1
|
Zhang X, Li W, Jin J, Wang L, Lu Z, Jiang Y. Efficient CH 4 oxidation to C1/C2 oxygenates over cluster-dispersing Rh decorated ZSM-5. RSC Adv 2025; 15:1301-1310. [PMID: 39816176 PMCID: PMC11734155 DOI: 10.1039/d4ra08602c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025] Open
Abstract
Crafting highly dispersed active metal sites on catalysts is an optimal method for improving the catalytic reactivity and stability, as it would improve atomic utilization efficiency, enhance reactant adsorption and activation ability through unique geometric and electronic properties. In this study, two synthesis methods were employed (ammonia evaporation (AE) and the impregnation method (IM)) to load Rh species onto the ZSM-5 support in order to attain tunable dispersivity, during which a 1.25-fold increase in the total yield of liquid oxygenated products (32 433.33 μmol gcat -1 h-1) was achieved specifically over a Rh-ZSM-5-AE sample when the reaction was carried out at a loading level of 0.3 wt% and at 240 °C for half an hour. The results of the study revealed that this elevated productivity originated from the smaller size and higher degree of dispersion of Rh clusters on AE samples. It was demonstrated that the ammonia evaporation method would cause Si leaching and introduce a substantial number of -OH groups during the preparation process, which worked in coordination in altering the electronic structure of Rh species. Consequently, these modifications modified the disordered Rh precursor adsorption, which resulted in a more homogeneous distribution of Rh species, hence facilitating the activation of methane. This study offers a practical and constructive approach for improving the dispersion of Rh nanoclusters and designing strong metal-support interactions (SMSI).
Collapse
Affiliation(s)
- Xin Zhang
- Laboratory of Clean Low-Carbon Energy, Department of Thermal Science and Energy Engineering, University of Science and Technology of China Hefei 230023 PR China
| | - Wenzhi Li
- Laboratory of Clean Low-Carbon Energy, Department of Thermal Science and Energy Engineering, University of Science and Technology of China Hefei 230023 PR China
- Institute of Energy, Hefei Comprehensive National Science Center Hefei 230031 PR China
| | - Jingting Jin
- Laboratory of Clean Low-Carbon Energy, Department of Thermal Science and Energy Engineering, University of Science and Technology of China Hefei 230023 PR China
| | - Liqun Wang
- Laboratory of Clean Low-Carbon Energy, Department of Thermal Science and Energy Engineering, University of Science and Technology of China Hefei 230023 PR China
| | - Zhiheng Lu
- School of Earth and Environment, Anhui University of Science and Technology Huainan 232001 PR China
| | - Yihang Jiang
- Laboratory of Clean Low-Carbon Energy, Department of Thermal Science and Energy Engineering, University of Science and Technology of China Hefei 230023 PR China
| |
Collapse
|
2
|
Sahu PK, Gangwar R, Ramesh A, Rao KT, Vanjari SRK, Subrahmanyam C. Green-Synthesized Amino Carbons for Impedimetric Biosensing of E. coli O157:H7. ACS Infect Dis 2024; 10:1644-1653. [PMID: 38602317 DOI: 10.1021/acsinfecdis.3c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
This study describes the synthesis of amino-functionalized carbon nanoparticles derived from biopolymer chitosan using green synthesis and its application toward ultrasensitive electrochemical immunosensor of highly virulent Escherichia coli O157:H7 (E. coli O157:H7). The inherent advantage of high surface-to-volume ratio and enhanced rate transfer kinetics of nanoparticles is leveraged to push the limit of detection (LOD), without compromising on the selectivity. The prepared carbon nanoparticles were systematically characterized by employing CO2-thermal programmed desorption (CO2-TPD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-visible), and transmission electron microscopy (TEM). The estimated limit of detection of 0.74 CFU/mL and a sensitivity of 5.7 ((ΔRct/Rct)/(CFU/mL))/cm2 in the electrochemical impedance spectroscopy (EIS) affirm the utility of the sensor. The proposed biosensor displayed remarkable selectivity against interfering species, making it well suited for real-time applications. Moreover, the chitosan-derived semiconducting amino-functionalized carbon shows excellent sensitivity in a comparative analysis compared to highly conducting amine-functionalized carbon synthesized via chemical modification, demonstrating its vast potential as an E. coli sensor.
