1
|
Ramesh G, Daravath S, Babu KJ, Dharavath R, Ranjan A, Ayodhya D, Shivaraj. Design, Synthesis, Structural Investigation and Photo Induced Biological Investigations of Co(II), Ni(II) and Cu(II) Complexes Derived from N,O Donor Schiff Bases. J Fluoresc 2025; 35:2087-2108. [PMID: 38502407 DOI: 10.1007/s10895-024-03657-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
A series of chelated metal complexes, [Co(LI)2] (1), [Ni(LI)2] (2), [Cu(LI)2] (3) [Co(LII)2] (4), [Ni(LII)2] (5) and [Cu(LII)2] (6) were designed and synthesized from newly synthesized Schiff bases, LI = 2-((E)-(5-(4-fluorophenyl)isoxazol-3-ylimino)methyl)-5-methylphenol and LII = 2-((E)-(5-(4-fluorophenyl)isoxazol-3-ylimino)methyl)-4-chlorophenol. The synthesized compounds were characterized by elemental analysis, nuclear magnetic resonance spectroscopy (NMR), electronic spectroscopy (UV-Vis), infrared spectroscopy (FT-IR), magnetic susceptibility (µeff), electron spin resonance spectroscopy (ESR), Thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and powder X-ray diffraction analysis (P-XRD). The spectral investigations have been clearly suggested 1:2 (metal: ligand) stoichiometric complexes with square planar geometrical arrangement around the metal ion. The thermal gravimmetric analysis (TGA) of these complexes indicates greater thermal stability and various steps involved in thermal decomposition of metal complexes. The binding ability between these metal complexes and calf thymus DNA (CT-DNA) was investigated by UV-Vis, fluorescence spectroscopy and viscometric experiments, which disclosed that, the complexes interacted to CT-DNA via an intercalation binding mode. The cleavage property of metal complexes against pBR322 DNA has been explored by gel electrophoresis technique mediated by UV-illumination and H2O2, showed momentous cleavage activity. Antioxidant activity of all complexes was determined by DPPH free radical scavenging experiment and showed prominent antioxidant activity. Further, the antibacterial and antifungal activities of all compounds were screened against bacterial and fungal strains via in-vitro disc diffusion method. These studies revealed that the complexes showed comparatively more antimicrobial activity than free ligands against tested microbial strains.
Collapse
Affiliation(s)
- Gali Ramesh
- Department of Chemistry, Osmania University, Hyderabad, Telangana, 500007, India
| | - Sreenu Daravath
- Department of Chemistry, Osmania University, Hyderabad, Telangana, 500007, India
| | - K Jagadesh Babu
- Department of Chemistry, Osmania University, Hyderabad, Telangana, 500007, India
- Department of Chemistry, Kakathiya Govt.College, Hanmakonda, Warangal (Dist), Telangana, 506001, India
| | - Ravinder Dharavath
- Department of Chemistry, Osmania University, Hyderabad, Telangana, 500007, India
- Department of Chemistry, SRT Campus, Badshahitaul HNB Garhwal University, Tehri Garhwal, Uttarakhand, 249199, India
| | - Amit Ranjan
- Department of Applied Sciences and Humanities, Purnea College of Engineering (PCE), Bihar Engineering University Patna, DSTTE, Patna, Purnea, 854303, India
| | - Dasari Ayodhya
- Department of Chemistry, Osmania University, Hyderabad, Telangana, 500007, India.
- Chemical Group, Intellectual Property India, Patent Office, Chennai, Tamil Nadu, 600032, India.
