1
|
Zhuo Y, Wang K, Chen M, Fan Z, Sun Z, Liu J, Fu Y, Dong A, Zhu B. Dimethyl Sulfoxide and Sodium Chloride Modulate the Crystal Structure in PMIA to Enhance Dyeing Performance: Molecular Dynamics Simulation and Experimental Investigations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414544. [PMID: 39988990 PMCID: PMC12005731 DOI: 10.1002/advs.202414544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/19/2024] [Indexed: 02/25/2025]
Abstract
The widespread use of meta-aramid (PMIA) is limited by its poor dyeing performance, and researchers often struggle to qualitatively and quantitatively assess its microscopic structural regulation when attempting to improve dyeing performance. Herein, DMSO/NaCl is chosen to synergistically modulate the structure of PMIA to improve its dyeing properties in combination with experiments and simulations. Initially, characterization and color testing reveal that the DMSO/NaCl combination induces structural changes in the amorphous regions of the PMIA fiber, improving the dispersion of the dye solution. Notably, PMIA exhibited a significant improvement in dyeing performance, with the K/S value increasing from 2.6 to 16.0 and dye uptake rising from 20.4% to 73.2%, while maintaining excellent colorfastness and mechanical integrity. Molecular dynamics simulations further confirm that DMSO/NaCl disrupts the hydrogen bonding network in the amorphous regions of PMIA, enhancing the mobility of molecular chains and increasing the free volume, thus providing additional adsorption and binding sites for the dye molecules. These findings highlight the potential of combining experimental and computational approaches to optimize the structural regulation and dyeing performance of PMIA fibers.
Collapse
Affiliation(s)
- Yan Zhuo
- College of Textile Science and EngineeringJiangnan UniversityWuxi214122China
| | - Kuang Wang
- College of Textile Science and EngineeringJiangnan UniversityWuxi214122China
| | - Minghui Chen
- Shaanxi Yuanfeng Textile Technology Research Co., LTDShaanxi710038China
| | - Zhengke Fan
- Shaanxi Yuanfeng Textile Technology Research Co., LTDShaanxi710038China
| | - Zhuangzhuang Sun
- College of Textile Science and EngineeringJiangnan UniversityWuxi214122China
| | - Jianli Liu
- College of Textile Science and EngineeringJiangnan UniversityWuxi214122China
| | - Yizheng Fu
- School of Materials Science and EngineeringNorth University of ChinaTaiyuan030051China
| | - Aixue Dong
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang ProvinceZhejiang Sci‐Tech UniversityHangzhouZhejiang310018China
- Shaoxing Sub‐center of National Engineering Research Center for Fiber‐based CompositesShaoxing UniversityShaoxingZhejiang312000China
| | - Bo Zhu
- College of Textile Science and EngineeringJiangnan UniversityWuxi214122China
| |
Collapse
|
2
|
Kalhor P, Sun Z, Yu Z. Spectroscopic and Computational Study of ZnCl 2-Methanol Low-Melting-Temperature Mixtures. J Phys Chem B 2024. [PMID: 38424008 DOI: 10.1021/acs.jpcb.4c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Alcoholic electrolyte mixtures have wide applications in industries. In this study, a series of mixtures composed of ZnCl2 and methanol (MeOH) with ZnCl2 mol % from 6.7 to 25 were prepared, and their spectral, structural, and thermodynamic properties were studied using infrared (IR) spectroscopy, differential scanning calorimetry (DSC), and density functional theory (DFT) calculations. The DFT-assisted analysis of excess spectra, supported by 2D-correlation spectroscopy, led to the identification of the major constituents of ZnCl2-MeOH mixtures, namely, MeOH monomer, MeOH dimer, and ZnCl2-3MeOH complex, produced after dissociation of MeOH trimer which represents the bulk methanol. The Hirshfeld charge analysis showed that in the competition between the O-H···Cl hydrogen bond (H-bond) and Zn ← O coordination bond to transfer charge in ZnCl2-MeOH complexes, the latter always dominates, making MeOH positively charged. The phase diagram of the binary system showed the presence of V-shaped glass transition temperatures (Tg), characteristic of low-melting mixture solvents (LoMMSs). The present study provides insights into the microscopic properties of the system and sheds light on the understanding of the general principles to prepare deep-eutectic solvents (DESs) or LoMMSs using inorganic salts and alcoholic compounds.