Collapse
Affiliation(s)
- Pravat Kumar Sahu
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Rahul Gangwar
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Asha Ramesh
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Karri Trinadha Rao
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Siva Rama Krishna Vanjari
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Challapalli Subrahmanyam
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| |
Collapse
|
3
|
Gangwar R, Ray D, Khatun S, Subrahmanyam C, Rengan AK, Vanjari SRK. Toll-like receptor-immobilized carbon paste electrodes with plasma functionalized amine termination: Towards real-time electrochemical based triaging of gram-negative bacteria. Biosens Bioelectron 2023; 241:115674. [PMID: 37717423 DOI: 10.1016/j.bios.2023.115674] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Chronic wounds caused due to bacterial biofilms are detrimental to a patient, and an immediate diagnosis of these bacteria can aid in an effective treatment, which is still an unmet clinical need. An instant and accurate identification of bacterial type could be made by utilizing the Toll-Like Receptors (TLRs) combined with Myeloid Differentiation factor 2 (MD-2). Given this, we have developed an electrochemical sensing platform to identify the gram-negative (gram-ve) bacteria using TLR4/MD-2 complex. The nonthermal plasma (NTP) technique was utilized to functionalize amine groups onto the carbon surface to fabricate cost-effective carbon paste working electrodes (CPEs). The proposed electrochemical sensor platform with a specially engineered electrochemical cell (E-Cell) identified the Escherichia coli (E. coli) in a wide linear range of 1.5×10° - 1.5×106 C.F.U./mL, accounting for a very low detection limit of 0.087 C.F.U./mL. The novel and cost-effective sensor platform identified gram-ve bacteria predominantly in a mixture of gram positive (gram+ve) bacteria and fungi. Further, towards real-time detection of bacteria and point-of-care (PoC) applications, the effect of the pond water matrix was studied, which was minimal, and the sensor could identify E. coli concentrations selectively, showing the potential application of the proposed platform towards real-time bacterial detection.
Collapse
Affiliation(s)
- Rahul Gangwar
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, 502284, India.
| | - Debjyoti Ray
- Department of Chemistry, Indian Institute of Technology Hyderabad, 502284, India; Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region of China.
| | - Sajmina Khatun
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, 502284, India.
| | | | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, 502284, India.
| | | |
Collapse
|
4
|
Tumurbaatar O, Popova M, Mitova V, Shestakova P, Koseva N. Engineering of Silica Mesoporous Materials for CO 2 Adsorption. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114179. [PMID: 37297313 DOI: 10.3390/ma16114179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Adsorption methods for CO2 capture are characterized by high selectivity and low energy consumption. Therefore, the engineering of solid supports for efficient CO2 adsorption attracts research attention. Modification of mesoporous silica materials with tailor-made organic molecules can greatly improve silica's performance in CO2 capture and separation. In that context, a new derivative of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, possessing an electron-rich condensed aromatic structure and also known for its anti-oxidative properties, was synthesized and applied as a modifying agent of 2D SBA-15, 3D SBA-16, and KIT-6 silicates. The physicochemical properties of the initial and modified materials were studied using nitrogen physisorption and temperature-gravimetric analysis. The adsorption capacity of CO2 was measured in a dynamic CO2 adsorption regime. The three modified materials displayed a higher capacity for CO2 adsorption than the initial ones. Among the studied sorbents, the modified mesoporous SBA-15 silica showed the highest adsorption capacity for CO2 (3.9 mmol/g). In the presence of 1 vol.% water vapor, the adsorption capacities of the modified materials were enhanced. Total CO2 desorption from the modified materials was achieved at 80 °C. The obtained silica materials displayed stable performance in five CO2 adsorption/desorption cycles. The experimental data can be appropriately described by the Yoon-Nelson kinetic model.
