4-diamine (CBD) compound was synthesized with good yield. The spectral studies were recorded by FT-IR, FT-Raman, NMR and UV-Vis to determine structural parameters. The geometrical parameters were optimized using DFT calculations at 6-311++G(d,p) basis set. The calculated structural parameters of the molecule were in line with the experimental data. The molecular orbitals of the compound were investigated through highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) analysis. The hyper conjugative interaction energy E(2) along with donor, acceptor electron densities (EDs) were determined by natural bond orbital (NBO) analysis. The molecular electrostatic potential (MEP), mulliken atomic charges, non-linear optical (NLO) properties and potential energy surface (PES) scan were also calculated. The 1H and 13C NMR chemical shifts calculated using Gauge invariant atomic orbital (GIAO) method were compared with the experimental NMR chemical shifts. Thermogravimetry (TG) and Differential Scanning Calorimetry (DSC) were carried out to characterise the thermal behaviour and stability of CBD molecule. In addition, PreADMET tool was also used to estimate ADME and Toxicity of CBD compound. The compound screened against four pathogens two gram positive and two gram negative had shown good anti-bacterial behaviour. The molecular docking studies executed against anti-bacterial target topoisomerase DNA gyrase enzyme (2XCT) emphasized good binding behaviour over the standard drug.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Saleem H
- Department of Physics, Annamalai University, Chidambaram, India
| | - F M Mashood Ahamed
- PG and Research Department of Chemistry, Jamal Mohamed College, Trichy, India
| |
Collapse
|
4
|
Biały M, Hasiak M, Łaszcz A. Review on Biocompatibility and Prospect Biomedical Applications of Novel Functional Metallic Glasses. J Funct Biomater 2022; 13:jfb13040245. [PMID: 36412886 PMCID: PMC9680474 DOI: 10.3390/jfb13040245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022] Open
Abstract
The continuous development of novel materials for biomedical applications is resulting in an increasingly better prognosis for patients. The application of more advanced materials relates to fewer complications and a desirable higher percentage of successful treatments. New, innovative materials being considered for biomedical applications are metallic alloys with an amorphous internal structure called metallic glasses. They are currently in a dynamic phase of development both in terms of formulating new chemical compositions and testing their properties in terms of intended biocompatibility. This review article intends to synthesize the latest research results in the field of biocompatible metallic glasses to create a more coherent picture of these materials. It summarizes and discusses the most recent findings in the areas of mechanical properties, corrosion resistance, in vitro cellular studies, antibacterial properties, and in vivo animal studies. Results are collected mainly for the most popular metallic glasses manufactured as thin films, coatings, and in bulk form. Considered materials include alloys based on zirconium and titanium, as well as new promising ones based on magnesium, tantalum, and palladium. From the properties of the examined metallic glasses, possible areas of application and further research directions to fill existing gaps are proposed.
Collapse
|
5
|
Wang Y, Zhang YY, Liao XH, Yin BB, Zhao Y, Gao NN, Jiang H, Mao DR, Yang YX. Multi-responsive luminescent MOF sensor for Fe3+, CrO42− and Cr2O72− in aqueous solution based on phenylenediacetate and bis-imidazole ligand. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Thierer LM, Brooks SH, Weberg AB, Cui P, Zhang S, Gau MR, Manor BC, Carroll PJ, Tomson NC. Macrocycle-Induced Modulation of Internuclear Interactions in Homobimetallic Complexes. Inorg Chem 2022; 61:6263-6280. [PMID: 35422117 PMCID: PMC9252315 DOI: 10.1021/acs.inorgchem.2c00522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A synthetic route has been developed for a series of 3d homobimetallic complexes of Mn, Fe, Co, Ni, and Cu using three different pyridyldiimine and pyridyldialdimine macrocyclic ligands with ring sizes of 18, 20, and 22 atoms. Crystallographic analyses indicate that while the distances between the metals can be modulated by the size of the macrocycle pocket, the flexibility in the alkyl linkers used to construct the macrocycles enables the ligand to adjust the orientation of the PD(A)I fragments in response to the geometry of the [M2(μ-Cl)2]2+ core, particularly with respect to Jahn-Teller distortions. Analyses by UV-vis spectroscopy and SQUID magnetometry revealed deviations in the properties [M2(μ-Cl)2]2+-containing complexes bound by standard mononucleating ligands, highlighting the ability of macrocycles to use ring size to control the magnetic interactions of pseudo-octahedral, high-spin metal centers.