| | - Shivaraj
- Department of Chemistry, Osmania University, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
2
|
Moreira JM, Vieira SDS, Correia GDD, de Almeida LN, Finoto S, Brandl CA, Msumange AA, Galvão F, Pires de Oliveira KM, Caneppele Paveglio G, da Silva MM, Tirloni B, de Carvalho C, Roman D. Synthesis and Characterization of Novel Hydrazone Complexes: Exploring DNA/BSA Binding and Antimicrobial Potential. ACS OMEGA 2025; 10:7428-7440. [PMID: 40028106 PMCID: PMC11866212 DOI: 10.1021/acsomega.5c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025]
Abstract
Research involving coordination chemistry with Schiff base hydrazones finds applications in various areas, particularly in bioinorganic chemistry and biomedicine. This work aims to contribute to this field by employing the ligand (E)-2-((2-(benzothiazol-2-yl)hydrazone)methyl)phenol (H2L), synthesized via a condensation reaction with salicylic aldehyde. The ligand was isolated, characterized, and subsequently complexed with nickel(II) chloride and copper(II) nitrate, yielding three new crystalline complexes: [Ni(HL)2] (1), [Ni2(L)2(Py)2(EtOH)]·DMF·0.5H2O (2), and [Cu3(L#)2(DMF)2] (3) (where Py = pyridine). The metal complexes were structurally characterized using IR, UV-vis, TGA-DSC, and SCXRD techniques. These analyses confirmed the coordination of the ligand to the metal center via nitrogen and oxygen donor atoms, establishing the formation of mono-, bi-, and trinuclear complexes, respectively. DNA interaction studies were performed through spectroscopic titration and viscosity measurements, indicating that the complexes interact via an intercalative mode, with the interaction order being 3 > 2> 1. Partition coefficient analysis revealed that complexes 1 and 3 have a greater tendency to partition into the organic phase, suggesting their potential to cross lipid membranes, while complex 2 and the ligand are more hydrophilic. Fluorescence-based BSA binding studies demonstrated interactions between the complexes and the biomolecule, following the same order as observed in the DNA interaction. Biological tests showed that the ligand lacked antimicrobial and antiyeast activity, while the metal complexes are biologically active. Notably, the copper complex displayed the strongest antibacterial effect, likely due to copper's essential biological role.
Collapse
Affiliation(s)
- Jeniffer Meyer Moreira
- Quality
Control and Thermal Analysis Laboratory, Federal University of Grande Dourados, Dourados, State of Mato Grosso do Sul 79804-970, Brazil
| | - Sara dos Santos
Félix Vieira
- Molecular
Synthesis and Modification Laboratory, Federal
University of Grande Dourados, Dourados, State of Mato Grosso do Sul 79804-970, Brazil
| | - Gabriel de Deus Correia
- Molecular
Synthesis and Modification Laboratory, Federal
University of Grande Dourados, Dourados, State of Mato Grosso do Sul 79804-970, Brazil
| | - Leandro Nascimento de Almeida
- Molecular
Synthesis and Modification Laboratory, Federal
University of Grande Dourados, Dourados, State of Mato Grosso do Sul 79804-970, Brazil
| | - Simone Finoto
- Quality
Control and Thermal Analysis Laboratory, Federal University of Grande Dourados, Dourados, State of Mato Grosso do Sul 79804-970, Brazil
| | - Cândida Alíssia Brandl
- Department
of Chemistry, Federal University of Santa
Maria, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Aujenus Albert Msumange
- Quality
Control and Thermal Analysis Laboratory, Federal University of Grande Dourados, Dourados, State of Mato Grosso do Sul 79804-970, Brazil
| | - Fernanda Galvão
- Federal
University of Grande Dourados, Dourados, Mato Grosso do Sul 79804-970, Brazil
| | | | - Guilherme Caneppele Paveglio
- Federal
University of Grande Dourados, Dourados, Mato Grosso do Sul 79804-970, Brazil
- Hydraulics
and Environmental Sanitation Laboratory, State University of Mato Grosso do Sul, Dourados, Mato Grosso do Sul 79804-970, Brazil
| | - Monize Martins da Silva
- Federal
University of Grande Dourados, Dourados, Mato Grosso do Sul 79804-970, Brazil
- State
University
of Amapá, Macapa, Amapá 68900-070, Brazil
| | - Bárbara Tirloni
- Department
of Chemistry, Federal University of Santa
Maria, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Cláudio
Teodoro de Carvalho
- Quality
Control and Thermal Analysis Laboratory, Federal University of Grande Dourados, Dourados, State of Mato Grosso do Sul 79804-970, Brazil
| | - Daiane Roman
- Molecular
Synthesis and Modification Laboratory, Federal
University of Grande Dourados, Dourados, State of Mato Grosso do Sul 79804-970, Brazil
| |
Collapse
|
3
|
Pradhan S, Mishra DK, Gurung P, Chettri A, Singha UK, Dutta T, Sinha B. An In-Silico Drug Designing Approach Attempted on a Newly Synthesized Co(II) Complex along with its Other Biological Activities: A Combined Investigation of both Experimental and Theoretical Aspects. J Fluoresc 2024:10.1007/s10895-024-03852-0. [PMID: 39031237 DOI: 10.1007/s10895-024-03852-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/15/2024] [Indexed: 07/22/2024]
Abstract
