1
|
Arzine A, Abchir O, Chalkha M, Chebbac K, Rhazi Y, Barghady N, Yamari I, El Moussaoui A, Nakkabi A, Akhazzane M, Bakhouch M, Chtita S, El Yazidi M. Design, synthesis, In-vitro, In-silico and DFT studies of novel functionalized isoxazoles as antibacterial and antioxidant agents. Comput Biol Chem 2024; 108:107993. [PMID: 38071761 DOI: 10.1016/j.compbiolchem.2023.107993] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 01/22/2024]
Abstract
A series of new isoxazolederivatives incorporating the sulfonate ester function has been synthesized from 2-benzylidenebenzofuran-3(2 H)-one, known as aurone. The synthesis of the target compounds was carried out following an efficient methodology that allows access to the desired products in a reproducible way and with good yield. The structures of the synthesized compounds were established using NMR (1H and 13C) spectroscopy and mass spectrometry. A theoretical study was performed to optimize the geometrical structures and to calculate the structural and electronic parameters of the synthesized compounds. The calculations were also carried out to understand the influence and the effect of substitutions on the chemical reactivity of the studied compounds. The synthesized isoxazoles were screened for their antioxidant and antibacterial activities. The findings demonstrate that the studied compounds exhibit good to moderate antibacterial activity against the tested bacteria (Staphylococcus aureus, Bacillus subtilis, and Escherichia coli). Moreover, a number of the tested isoxazole derivatives exhibit high effectiveness against DPPH free radicals. Besides that, molecular docking studies were carried out to predict binding affinity and identify the most likely binding interactions between the active molecules and the target microorganisms' proteins. A 100 ns molecular dynamics study was then conducted to examine the dynamic behavior and stability of the highly potent isoxazole 4e in complex with the target bacterial proteins. Finally, the ADMET analyses suggest that all the synthesized isoxazoles have good pharmacokinetic profiles and non-toxicity and non-carcinogenicity in biological systems.
Collapse
Affiliation(s)
- Aziz Arzine
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas, Fez 30000, Morocco
| | - Oussama Abchir
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca B.P 7955, Morocco
| | - Mohammed Chalkha
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas, Fez 30000, Morocco.
| | - Khalid Chebbac
- Laboratory of Biotechnology Conservation and Valorisation of Natural Resources, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdallah University, Fez 30000, Morocco
| | - Yassine Rhazi
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas, Fez 30000, Morocco
| | - Najoua Barghady
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca B.P 7955, Morocco
| | - Imane Yamari
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca B.P 7955, Morocco
| | - Abdelfattah El Moussaoui
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Asmae Nakkabi
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas, Fez 30000, Morocco
| | - Mohamed Akhazzane
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas, Fez 30000, Morocco; Cité de l'innovation, Université Sidi Mohamed Ben Abdellah, Route Immouzer, P.O. Box 2626, Fez 30000, Morocco
| | - Mohamed Bakhouch
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas, Fez 30000, Morocco; Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Sciences, Chouaïb Doukkali University, P.O. Box 24, El Jadida 24000, Morocco
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca B.P 7955, Morocco
| | - Mohamed El Yazidi
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas, Fez 30000, Morocco.