Collapse
Affiliation(s)
- Laura M. Thierer
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Sam H. Brooks
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Alexander B. Weberg
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Peng Cui
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Shaoguang Zhang
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Michael R. Gau
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Brian C. Manor
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J. Carroll
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Neil C. Tomson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
7
|
Wang SM, Hao JH, Tang YZ, Sun XL, Zhou FS, Liu ZY, Zhu Y, Li JP. Three Compounds Constructed from 2-Chloro-4-ferrocenylbenzoate and N-Containing Ligands: Synthesis, Crystal Structures, and Microbiological Studies. RUSS J COORD CHEM+ 2022. [DOI: 10.1134/s1070328422040078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Han X, Liu B, Wang Z, Ross Craze A, Sun H, Rafiq Khan M, Liu J, Liu Z, Li J. Structure diversity and magnetic properties of manganese and cobalt coordination polymers with multiple carboxyl bridges. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Du C, Yang Y, Zheng L, Zhang T, Zhao X, Wang C. Structure-Element Surface Modification Strategy Enhances the Antibacterial Performance of Zr-BMGs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8793-8803. [PMID: 35133790 DOI: 10.1021/acsami.1c22544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Zirconium-based metallic glasses (Zr-BMGs) have attracted tremendous attention in healthcare fields, especially in the design of surgical tools and orthopedic implants, due to their unique amorphous structure; however, the application of Zr-BMG-based medical devices is hindered by bacterial contamination. Here, a structure-element strategy is proposed to improve the antibacterial performance of Zr-BMGs by surface laser nanostructuring and silver nanoparticle (AgNP) deposition. The laser nanostructuring process generates a disordered nanoparticle structure (NP) and laser-induced periodic surface structure (LIPSS) to decrease the surface bacterial adhesion and increase the internal antimicrobial ion release. Moreover, after Ag deposition and hydrogen peroxide (H2O2) treatment, the antibacterial adhesion ability of the Zr-BMG surface can be further improved without any influence on the crystallization of Zr-BMGs and the release of antibacterial copper/nickel (Cu/Ni). The antibacterial effect of the LIPSS and the NP surfaces presents over 90% bacterial killing ratio, which is superior to that of the naked Zr-BMGs with less than 60% bacterial killing ratio. In vitro and in vivo tests show that the Ag-deposited and H2O2-treated LIPSS surfaces exhibit an optimal balance between the antibacterial property and the biocompatibility compared with the polished, NP structured or LIPSS structured surfaces. It is assumed that such structure-element surface modification strategy can improve the antibacterial activity of metal-containing surgical tools and orthopedic implants, improving the success rate of medical treatment.