A new Co (II) complex incorporating a novel Schiff base ligand acquired from the condensation of 3,3'-Methylenedianiline and 2-Hydroxy-5-bromobenzaldehyde was synthesized and characterized. The synthesized complex was air and moisture stable, monomeric, and non-electrolytic in nature. Based on physical and spectral studies, tetrahedral conformation was ascribed to the synthesized Co (II) complex.Density Functional Theory (DFT) was used to analysis different electronic parameters of the optimized structure of Co(II) complex to reveal its stability.Using different analytic and spectroscopic techniques, the new Co (II) complex was established to interact with DNA quite effectively and works as an efficient metallo intercalators. The synthesized complex was discovered to cleave DNA significantly, so it can be inferred that the complex will inhibit the growth of pathogens. Molecular docking was performed to check the binding affinity of the cobalt complex with different receptors, responsible for different diseases. Proteins like progesterone receptor and induced myeloid leukemia cell differentiation Mcl-1 protein showed high binding affinity with this complex, and hence the complex might have some implications for inhibition of progesterone hormones in biological systems. Biological activity of the Co (II) complex was also predicted through computational analysis with SwissADME.Using strains of Escherichia coli, Klebsiella pneumoniae, Bacillus subtilis, and Staphylococcus aureus, an in vitro antibacterial activity of the ligand and Co (II) complex was carried out. This activity was further validated by a molecular docking investigation.
Collapse
Affiliation(s)
- Sudarshan Pradhan
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Dipu Kumar Mishra
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Pritika Gurung
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Anmol Chettri
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Uttam Kumar Singha
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Tanmoy Dutta
- Department of Chemistry, JIS College of Engineering, Kalyani, 741235, India
| | - Biswajit Sinha
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India.
| |
Collapse
|
4
|
Waziri I, Yusuf TL, Akintemi E, Kelani MT, Muller A. Spectroscopic, crystal structure, antimicrobial and antioxidant evaluations of new Schiff base compounds: An experimental and theoretical study. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Fatima A, Kanth SS, Sireesha B. Computational, Equilibrium, Structural, and Biological Study of the Novel 1-Formyl-4-phenyl-3-semicarbazide and Its Complexes. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222120210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
6
|
Ma X, Chen ZY, Li SY, Chen HL, Chen QL. Syntheses, crystal structures and fluorescent properties of imidazole based mixed-ligand nickle and cadmium complexes. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
7
|
Jyothi P, Sumalatha V, Rajitha D. Cobalt (II) complexes with N-methyl thio semicarbazide Schiff bases: Synthesis, Spectroscopic investigation, Cytotoxicity, DNA binding and incision, anti-bacterial and anti-fungal studies. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Sukanya SH, Venkatesh T, Aditya Rao SJ, Pandith A. An efficient p-TSA catalyzed synthesis of some new substituted-(5-hydroxy-3-phenylisoxazol-4-yl)-1,3-dimethyl-1H-chromeno[2,3-d]pyrimidine-2,4(3H,5H)-dione/3,3-dimethyl-2H-xanthen-1(9H)-one scaffolds and evaluation of their pharmacological and computational investigations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Microwave-assisted synthesis and evaluation of their antiproliferative, antimicrobial, activities and DNA Binding studies of (3-Methyl-7H-furo[2,3-f]chromen-2-yl)(aryl)methanones. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02888-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Gur'eva YA, Zalevskaya OA, Shevchenko OG, Slepukhin PA, Makarov VA, Kuchin AV. Copper(ii) complexes with terpene derivatives of ethylenediamine: synthesis, and antibacterial, antifungal and antioxidant activity. RSC Adv 2022; 12:8841-8851. [PMID: 35424859 PMCID: PMC8985105 DOI: 10.1039/d2ra00223j] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/12/2022] [Indexed: 11/21/2022] Open
Abstract
The synthesis of new chiral copper(ii) complexes with terpene derivatives of ethylenediamine and the results of studying their antibacterial, antifungal and antioxidant activity in vitro are discussed. All studied copper complexes (1-4) showed significantly higher antifungal activity against the strains of C. albicans, S. salmonicolor and P. notatum compared to the activity of the clinical antifungal drug amphotericin. High antibacterial activity of copper complexes with terpene derivatives of ethylenediamine was revealed against the S. aureus (MRSA) strain, which is resistant to the reference antibiotic ciprofloxacin. Using various test systems, a comparative assessment of the antioxidant activity (AOA) of the synthesized copper complexes and the ligands was carried out. The salen-type complex 4, which has the highest AOA in the model of initiated oxidation of a substrate containing animal lipids, was superior to other copper complexes in the ability to protect erythrocytes under conditions of H2O2-induced hemolysis.
