1
|
Fiore C, Lekhan A, Bordignon S, Chierotti MR, Gobetto R, Grepioni F, Turner RJ, Braga D. Mechanochemical Preparation, Solid-State Characterization, and Antimicrobial Performance of Copper and Silver Nitrate Coordination Polymers with L- and DL-Arginine and Histidine. Int J Mol Sci 2023; 24:ijms24065180. [PMID: 36982258 PMCID: PMC10049651 DOI: 10.3390/ijms24065180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/15/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
The antimicrobial activity of the novel coordination polymers obtained by co-crystallizing the amino acids arginine or histidine, as both enantiopure L and racemic DL forms, with the salts Cu(NO3)2 and AgNO3 has been investigated to explore the effect of chirality in the cases of enantiopure and racemic forms. The compounds [Cu·AA·(NO3)2]CPs and [Ag·AA·NO3]CPs (AA = L-Arg, DL-Arg, L-His, DL-His) were prepared by mechanochemical, slurry, and solution methods and characterized by X-ray single-crystal and powder diffraction in the cases of the copper coordination polymers, and by powder diffraction and by solid-state NMR spectroscopy in the cases of the silver compounds. The two pairs of coordination polymers, [Cu·L-Arg·(NO3)2·H2O]CP and [Cu·DL-Arg·(NO3)2·H2O]CP, and [Cu·L-Hys·(NO3)2·H2O]CP and [Cu·DL-His·(NO3)2·H2O]CP, have been shown to be isostructural in spite of the different chirality of the amino acid ligands. A similar structural analogy could be established for the silver complexes on the basis of SSNMR. The activity against the bacterial pathogens Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus was assessed by carrying out disk diffusion assays on lysogeny agar media showing that, while there is no significant effect arising from the use of enantiopure or chiral amino acids, the coordination polymers exert an appreciable antimicrobial activity comparable, when not superior, to that of the metal salts alone.
Collapse
Affiliation(s)
- Cecilia Fiore
- Dipartimento di Chimica “Giacomo Ciamician”, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Andrii Lekhan
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Simone Bordignon
- Dipartimento di Chimica and NIS Centre, University of Torino, Via P. Giuria, 7, 10125 Torino, Italy
| | - Michele R. Chierotti
- Dipartimento di Chimica and NIS Centre, University of Torino, Via P. Giuria, 7, 10125 Torino, Italy
| | - Roberto Gobetto
- Dipartimento di Chimica and NIS Centre, University of Torino, Via P. Giuria, 7, 10125 Torino, Italy
| | - Fabrizia Grepioni
- Dipartimento di Chimica “Giacomo Ciamician”, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Raymond J. Turner
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
- Correspondence: (R.J.T.); (D.B.)
| | - Dario Braga
- Dipartimento di Chimica “Giacomo Ciamician”, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
- Correspondence: (R.J.T.); (D.B.)
| |
Collapse
|
2
|
Gungor O, Kose M. The biguanide-sulfonamide derivatives: synthesis, characterization and investigation of anticholinesterase inhibitory, antioxidant and DNA/BSA binding properties. J Biomol Struct Dyn 2023; 41:14952-14967. [PMID: 36858484 DOI: 10.1080/07391102.2023.2184637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/19/2023] [Indexed: 03/03/2023]
Abstract
A number of new biguanidine-sulfonamide derivatives (1-16) were synthesized and their structures were characterized by spectroscopic and analytical methods. Crystal structures of the compounds 1, 4, 8, 10 and 14 were determined by single crystal X-ray diffraction studies. X-ray crystallographic data showed the π-electron delocalization through the biguanide units. The AChE and BChE cholinesterase inhibitor, DPPH antioxidant and DNA/BSA binding properties of the synthesized compounds were evaluated. Results of cholinesterase inhibitory properties have shown that the compounds containing electron-withdrawing (-F, -Cl) groups have higher AChE/BChE inhibitory and antioxidant activities. Compound 3 showed higher BChE inhibitory activity than tacrine with IC50 value of 28.4 µM. The compounds interact with DNA via minor groove binding mode. The compounds with a naphthyl group in its structure strongly binds with DNA/BSA biomolecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ozge Gungor
- Chemistry Department, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Muhammet Kose
- Chemistry Department, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| |
Collapse
|
3
|
Lanthanide (III) complexes (Ln = Er and Yb) based on polypyridyl ligand: Synthesis, crystal structure, DNA-binding activity and interaction with human serum protein in vitro. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Rusanov DA, Zou J, Babak MV. Biological Properties of Transition Metal Complexes with Metformin and Its Analogues. Pharmaceuticals (Basel) 2022; 15:ph15040453. [PMID: 35455450 PMCID: PMC9031419 DOI: 10.3390/ph15040453] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
Metformin is a widely prescribed medication for the treatment and management of type 2 diabetes. It belongs to a class of biguanides, which are characterized by a wide range of diverse biological properties, including anticancer, antimicrobial, antimalarial, cardioprotective and other activities. It is known that biguanides serve as excellent N-donor bidentate ligands and readily form complexes with virtually all transition metals. Recent evidence suggests that the mechanism of action of metformin and its analogues is linked to their metal-binding properties. These findings prompted us to summarize the existing data on the synthetic strategies and biological properties of various metal complexes with metformin and its analogues. We demonstrated that coordination of biologically active biguanides to various metal centers often resulted in an improved pharmacological profile, including reduced drug resistance as well as a wider spectrum of activity. In addition, coordination to the redox-active metal centers, such as Au(III), allowed for various activatable strategies, leading to the selective activation of the prodrugs and reduced off-target toxicity.