Collapse
Affiliation(s)
- Cezhi Du
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuhe Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Lijuan Zheng
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Tao Zhang
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Chengyong Wang
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
10
|
Niu X, Yu Y, Mu C, Xie X, Liu Y, Liu Z, Li L, Li G, Li J. High Proton Conduction in Two Highly Water-Stable Lanthanide Coordination Polymers from a Triazole Multicarboxylate Ligand. Inorg Chem 2021; 60:13242-13251. [PMID: 34436871 DOI: 10.1021/acs.inorgchem.1c01616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two lanthanide coordination polymers (CPs) {[Er(Hmtbd)(H2mtbd)(H2O)3]·2H2O}n (1) and [Yb(Hmtbd)(H2mtbd)(H2O)3]n (2) carrying an N-heterocyclic carboxylate ligand 5-(3-methylformate-1H-1,2,4-triazole-1-methyl)benzen-1,3-dicarboxylate (H3mtbd) were prepared under solvothermal conditions. The single-crystal X-ray diffraction data demonstrate that 1 and 2 are isostructural and display 1D chain structure. Alternating current (AC) impedance measurements illustrate that the highest proton conductivities of 1 and 2 can attain 5.09 × 10-3 and 3.09 × 10-3 S·cm-1 at 100 °C and 98% relative humidity (RH), respectively. The value of 1 exceeds those of most reported lanthanide-based crystalline materials and ranks second among the described Er-CPs under similar conditions, whereas the value for 2 is the highest proton conductivity among the previous Yb-CPs. Coupled with the structural analyses of the two CPs and H2O vapor adsorption, the calculated Ea values help to deduce their proton conductive mechanisms. Notably, the N-heterocyclic units (triazole), carboxyl, and hydrogen-bonding network all play key roles in the proton-transfer process. The prominent proton conductive abilities of both CPs show great promise as efficient proton conductors.
Collapse
Affiliation(s)
- Xiaoge Niu
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Yihong Yu
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Chenyu Mu
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Xiaoxin Xie
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Yan Liu
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Zhongyi Liu
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Linke Li
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Gang Li
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Jinpeng Li
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
11
|
Hassan EA, Abou Elseoud WS, Abo-Elfadl MT, Hassan ML. New pectin derivatives with antimicrobial and emulsification properties via complexation with metal-terpyridines. Carbohydr Polym 2021; 268:118230. [PMID: 34127217 DOI: 10.1016/j.carbpol.2021.118230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Pectin is widely used in food and pharmaceutical industries. However, due to its polysaccharide nature it lacks antimicrobial activity. In the current work, new pectin derivatives with interesting optical and antimicrobial properties were prepared via supramolecular chemistry utilizing Fe- or Cu-terpyridine (Tpy-Fe and Tpy-Cu) motifs. To proof derivatization of pectin, ultraviolet-visible spectroscopy (UV-Vis) and Fourier Transform infrared (FTIR) were used. In addition, the prepared pectin derivatives retained the known emulsification activity of the non-modified sugar beet pectin as seen from the particle size analysis of oil-in-water emulsions. The prepared derivatives showed antibacterial activity toward selected Gram-positive and Gram-negative bacteria. In addition, cytotoxicity test showed that the Tpy-Fe-pectin derivative was non-toxic to cells of human hepatocarcinoma, breast adenocarcinoma MCF7, and colorectal carcinoma cells at concentrations up to 100 μg/ml, while Tpy-Cu-pectin had moderate toxicity toward the aforementioned cells at the same concentration levels. The prepared derivatives could have potential applications in emulsions with antibacterial activity.
Collapse
Affiliation(s)
- Enas A Hassan
- Cellulose and Paper Department & Advanced Materials and Nanotechnology Group, Centre of Excellence for Advanced Sciences, National Research Centre, 33 El-Buhouth Street, Dokki, Giza 12622, Egypt
| | - Wafaa S Abou Elseoud
- Cellulose and Paper Department & Advanced Materials and Nanotechnology Group, Centre of Excellence for Advanced Sciences, National Research Centre, 33 El-Buhouth Street, Dokki, Giza 12622, Egypt
| | - Mahmoud T Abo-Elfadl
- Biochemistry Department & Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, 33 El-Buhouth Street, Dokki, Giza 12622, Egypt
| | - Mohammad L Hassan
- Cellulose and Paper Department & Advanced Materials and Nanotechnology Group, Centre of Excellence for Advanced Sciences, National Research Centre, 33 El-Buhouth Street, Dokki, Giza 12622, Egypt.