Collapse
Affiliation(s)
- Oyundari Tumurbaatar
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 9, 1113 Sofia, Bulgaria
| | - Margarita Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 9, 1113 Sofia, Bulgaria
| | - Violeta Mitova
- Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 103A, 1113 Sofia, Bulgaria
| | - Pavletta Shestakova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 9, 1113 Sofia, Bulgaria
| | - Neli Koseva
- Bulgarian Academy of Sciences, №1, 15 Noemvri St., 1040 Sofia, Bulgaria
| |
Collapse
|
5
|
Hack J, Maeda N, Meier DM. Review on CO 2 Capture Using Amine-Functionalized Materials. ACS OMEGA 2022; 7:39520-39530. [PMID: 36385890 PMCID: PMC9647976 DOI: 10.1021/acsomega.2c03385] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
CO2 capture from industry sectors or directly from the atmosphere is drawing much attention on a global scale because of the drastic changes in the climate and ecosystem which pose a potential threat to human health and life on Earth. In the past decades, CO2 capture technology relied on classical liquid amine scrubbing. Due to its high energy consumption and corrosive property, CO2 capture using solid materials has recently come under the spotlight. A variety of porous solid materials were reported such as zeolites and metal-organic frameworks. However, amine-functionalized porous materials outperform all others in terms of CO2 adsorption capacity and regeneration efficiency. This review provides a brief overview of CO2 capture by various amines and mechanistic aspects for newcomers entering into this field. This review also covers a state-of-the-art regeneration method, visible/UV light-triggered CO2 desorption at room temperature. In the last section, the current issues and future perspectives are summarized.
Collapse
|
6
|
Ultrasonic preparation of new nanocomposites poly(GMA)@amino-functionalized Fe3O4: structural, morphological and thermal properties. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
7
|
Zekkari M, Ouargli-Saker R, Boudissa F, Lachachi AK, El Houda Sekkal KN, Tayeb R, Boukoussa B, Azzouz A. Silica-catalyzed ozonation of 17α -ethinyl-estradiol in aqueous media-to better understand the role of silica in soils. CHEMOSPHERE 2022; 298:134312. [PMID: 35304212 DOI: 10.1016/j.chemosphere.2022.134312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/08/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
A promising route for thorough removal of 17α-ethinyl estradiol (EE2) from aqueous media was achieved through ozonation using mesoporous silicas such SBA-15, SBA-16, MCM-41 and MCM-48 as catalysts. Comparison with aluminosilicates along with Zeta potential and particle size measurements allowed demonstrating that EE2 interaction with silanols and hydrophobic -Si-O-Si- groups are essential requirements for the catalytic activity. Acid-base interactions, if any, should have minor contribution. EE2 hydroxylation appears to be an early step in the ozonation on all catalysts, but MCM-41 showed increased activity in phenolic ring cleavage. Confrontation of HPLC-UV and UV-Vis and HPLC-UV measurements revealed highest catalytic activity for MCM-41 and to a lesser extend of MCM-48 due to their higher specific surface area and weaker acid character. These results provide valuable findings for judiciously tailoring optimum [EE2-Silica:Water] interactions for thorough oxidative degradation of endocrine disrupting compounds (EDC).
Collapse
Affiliation(s)
- Meriem Zekkari
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8, Canada; Laboratoire des Sciences, Technologie et Génie des Procédés, Université des Sciences et de La Technologie D'Oran Mohamed Boudiaf, El M'naouer, BP, 1505, Oran, Algeria
| | - Rachida Ouargli-Saker
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8, Canada; Laboratoire des Sciences, Technologie et Génie des Procédés, Université des Sciences et de La Technologie D'Oran Mohamed Boudiaf, El M'naouer, BP, 1505, Oran, Algeria
| | - Farida Boudissa
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8, Canada
| | - Asma Kawther Lachachi
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8, Canada; Laboratoire des Sciences, Technologie et Génie des Procédés, Université des Sciences et de La Technologie D'Oran Mohamed Boudiaf, El M'naouer, BP, 1505, Oran, Algeria
| | - Kawter Nor El Houda Sekkal
- Laboratoire des Sciences, Technologie et Génie des Procédés, Université des Sciences et de La Technologie D'Oran Mohamed Boudiaf, El M'naouer, BP, 1505, Oran, Algeria
| | - Rachida Tayeb
- Laboratoire des Sciences, Technologie et Génie des Procédés, Université des Sciences et de La Technologie D'Oran Mohamed Boudiaf, El M'naouer, BP, 1505, Oran, Algeria
| | - Bouhadjar Boukoussa
- Département de Génie des Matériaux, Faculté de Chimie, Université des Sciences et de La Technologie Mohamed Boudiaf, El-Mnaouer, BP, 1505, Oran, Algeria
| | - Abdelkrim Azzouz
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8, Canada; École de Technologie Supérieure, Montréal, Québec, H3C 1K3, Canada.