Collapse
Affiliation(s)
- Daniil A. Rusanov
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China; (D.A.R.); (J.Z.)
- Laboratory of Medicinal Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Avenue 47, 119991 Moscow, Russia
| | - Jiaying Zou
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China; (D.A.R.); (J.Z.)
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Maria V. Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China; (D.A.R.); (J.Z.)
- Correspondence:
| |
Collapse
|
5
|
Zalevskaya OA, Gur’eva YA. Recent Studies on the Antimicrobial Activity of Copper Complexes. RUSS J COORD CHEM+ 2021. [DOI: 10.1134/s1070328421120046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Güngör SA, Köse M, Tümer M, Bal M. Structural characterization, DNA binding properties and molecular docking studies of imine compounds derived from Disperse black 9. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Badea M, Grecu MN, Chifiriuc MC, Bleotu C, Popa M, Iorgulescu EE, Avram S, Uivarosi V, Munteanu A, Ghica D, Olar R. Insight on Ni(II) and Cu(II) complexes of biguanide derivatives developed as effective antimicrobial and antitumour agents. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mihaela Badea
- Faculty of Chemistry, Department of Inorganic Chemistry University of Bucharest Bucharest Romania
| | - Maria Nicoleta Grecu
- Materials Physics Division National Institute for Materials Physics Măgurele Romania
| | - Mariana Carmen Chifiriuc
- Faculty of Biology, Department of Microbiology University of Bucharest Bucharest Romania
- Biology Division Research Institute of the University of Bucharest, ICUB Bucharest Romania
| | - Coralia Bleotu
- Department of Virology Stefan S Nicolau Institute of Virology Bucharest Romania
| | - Marcela Popa
- Faculty of Biology, Department of Microbiology University of Bucharest Bucharest Romania
- Biology Division Research Institute of the University of Bucharest, ICUB Bucharest Romania
| | - Emilia Elena Iorgulescu
- Faculty of Chemistry, Department of Analytical Chemistry University of Bucharest Bucharest Romania
| | - Speranța Avram
- Faculty of Biology, Department of Anatomy, Animal Physiology and Biophysics University of Bucharest Bucharest Romania
| | - Valentina Uivarosi
- Faculty of Pharmacy, Department of General and Inorganic Chemistry Carol Davila University of Medicine and Pharmacy Bucharest Romania
| | - Alexandra‐Cristina Munteanu
- Faculty of Pharmacy, Department of General and Inorganic Chemistry Carol Davila University of Medicine and Pharmacy Bucharest Romania
| | - Daniela Ghica
- Materials Physics Division National Institute for Materials Physics Măgurele Romania
| | - Rodica Olar
- Faculty of Chemistry, Department of Inorganic Chemistry University of Bucharest Bucharest Romania
| |
Collapse
|
8
|
Hema M, Warad I, Karthik C, Zarrouk A, Kumara K, Pampa K, Mallu P, Lokanath N. XRD/DFT/HSA-interactions in Cu(II)Cl/phen/ß-diketonato complex: Physicochemical, solvatochromism, thermal and DNA-binding analysis. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128000] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|