| |
Collapse
|
12
|
Amante C, De Sousa-Coelho AL, Aureliano M. Vanadium and Melanoma: A Systematic Review. METALS 2021; 11:828. [DOI: 10.3390/met11050828] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The application of metals in biological systems has been a rapidly growing branch of science. Vanadium has been investigated and reported as an anticancer agent. Melanoma is the most aggressive type of skin cancer, the incidence of which has been increasing annually worldwide. It is of paramount importance to identify novel pharmacological agents for melanoma treatment. Herein, a systematic review of publications including “Melanoma and Vanadium” was performed. Nine vanadium articles in several melanoma cells lines such as human A375, human CN-mel and murine B16F10, as well as in vivo studies, are described. Vanadium-based compounds with anticancer activity against melanoma include: (1) oxidovanadium(IV); (2) XMenes; (3) vanadium pentoxide, (4) oxidovanadium(IV) pyridinonate compounds; (5) vanadate; (6) polysaccharides vanadium(IV/V) complexes; (7) mixed-metal binuclear ruthenium(II)–vanadium(IV) complexes; (8) pyridoxal-based oxidovanadium(IV) complexes and (9) functionalized nanoparticles of yttrium vanadate doped with europium. Vanadium compounds and/or vanadium materials show potential anticancer activities that may be used as a useful approach to treat melanoma.
Collapse
Affiliation(s)
- Cristina Amante
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Ana Luísa De Sousa-Coelho
- Centre for Biomedical Research (CBMR), Campus of Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Escola Superior de Saúde (ESS), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Manuel Aureliano
- Faculdade de Ciências e Tecnologia (FCT), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- CCMAR, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
13
|
Wei W, Liu Z, Wei R, Liang C, Feng XZ, Han GC. Synthesis, crystal structure and anticorrosion performance of Zn(II) and Ni(II) complexes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Senthilkumar S, Seralathan J, Muthukumaran G. Synthesis, structure analysis, biological activity and molecular docking studies of some hydrazones derived from 4-aminobenzohydrazide. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Li B, Huang D, Zhang T, Niu X, Liu J, Zhang W, Liu Y, Liu Z, Zhang P, Li J. Five lead(II) coordinated polymers assembled from asymmetric azoles carboxylate ligands: Synthesis, structures and fluorescence properties. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Mughal EU, Mirzaei M, Sadiq A, Fatima S, Naseem A, Naeem N, Fatima N, Kausar S, Altaf AA, Zafar MN, Khan BA. Terpyridine-metal complexes: effects of different substituents on their physico-chemical properties and density functional theory studies. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201208. [PMID: 33391801 PMCID: PMC7735333 DOI: 10.1098/rsos.201208] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/07/2020] [Indexed: 06/12/2023]
Abstract
A series of different substituted terpyridine (tpy)-based ligands have been synthesized by Kröhnke method. Their binding behaviour was evaluated by complexing them with Co(II), Fe(II) and Zn(II) ions, which resulted in interesting coordination compounds with formulae, [Zn(tpy)2]PF6, [Co(tpy)2](PF6)2, [Fe(tpy)2](PF6)2 and interesting spectroscopic properties. Their absorption and emission behaviours in dilute solutions were investigated in order to explain structure-property associations and demonstrate the impact of different aryl substituents on the terpyridine scaffold as well as the role of the metal on the complexes. Photo-luminescence analysis of the complexes in acetonitrile solution revealed a transition from hypsochromic to bathochromic shift. All the compounds displayed remarkable photo-luminescent properties and various maximum emission peaks owing to the different nature of the functional groups. Furthermore, the anti-microbial potential of ligands and complexes was evaluated with docking analyses carried out to investigate the binding affinity of terpyridine-based ligands along with corresponding proteins (shikimate dehydrogenase and penicillin-binding protein) binding sites. To obtain further insight into molecular orbital distributions and spectroscopic properties, density functional theory calculations were performed for representative complexes. The photophysical activity and interactions between chromophore structure and properties were both investigated experimentally as well as theoretically.