Collapse
Affiliation(s)
- Payam Kalhor
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Am Fasanengarten 5, 76131 Karlsruhe, Germany
| | - Zhaoxi Sun
- Changping Laboratory, Beijing 102206, China
| | - Zhiwu Yu
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Park Y, Jin S, Noda I, Jung YM. Continuing progress in the field of two-dimensional correlation spectroscopy (2D-COS): Part III. Versatile applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121636. [PMID: 36229084 DOI: 10.1016/j.saa.2022.121636] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 06/16/2023]
Abstract
In this review, the comprehensive summary of two-dimensional correlation spectroscopy (2D-COS) for the last two years is covered. The remarkable applications of 2D-COS in diverse fields using many types of probes and perturbations for the last two years are highlighted. IR spectroscopy is still the most popular probe in 2D-COS during the last two years. Applications in fluorescence and Raman spectroscopy are also very popularly used. In the external perturbations applied in 2D-COS, variations in concentration, pH, and relative compositions are dramatically increased during the last two years. Temperature is still the most used effect, but it is slightly decreased compared to two years ago. 2D-COS has been applied to diverse systems, such as environments, natural products, polymers, food, proteins and peptides, solutions, mixtures, nano materials, pharmaceuticals, and others. Especially, biological and environmental applications have significantly emerged. This survey review paper shows that 2D-COS is an actively evolving and expanding field.
Collapse
Affiliation(s)
- Yeonju Park
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sila Jin
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Young Mee Jung
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Chemistry, and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
4
|
Wang YQ, Yu ZW. Generalized Excess Spectroscopy. J Phys Chem A 2022; 126:1775-1781. [PMID: 35258310 DOI: 10.1021/acs.jpca.2c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With a clear enhancement of the apparent resolution of experimentally determined spectra, excess spectroscopy has been developed as a powerful tool to study solution structures and molecular interactions. In the standard procedure of the method, excess spectra are calculated based on the ideal spectra constructed using two pure compounds. This limits the applications of the method when the pure compounds are unstable or their physical state is different from that of the mixtures. To overcome the problem or to extend the application, we propose generalized excess spectroscopy in this work, where the ideal spectrum is evaluated from the spectra of reference mixtures. After deducing the working equations, we performed digital simulation and then applied the novel approach to a binary system consisting of tert-butanol and carbon tetrachloride. Both results illustrated the feasibility and universality of the method.
Collapse
Affiliation(s)
- Ya-Qian Wang
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhi-Wu Yu
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
5
|
Quantum chemical calculations on dissolution of dimethylformamide in ethaline. J Mol Graph Model 2021; 107:107966. [PMID: 34174555 DOI: 10.1016/j.jmgm.2021.107966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 05/23/2021] [Accepted: 06/06/2021] [Indexed: 11/22/2022]
Abstract
Deep-eutectic solvents (DESs) gained attention of researchers as green solvents. Making binary mixtures of DESs with appropriate cosolvents is a strategy to obtain more favorable mixtures. Here, structural features and hydrogen bonding (H-bonding) properties of binary mixtures containing ethaline (ETH) DES, (choline chloride (ChCl):2 ethylene glycol (EG)) with N,N-dimethylformamide (DMF) are reported. Such investigations are carried out by density functional theory (DFT) calculations. The results show that in ETH-DMF mixtures, DMF molecules can hardly overcome the strong Columbic interaction and doubly ionic H-bonds between the ions Ch+ and Cl- or the ionic H-bonds between Ch+ and EG. Upon EG addition to ChCl to obtain ETH or DMF addition to ETH, the Cl- … Ch+ connectivity decreases, implying charge delocalization from Cl- to other components rather than Ch+. This is supported by the blue shift of Ch+ hydroxyl observed in the calculated infrared spectra.
Collapse
|
6
|
The Structures of ZnCl 2-Ethanol Mixtures, a Spectroscopic and Quantum Chemical Calculation Study. Molecules 2021; 26:molecules26092498. [PMID: 33922922 PMCID: PMC8123294 DOI: 10.3390/molecules26092498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
We report in this article the structural properties, spectral behavior and heterogeneity of ZnCl2-ethanol (EtOH) mixtures in a wide-composition range (1:3 to 1:14 in molar ratios), using ATR-FTIR spectroscopy and quantum chemical calculations. To improve the resolution of the initial IR spectra, excess spectroscopy and two-dimensional correlation spectroscopy were employed. The transformation process was suggested to be from EtOH trimer and EtOH tetramer to EtOH monomer, EtOH dimer and ZnCl2-3EtOH complex upon mixing. The theoretical findings showed that increasing the content of EtOH was accompanied with the flow of negative charge to ZnCl2. This led to reinforcement of the Zn←O coordination bonds, increase of the ionic character of Zn‒Cl bond and weakening and even dissociation of the Zn‒Cl bond. It was found that in some of the ZnCl2-EtOH complexes optimized at the gas phase or under the solvent effect, there existed hydroxyls with a very special interactive array in the form of Cl‒Zn+←O‒H…Cl-, which incredibly red-shifted to wavenumbers <3000 cm-1. This in-depth study shows the physical insights of the respective electrolyte alcoholic solutions, particularly the solvation process of the salt, help to rationalize the reported experimental results, and may shed light on understanding the properties of the deep eutectic solvents formed from ZnCl2 and an alcohol.