| |
Collapse
|
2
|
Ponkarpagam S, Vennila KN, Elango KP. A closer look at the mode of binding of drug pemetrexed with CT-DNA. J Biomol Struct Dyn 2023; 41:3553-3561. [PMID: 35297322 DOI: 10.1080/07391102.2022.2051747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/05/2022] [Indexed: 10/18/2022]
Abstract
The interaction of antifolate drug Pemetrexed (PEM) with CT-DNA has been studied by UV-Vis, fluorescence and circular dichroism spectroscopic techniques. The results of these spectroscopic studies in combination with viscosity measurements, voltammetric and KI quenching studies suggested a less-common mode of binding of PEM with CT-DNA i.e. neither intercalation nor groove binding. Thus, metadynamic (MD) simulation is utilized to decipher the nature of binding of PEM with CT-DNA. Analysis of free energy surfaces obtained in MD simulation, reveals that PEM binds to the 3'- and 5'-ends of the DNA molecule. The thermodynamics of the interaction has been investigated by isothermal titration calorimetric experiment. The analysis shows that PEM binds with CT-DNA strongly with a binding constant of 2.6x109 M-1 and the process is found to be spontaneous (ΔG - 12.84 kcal/mol). Further, positive values of enthalpy (ΔH 6.09 cal/mol) and entropy (ΔS 43.1 cal/mol) changes indicate that the binding is an enthalpically unfavourable and, instead, entropically driven process.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S Ponkarpagam
- Department of Chemistry, Gandhigram Rural Institute, (Deemed to be University), Gandhigram, India
| | - K N Vennila
- Department of Chemistry, Gandhigram Rural Institute, (Deemed to be University), Gandhigram, India
| | - Kuppanagounder P Elango
- Department of Chemistry, Gandhigram Rural Institute, (Deemed to be University), Gandhigram, India
| |
Collapse
|
4
|
Liao XZ, Liu M, Dong L. An Approach to Vinylidenequinazolines from Isoxazoles and Dioxazolones. J Org Chem 2022; 87:3741-3750. [PMID: 35089015 DOI: 10.1021/acs.joc.1c02746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An effective strategy for the synthesis of vinylidenequinazolines has been efficaciously developed, which involves Rh(III)-assisted C-H amidation followed by ring-opening and intramolecular annulation. This protocol shows a straightforward way to construct diverse quinazoline units with a wide functional group compatibility from readily available isoxazoles and dioxazolones.
Collapse
Affiliation(s)
- Xian-Zhang Liao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Man Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Ramotowska S, Ciesielska A, Makowski M. What Can Electrochemical Methods Offer in Determining DNA-Drug Interactions? Molecules 2021; 26:3478. [PMID: 34200473 PMCID: PMC8201389 DOI: 10.3390/molecules26113478] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
The interactions of compounds with DNA have been studied since the recognition of the role of nucleic acid in organisms. The design of molecules which specifically interact with DNA sequences allows for the control of the gene expression. Determining the type and strength of such interaction is an indispensable element of pharmaceutical studies. Cognition of the therapeutic action mechanisms is particularly important for designing new drugs. Owing to their sensitivity, simplicity, and low costs, electrochemical methods are increasingly used for this type of research. Compared to other techniques, they require a small number of samples and are characterized by a high reliability. These methods can provide information about the type of interaction and the binding strength, as well as the damage caused by biologically active molecules targeting the cellular DNA. This review paper summarizes the various electrochemical approaches used for the study of the interactions between pharmaceuticals and DNA. The main focus is on the papers from the last decade, with particular attention on the voltammetric techniques. The most preferred experimental approaches, the electrode materials and the new methods of modification are presented. The data on the detection ranges, the binding modes and the binding constant values of pharmaceuticals are summarized. Both the importance of the presented research and the importance of future prospects are discussed.
Collapse
Affiliation(s)
| | | | - Mariusz Makowski
- Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (S.R.); (A.C.)
| |
Collapse
|
6
|
Idris MA, Lee S. One-Pot Synthesis of Pentafluorophenyl Sulfonic Esters via Copper-Catalyzed Reaction of Aryl Diazonium Salts, DABSO, and Pentafluorophenol. Org Lett 2021; 23:4516-4520. [PMID: 33978431 DOI: 10.1021/acs.orglett.1c01056] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pentafluorophenyl (PFP) sulfonic esters were synthesized via a copper-catalyzed one-pot multicomponent reaction of aryl diazonium tetrafluoroborate, DABSO (DABCO·(SO2)2), and pentafluorophenol. The reaction system provided the desired pentafluorophenyl sulfonic esters in good yields and exhibited excellent functional group tolerance. In addition, the generated PFP sulfonic esters were successfully applied in Sonogashira, Suzuki, Chan-Evans-Lam, and decarboxylative coupling reactions.
Collapse
Affiliation(s)
- Muhammad Aliyu Idris
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|