Collapse
Affiliation(s)
| | - Masoud Mirzaei
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, PO Box 9177948974, Mashhad, Iran
| | - Amina Sadiq
- Department of Chemistry, Government College Women University, Sialkot 51300, Pakistan
| | - Sana Fatima
- Department of Chemistry, University of Gujarat, Gujarat 50700, Pakistan
| | - Ayesha Naseem
- Department of Chemistry, University of Gujarat, Gujarat 50700, Pakistan
| | - Nafeesa Naeem
- Department of Chemistry, University of Gujarat, Gujarat 50700, Pakistan
| | - Nighat Fatima
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Samia Kausar
- Department of Chemistry, University of Gujarat, Gujarat 50700, Pakistan
| | - Ataf Ali Altaf
- Department of Chemistry, University of Gujarat, Gujarat 50700, Pakistan
- Department of Chemistry, University of Okara, Okara 56300, Pakistan
| | | | - Bilal Ahmad Khan
- Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| |
Collapse
|
17
|
Ashvin Santhia SV, Aneeba B, Vinu S, Sheela Christy R, Al-Mohaimeed AM, Al Farraj DA. Studies on physicochemical and antibacterial deeds of amino acid based L-Threoninum sodium bromide. Saudi J Biol Sci 2020; 27:2987-2992. [PMID: 33100857 PMCID: PMC7569142 DOI: 10.1016/j.sjbs.2020.09.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 11/12/2022] Open
Abstract
Highly translucent nonlinear single crystals of L-Threoninum Sodium Bromide (LTSB) has been grown because of their rising need for everyday life and the XRD studies (PXRD and SXRD) solemnly affirmed the crystallinity and non-centrosymmetric space group of LTSB materials. The bonding nature and diverse functional groups in LTSB were demonstrated by FTIR analysis when they absorb infrared radiation. The optical behavior of LTSB crystals was explored through UV–Vis spectroscopy, which shows optical parameters depend on photon energy with band gap Eg = 5.7 eV which was suitable for optoelectronic devices. The electrical properties of LTSB crystals were measured by using dielectric measurement. The solid state parameters of LTSB crystal were calculated. An antibacterial activity developed by LTSB crystals against different pathogenic bacteria were examined using the Agar disk diffusion process. The antibacterial inhibitory activity of LTSB crystal revealed that it can be used to treat a variety of bacterial infections.
Collapse
Affiliation(s)
- S V Ashvin Santhia
- Department of Physics and Research Centre, Nesamony Memorial Christian College, Marthandam, Affiliated to Manonmaniam Sundaranar University, Abishekapatti Tirunelveli, Tamil Nadu, India
| | - B Aneeba
- Department of Physics and Research Centre, Nesamony Memorial Christian College, Marthandam, Affiliated to Manonmaniam Sundaranar University, Abishekapatti Tirunelveli, Tamil Nadu, India
| | - S Vinu
- Department of Physics, Government Arts and Science College, Nagercoil, India
| | - R Sheela Christy
- Department of Physics and Research Centre, Nesamony Memorial Christian College, Marthandam, Affiliated to Manonmaniam Sundaranar University, Abishekapatti Tirunelveli, Tamil Nadu, India
| | - Amal M Al-Mohaimeed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Dunia A Al Farraj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
18
|
Li J, Zhang H, Zhao H, Chen L. Two New Co(II) Coordination Polymers: Photocatalytic Properties and Treatment Activity on Sepsis by Reducing TNF‐α and IL‐1β Releasing. ChemistrySelect 2020. [DOI: 10.1002/slct.202001746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jin‐Hong Li