| |
Collapse
|
8
|
CO 2 Adsorption on the N- and P-Modified Mesoporous Silicas. NANOMATERIALS 2022; 12:nano12071224. [PMID: 35407342 PMCID: PMC9000677 DOI: 10.3390/nano12071224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023]
Abstract
SBA-15 and MCM-48 mesoporous silicas were modified with functionalized (3-aminopropyl)triethoxysilane (APTES) by using the post-synthesis method, thus introducing N- and P-containing groups to the pore surface. The structure of the newly synthesized modifiers (aldimine and aminophosphonate derivatives of (3-aminopropyl)triethoxysilane and their grafting onto the porous matrix were proved by applying multinuclear NMR and FTIR spectroscopies. The content of the grafted functional groups was determined via thermogravimetric analysis. The physicochemical properties of the adsorbent samples were studied by nitrogen physisorption and UV–Vis spectroscopy. The adsorption capacity of CO2 was measured in a dynamic CO2 adsorption regime. The modified silicas displayed an enhanced adsorption capacity compared to the initial material. The 13C NMR spectra with high-power proton decoupling proved the presence of physically captured CO2. A value of 4.60 mmol/g was achieved for the MCM-48 material grafted with the Schiff base residues. The total CO2 desorption was achieved at 40 °C. A slight decrease of about 5% in CO2 adsorption capacities was registered for the modified silicas in three adsorption/desorption cycles, indicating their performance stability.
Collapse
|
9
|
CO 2 Adsorption on Modified Mesoporous Silicas: The Role of the Adsorption Sites. NANOMATERIALS 2021; 11:nano11112831. [PMID: 34835596 PMCID: PMC8621056 DOI: 10.3390/nano11112831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023]
Abstract
The post-synthesis procedure for cyclic amine (morpholine and 1-methylpiperazine) modified mesoporous MCM-48 and SBA-15 silicas was developed. The procedure for preparation of the modified mesoporous materials does not affect the structural characteristics of the initial mesoporous silicas strongly. The initial and modified materials were characterized by XRD, N2 physisorption, thermal analysis, and solid-state NMR. The CO2 adsorption of the obtained materials was tested under dynamic and equilibrium conditions. The NMR data revealed the formation of different CO2 adsorbed forms. The materials exhibited high CO2 absorption capacity lying above the benchmark value of 2 mmol/g and stretching out to the outstanding 4.4 mmol/g in the case of 1-methylpiperazin modified MCM-48. The materials are reusable, and their CO2 adsorption capacities are slightly lower in three adsorption/desorption cycles.