Collapse
Affiliation(s)
- Yana A Gur'eva
- Institute of Chemistry, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences 48, Pervomayskaya St. Syktyvkar 167000 Komi Republic Russian Federation
| | - Olga A Zalevskaya
- Institute of Chemistry, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences 48, Pervomayskaya St. Syktyvkar 167000 Komi Republic Russian Federation
| | - Oksana G Shevchenko
- Institute of Biology, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences 28, Kommunisticheskaya St. Syktyvkar 167982 Komi Republic Russian Federation
| | - Pavel A Slepukhin
- I.Ya. Postovskii Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences 22/20, S. Kovalevskoy St. Ekaterinburg 620108 Russian Federation
| | - Vadim A Makarov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences 33-2, Leninsky Prospekt Moscow 119071 Russian Federation
| | - Aleksandr V Kuchin
- Institute of Chemistry, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences 48, Pervomayskaya St. Syktyvkar 167000 Komi Republic Russian Federation
| |
Collapse
|
11
|
Fouad R, Shebl M, Saif M, Gamal S. Novel copper nano-complex based on tetraazamacrocyclic backbone: Template synthesis, structural elucidation, cytotoxic, DNA binding and molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Yılmaz ZK, Özdemir Ö, Aslim B, Suludere Z, Şahin E. A new bio-active asymmetric-Schiff base: synthesis and evaluation of calf thymus DNA interaction, topoisomerase IIα inhibition, in vitro antiproliferative activity, SEM analysis and molecular docking studies. J Biomol Struct Dyn 2022; 41:2804-2822. [PMID: 35179080 DOI: 10.1080/07391102.2022.2039297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this paper, the asymmetric-Schiff base 2-(4-(2-hydroxybenzylideneamino)benzylideneamino)benzoic acid (SB-2) was newly synthesized and characterized by various spectroscopic methods. The interaction of SB-2 with calf thymus DNA was investigated by UV-vis, fluorescence spectroscopy and molecular docking methods. It was determined that SB-2 effectively binds to DNA via the intercalation mode. DNA electrophoretic mobility experiments displayed that topoisomerase IIα could not cleave pBR322 plasmid DNA in the presence of SB-2, confirming that the Schiff base acts as a topo II suppressor. In the molecular docking studies, SB-2 was found to show an affinity for both the DNA-topoisomerase IIα complex and the DNA. In vitro antiproliferative activity of SB-2 was screened against HT-29 (colorectal) and HeLa (cervical) human tumor cell lines by MTT assay. SB-2 diminished the cell viability in a concentration- and incubation time-dependent manner. The ability of SB-2 to measure DNA damage in tumor cells was evaluated with cytokinesis-block micronucleus assay after incubation 24 h and 48 h. Light and scanning electron microscopy experiments of tumor cells demonstrated an incubation time-dependent increase in the proportion of apoptotic cells (nuclear condensation and apoptotic bodies) suggesting that autophagy and apoptosis play a role in the death of cells. Based on the obtained results, it may be considered that SB-2 is a candidate for DNA-targeting antitumor drug.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zehra Kübra Yılmaz
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - Özlem Özdemir
- Department of Chemistry, Faculty of Science, Gazi University, Ankara, Turkey
| | - Belma Aslim
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - Zekiye Suludere
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - Egemen Şahin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
13
|
Venkateswarlu K, Rambabu A, Shankar DS, Lakshmi PVA, Shivaraj. A Treatise on Furan Cored Schiff Base Cu(II), Ni(II) and Co(III) Complexes Accentuating Their Biological Efficacy: Synthesis, Thermal and Spectroscopic Characterization, DNA Interactions, Antioxidant and Antibacterial Activity Studies. Chem Biodivers 2022; 19:e202100686. [PMID: 35137530 DOI: 10.1002/cbdv.202100686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/14/2022] [Indexed: 02/04/2023]