- Department of Critical MedicineTraditional Chinese Medical Hospital of Huangdao District Qingdao, Shandong China
| | - Hui‐Xia Zhang
- Qingdao Huangdao Community Health Service Center Qingdao, Shandong China
| | - Hai‐Yun Zhao
- Outpatient Drug Exchange Room, Traditional Chinese Medical Hospital of Huangdao District Qingdao, Shandong China
| | - Li‐Yuan Chen
- Outpatient Drug Exchange Room, Traditional Chinese Medical Hospital of Huangdao District Qingdao, Shandong China
| |
Collapse
|
19
|
Soltani S, Akhbari K, White J. Synthesis, crystal structure, magnetic, photoluminescence and antibacterial properties of dinuclear Copper(II) complex. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Li J, Khan MR, Liu B, Niu X, Li B, Hao Y, Liu Z. Synthesis, Structures and Magnetic Properties of Cu
II
and Co
II
Compounds Based on Asymmetric 5‐(1
H
‐Imidazole‐1‐yl)‐3‐pyridine Carboxylic Acid. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jinpeng Li
- College of Chemistry and Green Catalysis Center Zhengzhou University 450001 Zhengzhou Henan P. R. China
| | - Misbha Rafiq Khan
- College of Chemistry and Green Catalysis Center Zhengzhou University 450001 Zhengzhou Henan P. R. China
| | - Bin Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education College of Chemistry & Materials Science Northwest University 710069 Xi'an P. R. China
| | - Xiaoge Niu
- College of Chemistry and Green Catalysis Center Zhengzhou University 450001 Zhengzhou Henan P. R. China
| | - Bohan Li
- College of Chemistry and Green Catalysis Center Zhengzhou University 450001 Zhengzhou Henan P. R. China
| | - Yaping Hao
- College of Chemistry and Green Catalysis Center Zhengzhou University 450001 Zhengzhou Henan P. R. China
| | - Zhongyi Liu
- College of Chemistry and Green Catalysis Center Zhengzhou University 450001 Zhengzhou Henan P. R. China
| |
Collapse
|
21
|
Rafikova K, Binbay NE, Meriç N, Kerimkulova A, Zazybin A, Binbay V, Okumuş V, Kayan C, Işik U, Arslan N, Aydemir M. Biological assays and theoretical density functional theory calculations of Rh(I), Ir(III), and Ru(II) complexes of chiral phosphinite ligand. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Khadichakhan Rafikova
- Kazakh‐British Technical UniversitySchool of Chemical Engineering Almaty 050000 Kazakhstan
- Satbayev UniversityInstitute of Chemical and Biological Technologies Almaty 050013 Kazakhstan
| | - Nil Ertekin Binbay
- Department of Electronics, Technical Vocational SchoolDicle University 21280 Diyarbakir Turkey
| | - Nermin Meriç
- Department of Chemistry, Faculty of ScienceDicle University 21280 Diyarbakir Turkey
| | - Aygul Kerimkulova
- Satbayev UniversityInstitute of Chemical and Biological Technologies Almaty 050013 Kazakhstan
| | - Alexey Zazybin
- Kazakh‐British Technical UniversitySchool of Chemical Engineering Almaty 050000 Kazakhstan
| | - Veysel Binbay
- Department of Physics, Institute of Natural ScienceDicle University 21280 Diyarbakir Turkey
| | - Veysi Okumuş
- Department of Biology, Faculty of Science and ArtSiirt University 56100 Turkey
| | - Cezmi Kayan
- Department of Chemistry, Faculty of ScienceDicle University 21280 Diyarbakir Turkey
| | - Uğur Işik
- Department of Chemistry, Faculty of ScienceDicle University 21280 Diyarbakir Turkey
| | - Nevin Arslan
- Department of Field Crops, Faculty of AgricultureŞırnak University 73000 Şırnak Turkey
| | - Murat Aydemir
- Department of Chemistry, Faculty of ScienceDicle University 21280 Diyarbakir Turkey
| |
Collapse
|
22
|