Collapse
|
7
|
Abstract
Deep eutectic solvents (DESs) have emerged as promising green solvents, due to their versatility and properties such as high biodegradability, inexpensiveness, ease of preparation and negligible vapor pressure. Thus, DESs have been used as sustainable media and green catalysts in many chemical processes. On the other hand, lignocellulosic biomass as an abundant source of renewable carbon has received ample interest for the production of biobased chemicals. In this review, the state of the art of the catalytic use of DESs in upgrading the biomass-related substances towards biofuels and value-added chemicals is presented, and the gap in the knowledge is indicated to direct the future research.
Collapse
|
8
|
Kalhor P, Ghandi K, Ashraf H, Yu Z. The structural properties of a ZnCl 2-ethylene glycol binary system and the peculiarities at the eutectic composition. Phys Chem Chem Phys 2021; 23:13136-13147. [PMID: 34075959 DOI: 10.1039/d1cp00573a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
ATR-FTIR spectroscopy was performed on a series of ZnCl2-ethylene glycol (EG) mixtures with a wide-range of compositions (1 : 1.5-1 : 14 in molar ratios), involving the stable ZnCl2-4EG deep-eutectic solvent (DES) composition, to explore the spectral variations, structural heterogeneity, and hydrogen bonding (H-bonding) properties. To enhance the resolution of the spectra, excess absorption and two-dimensional correlation spectroscopies were employed. In the initial IR spectra, a quasi-isosbestic point was identified, signaling that the major disturbance on EG microstructures by adding ZnCl2 is to form a distinct complex. Further analysis uncovered the main transformation process to be from the EG tetramer to the ZnCl2-4EG complex. It was also found that as the EG content increases, negative charge increasingly transfers to ZnCl2, resulting in the strengthening of the Zn ← O coordination bonds and the weakening and finally dissociation of Zn-Cl bonds. Regarding the ZnCl2-4EG DES, several incomparable specificities were observed. It was found that ZnCl2 destructed the H-bonding network of pure EG to the largest extent, resulting in the highest production of the dimer and trimer of EG. Moreover, in comparison with other compositions, the ZnCl2-4EG DES showed abrupt increases in the negative charge of the salt, the length of the Zn-Cl bond, and the strength of the Zn ← O coordination bond. All these imply the strongest intermolecular interactions and the highest solvation of ZnCl2 in EG at the eutectic composition compared to those of other mixtures, resulting in a super-stable liquid mixture. The work provides physical insights into the structural and interactive properties of deep-eutectic solvents.
Collapse
Affiliation(s)
- Payam Kalhor
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Khashayar Ghandi
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Hamad Ashraf
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Zhiwu Yu
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Senthilkumar K, Kanagathara N, Natarajan V, Ragavendran V, Srinivasan T, Marchewka M. Single crystal X-ray diffraction, spectral characterization, evaluation of electronic and chemical reactivity of tert-butylammonium N-acetylglycinate monohydrate – A DFT study. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Kalhor P, Li QZ, Zheng YZ, Yu ZW. Is the Fourier Transform Infrared Free-OH Band of t-Butanol Only from Free OHs? Case Studies on the Binary Systems of the Alcohol with CCl 4 and CHCl 3. J Phys Chem A 2020; 124:6177-6185. [PMID: 32623889 DOI: 10.1021/acs.jpca.0c03463] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Attenuated total reflection-Fourier transform infrared spectroscopy and quantum chemical calculations were performed on tert-butyl alcohol (t-BuOH) and its binary solutions with CCl4 and CHCl3. The study was focused on the free-OH stretching bands. Two resolution-enhancing methods, excess spectroscopy and two-dimensional correlation spectroscopy, were employed to examine the structural heterogeneity and search for the detailed contributors to the free-OH bands. Unexpectedly, CCl4 was found not to be an inert solvent and, similar to CHCl3, formed hydrogen/halogen bonds (H-/X-bond) with t-BuOH. It was observed that the free-OH band in the t-BuOH-CHCl3 system is larger and more red-shifted than that in the t-BuOH-CCl4 system, indicating the stronger intermolecular interactions in the former system. Furthermore, in the t-BuOH-CHCl3 system, the H-bonds are stronger than the X-bonds, while in the t-BuOH-CCl4 system, both interactions are similar in strength. To assign the free-OH bands, it was found that they are not only from the free OH of the t-BuOH monomer, but they are also contributed by the quasi-free OH with the oxygen bonded to H or Cl and even the weakly H-bonded OH of t-BuOH molecules. Finally, all the identified species increased simultaneously via cosolvent addition, suggestive of the destabilization of the highly associated t-BuOH clusters.
Collapse
Affiliation(s)
- Payam Kalhor
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qing-Zhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yan-Zhen Zheng
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhi-Wu Yu
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|