Abstract
Three metal complexes [Cu(FMIMDIP)2 ] (1), [Ni(FMIMDIP)2 ] (2) and [Co(FMIMDIP)3 ] (3) where, FMIMDIP=(((furan-2-yl)methylimino)methyl)-4,6-diiodophenol, were synthesized and characterized by various spectroscopy. The analytical data revealed a square planar geometry for 1 and 2 and an octahedral geometry for 3. The kinetic and thermodynamic parameters of the thermal decomposition steps were calculated from the thermograms. The quantum chemical parameters have been calculated using HOMO-LUMO energies and reveal the stability of the complexes. The DNA interaction of 1-3 towards calf-thymus DNA was investigated by absorption titration, fluorescence spectroscopy and gel electrophoresis. All the complexes bind to DNA via intercalation mode with binding constant (Kb ) values of 4.17×103 M-1 to 5.9×104 M-1 and also effectively cleave pBR322 DNA by oxidative and photolytic techniques. The synergistic action of metal chelates with ascorbic acid induced the generation of free radicals. The antibacterial activity of 1-3 was tested against B. thuringiensis, S. pneumoniae, E. coli, and P. putida. Complex 3 has the best activity among all the complexes.
Collapse
Affiliation(s)
| | - Aveli Rambabu
- Department of Science and Humanities, St. Martin's Engineering College, Dhulapally, Hyderabad, Telangana, 500100, India
| | - Dasari Shiva Shankar
- Department of Chemistry, Osmania University, Hyderabad, Telangana, 500007, India
| | - P V Anantha Lakshmi
- Department of Chemistry, Osmania University, Hyderabad, Telangana, 500007, India
| | - Shivaraj
- Department of Chemistry, Osmania University, Hyderabad, Telangana, 500007, India
| |
Collapse
|
14
|
Daravath S, Rambabu A, Ganji N, Ramesh G, Anantha Lakshmi P, Shivaraj. Spectroscopic, quantum chemical calculations, antioxidant, anticancer, antimicrobial, DNA binding and photo physical properties of bioactive Cu(II) complexes obtained from trifluoromethoxy aniline Schiff bases. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Sethupathi M, Thulasinathan B, Sengottuvelan N, Ponnuchamy K, Perdih F, Alagarsamy A, Karthikeyan M. Macrocyclic "tet a"-Derived Cobalt(III) Complex with a N, N'-Disubstituted Hexadentate Ligand: Crystal Structure, Photonuclease Activity, and as a Photosensitizer. ACS OMEGA 2022; 7:669-682. [PMID: 35036733 PMCID: PMC8756598 DOI: 10.1021/acsomega.1c05306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
A cobalt(III) complex, [Co(L)]Cl (complex 1, where L = 1,8-[N,N-bis{(3-formyl-2-hydroxy-5-methyl)benzyl}]-1,4,8,11-tetraaza-5,5,7,12,12,14-hexamethylcyclotetradecane) with distorted octahedral geometry has been synthesized and characterized using various spectroscopic techniques. The structure of the ligand has remarkably rich hydrogen intermolecular interactions such as H···H, H···C/C···H, and H···O/O···H that vary with the presence of the metal ion, and the structure of complex 1 has Cl···H interactions; this result has been proved by Hirshfeld surface and two-dimensional (2D) fingerprint maps analyses. The complex exhibits a quasi-reversible Co(III)/Co(II) redox couple with E 1/2 = -0.76 V. Calf thymus DNA (CT DNA) binding abilities of the ligand and complex 1 were confirmed by spectroscopic and electrochemical analyses. According to absorption studies, the ligand and complex 1 bind to CT DNA via intercalative binding mode, with intrinsic binding strengths of 1.41 × 103 and 8.64 × 103 M-1, respectively. A gel electrophoresis assay shows that complex 1 promotes the pUC19 DNA cleavage under dark and light irradiation conditions. Complex 1 has superior antimicrobial activity than the ligand. The cytotoxicity of complex 1 was tested against MDA-MB-231 breast cancer cells with values of IC50 of 1.369 μg mL-1 in the dark and 0.9034 μg mL-1 after light irradiation. Besides, cell morphological studies confirmed the morphological changes with AO/EB dual staining, reactive oxygen species (ROS) staining, mitochondria staining, and Hoechst staining on MDA-MB-231 cancer cells by fluorescence microscopy. Complex 1 was found to be a potent antiproliferative agent against MDA-MB-231 cells, and it can induce mitochondrial-mediated and caspase-dependent apoptosis with activation of downregulated caspases. The biotoxicity assay of complex 1 on the development of Artemia nauplii was evaluated at an IC50 value of 200 μg mL-1 and with excellent biocompatibility.