Wang Y, Khan MR, Niu X, Zhang W, Li Y, Li B, Hao Y, Li J, Liu Z. Synthesis, Structures, and Antibacterial Activities of Four Similar 1D Metal-organic Polymers with Different Metal Ions. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yufei Wang
- The College of Chemical Engineering and Food Sciences; Zhengzhou Institute of Technology; 450044 Zhengzhou Henan P. R. China
- College of Chemistry and Green Catalysis Center; Zhengzhou University; 450044 Zhengzhou Henan P. R. China
| | - Misbha Rafiq Khan
- College of Chemistry and Green Catalysis Center; Zhengzhou University; 450044 Zhengzhou Henan P. R. China
| | - Xiaoge Niu
- College of Chemistry and Green Catalysis Center; Zhengzhou University; 450044 Zhengzhou Henan P. R. China
| | - Wenjing Zhang
- College of Chemistry and Green Catalysis Center; Zhengzhou University; 450044 Zhengzhou Henan P. R. China
| | - Yulin Li
- The College of Chemical Engineering and Food Sciences; Zhengzhou Institute of Technology; 450044 Zhengzhou Henan P. R. China
| | - Bohan Li
- College of Chemistry and Green Catalysis Center; Zhengzhou University; 450044 Zhengzhou Henan P. R. China
| | - Yaping Hao
- College of Chemistry and Green Catalysis Center; Zhengzhou University; 450044 Zhengzhou Henan P. R. China
| | - Jinpeng Li
- College of Chemistry and Green Catalysis Center; Zhengzhou University; 450044 Zhengzhou Henan P. R. China
| | - Zhongyi Liu
- College of Chemistry and Green Catalysis Center; Zhengzhou University; 450044 Zhengzhou Henan P. R. China
| |
Collapse
|
23
|
Momeni BZ, Rahimi F, Torrei M, Rominger F. Synthesis, Hirshfeld surface analysis, luminescence and thermal properties of three first‐row transition metal complexes containing 4′‐hydroxy‐2,2′:6′,2″‐terpyridine: Application for preparation of nano metal oxides. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Badri Z. Momeni
- Faculty of ChemistryK. N. Toosi University of Technology PO Box 16315‐1618 Tehran 15418 Iran
| | - Farzaneh Rahimi
- Faculty of ChemistryK. N. Toosi University of Technology PO Box 16315‐1618 Tehran 15418 Iran
| | - Maryam Torrei
- Faculty of ChemistryK. N. Toosi University of Technology PO Box 16315‐1618 Tehran 15418 Iran
| | - Frank Rominger
- Organisch‐Chemisches Institut, Universität Heidelberg D‐69120 Heidelberg Germany
| |
Collapse
|
24
|
Li Y, Gai T, Lin Y, Zhang W, Li K, Liu Y, Duan Y, Li B, Ding J, Li J. Eight Cd(ii) coordination polymers with persistent room-temperature phosphorescence: intriguing dual emission and time-resolved afterglow modulation. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01273g] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A new series of p-RTP CPs 1–8 were designed and successfully synthesized; 5–8, in particular, exhibited intriguing time-resolved afterglow modulation.
Collapse
Affiliation(s)
- Yajie Li
- College of Chemistry
- Zhengzhou University
- P. R. China
| | - Tianyu Gai
- College of Chemistry
- Zhengzhou University
- P. R. China
| | - Yuejin Lin
- College of Chemistry
- Zhengzhou University
- P. R. China
| | | | - Kai Li
- College of Chemistry
- Zhengzhou University
- P. R. China
| | - Yan Liu
- College of Chemistry
- Zhengzhou University
- P. R. China
| | - Yanquan Duan
- College of Chemistry
- Zhengzhou University
- P. R. China
| | - Baojun Li
- College of Chemistry
- Zhengzhou University
- P. R. China
| | - Jie Ding
- College of Chemistry
- Zhengzhou University
- P. R. China
| | - Jinpeng Li
- College of Chemistry
- Zhengzhou University
- P. R. China
| |
Collapse
|