Collapse
|
10
|
Hachemaoui M, Boukoussa B, Ismail I, Mokhtar A, Taha I, Iqbal J, Hacini S, Bengueddach A, Hamacha R. CuNPs-loaded amines-functionalized-SBA-15 as effective catalysts for catalytic reduction of cationic and anionic dyes. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126729] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Boukoussa B, Mokhtar A, El Guerdaoui A, Hachemaoui M, Ouachtak H, Abdelkrim S, Addi AA, Babou S, Boudina B, Bengueddach A, Hamacha R. Adsorption behavior of cationic dye on mesoporous silica SBA-15 carried by calcium alginate beads: Experimental and molecular dynamics study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115976] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Sai Bhargava Reddy M, Ponnamma D, Sadasivuni KK, Kumar B, Abdullah AM. Carbon dioxide adsorption based on porous materials. RSC Adv 2021; 11:12658-12681. [PMID: 35423803 PMCID: PMC8697313 DOI: 10.1039/d0ra10902a] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/11/2021] [Indexed: 12/22/2022] Open
Abstract
Global warming due to the high concentration of anthropogenic CO2 in the atmosphere is considered one of the world's leading challenges in the 21st century as it leads to severe consequences such as climate change, extreme weather events, ocean warming, sea-level rise, declining Arctic sea ice, and the acidification of oceans. This encouraged advancing technologies that sequester carbon dioxide from the atmosphere or capture those emitted before entering the carbon cycle. Recently, CO2 capture, utilizing porous materials was established as a very favorable route, which has drawn extreme interest from scientists and engineers due to their advantages over the absorption approach. In this review, we summarize developments in porous adsorbents for CO2 capture with emphasis on recent studies. Highly efficient porous adsorption materials including metal-organic frameworks (MOFs), zeolites, mesoporous silica, clay, porous carbons, porous organic polymers (POP), and metal oxides (MO) are discussed. Besides, advanced strategies employed to increase the performance of CO2 adsorption capacity to overcome their drawbacks have been discoursed.
Collapse
Affiliation(s)
- M Sai Bhargava Reddy
- Center for Nanoscience and Technology, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad Telangana State 500085 India
| | | | | | - Bijandra Kumar
- Department of Mathematics, Computer Science and Engineering Technology, Elizabeth City State University Elizabeth City NC 27909 USA
| | | |
Collapse
|
13
|
Cherifi Z, Boukoussa B, Mokhtar A, Hachemaoui M, Zeggai FZ, Zaoui A, Bachari K, Meghabar R. Preparation of new nanocomposite poly(GDMA)/mesoporous silica and its adsorption behavior towards cationic dye. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104611] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Massaro M, Campisciano V, Viseras Iborra C, Liotta LF, Sánchez-Polo M, Riela S, Gruttadauria M. New Mussel Inspired Polydopamine-Like Silica-Based Material for Dye Adsorption. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1416. [PMID: 32698446 PMCID: PMC7408388 DOI: 10.3390/nano10071416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
A straightforward and economic procedure has been developed for the synthesis of a new polydopamine-like silica-based material that has been obtained by oxidation of catechol with KIO4 followed by reaction with 3-aminopropyltrimethoxysilane. All techniques adopted for characterization showed that the obtained material is rich in different functional groups and the morphological analyses revealed dimensions in the nanometric range. The hybrid material has been characterized by several techniques showing its polydopamine-like nature, and preliminary observations for dye adsorption have been reported.
Collapse
Affiliation(s)
- Marina Massaro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (M.M.); (V.C.)
| | - Vincenzo Campisciano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (M.M.); (V.C.)
| | - César Viseras Iborra
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 s/n Granada, Spain;
- Andalusian Institute of Earth Sciences, CSIC-UGR, Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain
| | - Leonarda F. Liotta
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, Via Ugo La Malfa 153, 90146 Palermo, Italy;
| | - Manuel Sánchez-Polo
- Department of Inorganic Chemistry, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain;
| | - Serena Riela
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (M.M.); (V.C.)
| | - Michelangelo Gruttadauria
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (M.M.); (V.C.)
| |
Collapse
|
15
|
Efficient multicomponent synthesis of 2-aminopyridines catalysed by basic mesoporous materials. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04144-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
He T, Xiao Y, Zhao Q, Zhou M, He G. Ultramicroporous Metal–Organic Framework Qc-5-Cu for Highly Selective Adsorption of CO2 from C2H4 Stream. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tengjiao He
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China
- State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Yonghou Xiao
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China
- State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Qidong Zhao
- State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Mengxue Zhou
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China
- State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Gaohong He
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China
- State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin 124221, China
- Supercomputing Center, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|