Collapse
Affiliation(s)
- Murugan Sethupathi
- Department
of Industrial Chemistry, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | | | - Nallathambi Sengottuvelan
- Department
of Industrial Chemistry, Alagappa University, Karaikudi 630003, Tamil Nadu, India
- Department
of Chemistry (DDE), Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Kumar Ponnuchamy
- Food
Chemistry and Molecular Cancer Biology Laboratory, Department of Animal
Health and Management, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Franc Perdih
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, 1000 Ljubljana, Slovenia
| | - Arun Alagarsamy
- Department
of Microbiology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Muthusamy Karthikeyan
- Pharmacogenomics
and Computational Biology Laboratory, Department of Bioinformatics, Alagappa University, Karaikudi 630004, Tamil
Nadu, India
| |
Collapse
|
16
|
Venkateswarlu K, Anantha Lakshmi PV, Shivaraj. Synthesis, spectroscopic and thermal studies of Cu
+2
, Ni
+2
and Co
+3
complexes of Schiff base containing furan moiety. Antitumor, antioxidant, antibacterial and DNA interaction studies. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | | | - Shivaraj
- Department of Chemistry Osmania University Hyderabad Telangana India
| |
Collapse
|
17
|
Zalevskaya OA, Gur’eva YA. Recent Studies on the Antimicrobial Activity of Copper Complexes. RUSS J COORD CHEM+ 2021. [DOI: 10.1134/s1070328421120046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Zafar W, Sumrra SH, Chohan ZH. A review: Pharmacological aspects of metal based 1,2,4-triazole derived Schiff bases. Eur J Med Chem 2021; 222:113602. [PMID: 34139626 DOI: 10.1016/j.ejmech.2021.113602] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 05/06/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022]
Abstract
Clinical reports have highlighted the radical increase of antibiotic resistance. As a result, multidrug resistance has emerged as a serious threat to human health. Many organic compounds commonly used as drugs in the past, no longer have pure organic mode of action rather need bio-transformation or more activation. Bulk of research has shown that they need trace amount of metal ions incorporated within the chemistry of bioactive molecules for enhancement of their potentiality to fight aggressively against resistance. The deficiency of some metal ions can also be responsible for many diseases like growth retardation, pernicious anemia and heart diseases in infants. To overcome these problems, there is a need to introduce novel strategies which have new mechanism of action along with significant spectrum of biological activity, enhanced safety and efficacy. Bioinorganic compounds have played imperative role in developing the new strategy in the form of "Metal Based Drugs". In current years there have been momentous rise of interest in the application of metal based Schiff base compounds to treat various diseases which are difficult to be treated with conventional methodologies. The unique properties of metal chelates acting as an intermediate between conventional organic and inorganic compounds provided innovative opportunities in the field of pharmaceutical chemistry. In this review, we have exclusively focused on the search of metal based 1,2,4-triazole derived Schiff base compounds (synthesized, reported and reviewed in the past ten years) that possess various biological activities such as antifungal, antibacterial, antioxidant, antidiabetic, anthelmintic, anticancer, antiproliferative, cytotoxic and DNA-intercalation activity.
Collapse
Affiliation(s)
- Wardha Zafar
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| | - Sajjad H Sumrra
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan.
| | - Zahid H Chohan
- Department of Chemistry, Institute of Southern Punjab, Multan, Pakistan
| |
Collapse
|
19
|
Venkateswarlu K, Daravath S, Ramesh G, Lakshmi PVA, Shivaraj. Investigation of DNA binding and bioactivities of furan cored Schiff base Cu (II), Ni (II), and Co (III) complexes: Synthesis, characterization and spectroscopic properties. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | | | - Gali Ramesh
- Department of Chemistry Osmania University Hyderabad India
| | | | - Shivaraj
- Department of Chemistry Osmania University Hyderabad India
| |
Collapse
|
20
|
Microwave-assisted synthesis of (3,5-disubstituted isoxazole)-linked benzimidazolone derivatives: DFT calculations and biological activities. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02764-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Ganji N, Daravath S, Rambabu A, Venkateswarlu K, Shiva Shankar D, Shivaraj. Exploration of DNA interaction, antimicrobial and antioxidant studies on binary transition metal complexes with isoxazole Schiff bases: Preparation and spectral characterization. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Sumrra SH, Habiba U, Zafar W, Imran M, Chohan ZH. A review on the efficacy and medicinal applications of metal-based triazole derivatives. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1839751] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Umme Habiba
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | - Wardha Zafar
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Zahid Hussain Chohan
- Department of Chemistry, University College of Management and Sciences, Khanewal, Pakistan
| |
Collapse
|
23
|
Gordon AT, Abosede OO, Ntsimango S, Vuuren SV, Hosten EC, Ogunlaja AS. Synthesis, characterization, molecular docking and antimicrobial activity of copper(II) complexes of metronidazole and 1,10 phenanthroline. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119744] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
An Investigation on DNA Binding, Cleavage and Antimicrobial Properties of Mononuclear Co(II), Ni(II) and Cu(II) Complexes Derived from N, O Donor Schiff Bases. J Fluoresc 2020; 30:1397-1410. [DOI: 10.1007/s10895-020-02614-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022]
|
25
|
Buldurun K, Turan N, Bursal E, Aras A, Mantarcı A, Çolak N, Türkan F, Gülçin İ. Synthesis, characterization, powder X-ray diffraction analysis, thermal stability, antioxidant properties and enzyme inhibitions of M(II)-Schiff base ligand complexes. J Biomol Struct Dyn 2020; 39:6480-6487. [DOI: 10.1080/07391102.2020.1802340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kenan Buldurun
- Department of Chemistry, Faculty of Arts and Sciences, Muş Alparslan University, Muş, Turkey
| | - Nevin Turan
- Department of Chemistry, Faculty of Arts and Sciences, Muş Alparslan University, Muş, Turkey
| | - Ercan Bursal
- Department of Nursing, Faculty of Health, Muş Alparslan University, Muş, Turkey
| | - Abdulmelik Aras
- Department of Biochemistry, Faculty of Arts and Sciences, Igdır University, Igdır, Turkey
| | - Asim Mantarcı
- Department of Physics, Faculty of Arts and Sciences, Muş Alparslan University, Muş, Turkey
| | - Naki Çolak
- Department of Chemistry, Faculty of Arts and Sciences, Hitit University, Çorum, Turkey
| | - Fikret Türkan
- Health Services Vocational School, Igdır University, Igdır, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
26
|
Warad I, Suboh H, Al-Zaqri N, Alsalme A, Alharthi FA, Aljohani MM, Zarrouk A. Synthesis and physicochemical, DFT, thermal and DNA-binding analysis of a new pentadentate N 3S 2 Schiff base ligand and its [CuN 3S 2] 2+ complexes. RSC Adv 2020; 10:21806-21821. [PMID: 35516643 PMCID: PMC9054559 DOI: 10.1039/d0ra04323k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/29/2020] [Indexed: 11/21/2022] Open
Abstract
A new N3S2 pentadentate Schiff base ligand derived from 5-bromothiophene-2-carbaldehyde, (E)-N1-((5-bromothiophen-2-yl)methylene)-N2-(2-((E)-((5-bromothiophen-2-yl)-methylene amino) ethyl ethane-1,2-diamine, is prepared. The ligand and its complexes are subjected to extensive physical and theoretical analyses and the results are consistent with their predicted compositions. Dicationic Cu(ii) complexes ([CuN3S2]X2) with a coordination number of 5 are proposed on the basis of the spectral data with N3S2 serving as a pentadentate ligand. The prepared complexes display a square pyramidal geometry around the Cu(ii) center. TG shows different thermal behavior for the N3S2 ligand and its complexes. Solvatochromism of the complexes is promoted by the polarity of the solvent used. A one-electron transfer Cu(ii)/Cu(i) reversible redox reaction is promoted by CV. SEM and EDS of the free ligand and its complexes support the morphology and composition changes observed upon the complexation of Cu(ii). As an outstanding goal to develop anticancer new metal chemotherapy, preliminary studies of the binding of the desired complexes with DNA were carried out, as it is through judging the strength of interactions that a future drug can be designed and synthesized. The viscosity and absorption results obtained for complex 1 indicated its enhanced CT-DNA binding properties as compared to those of complex 2 with Kb values of 3.2 × 105 and 2.5 × 105 M−1, respectively. A new N3S2 pentadentate Schiff base ligand derived from 5-bromothiophene-2-carbaldehyde, (E)-N1-((5-bromothiophen-2-yl)methylene)-N2-(2-((E)-((5-bromothiophen-2-yl)-methylene amino) ethyl ethane-1,2-diamine, is prepared.![]()
Collapse
Affiliation(s)
- Ismail Warad
- Department of Chemistry and Earth Sciences, Qatar University PO Box 2713 Doha Qatar
| | - Hadeel Suboh
- Department of Chemistry, Science College, An-Najah National University P.O. Box 7 Nablus Palestine
| | - Nabil Al-Zaqri
- Department of Chemistry, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia.,Department of Chemistry, College of Science, Ibb University P.O. Box 70270 Ibb Yemen
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Fahad A Alharthi
- Department of Chemistry, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Meshari M Aljohani
- Department of Chemistry, Faculty of Science, University of Tabuk Tabuk-71491 Saudi Arabia
| | - Abdelkader Zarrouk
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University Av. Ibn Battouta, Box 1014 Agdal-Rabat Morocco
| |
Collapse
|
27
|
Jyothi N, Ganji N, Daravath S, Shivaraj. Mononuclear cobalt(II), nickel(II) and copper(II) complexes: Synthesis, spectral characterization and interaction study with nucleotide by in vitro biochemical analysis. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127799] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Akl MA, El-gharkawy ESR, El-mahdy NA, El-Sheikh SM, Sheta SM. A novel nano copper complex: potentiometry, DFT and application as a cancer prostatic biomarker for the ultrasensitive detection of human PSA. Dalton Trans 2020; 49:15769-15778. [DOI: 10.1039/d0dt03318a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel analytical approach for cancer prostatic biomarker by PSA detection using nano-Cu(II)-complex.
Collapse
Affiliation(s)
- Magda A. Akl
- Chemistry Department
- Faculty of Science
- Mansoura University
- Mansoura
- Egypt
| | | | - Nora A. El-mahdy
- Chemistry Department
- Faculty of Science
- Mansoura University
- Mansoura
- Egypt
| | - Said M. El-Sheikh
- Nanomaterials and Nanotechnology Department
- Central Metallurgical R & D Institute
- Cairo
- Egypt
| | - Sheta M. Sheta
- Inorganic Chemistry Department
- National Research Centre
- Egypt
| |
Collapse
|