1
|
Sucman N, Stingaci E, Lupascu L, Smetanscaia A, Valica V, Uncu L, Shova S, Petrou A, Glamočlija J, Soković M, Geronikaki A, Macaev F. New 1H-1,2,4-Triazolyl Derivatives as Antimicrobial Agents. Chem Biodivers 2024; 21:e202400316. [PMID: 38422224 DOI: 10.1002/cbdv.202400316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
New 1H-1,2,4-triazolyl derivatives were synthesized, and six of them were selected based on docking prediction for the investigation of their antimicrobial activity against five bacterial and eight fungal strains. All compounds demonstrated antibacterial activity with MIC lower than that of the ampicillin and chloramphenicol. In general, the most sensitive bacteria appeared to be P. fluorescens, while the plant pathogen X. campestris was the most resistant. The antifungal activity of the compounds was much better than the antibacterial activity. All compounds were more potent (6 to 45 times) than reference drugs ketoconazole and bifonazole with the best activity achieved by compound 4 a. A. versicolor, A. ochraceus, A.niger, and T.viride showed the highest sensitivity to compound 4 b, while, T. viride, P. funiculosum, and P.ochrochloron showed good sensitivity to compound 4 a. Molecular docking studies suggest that the probable mechanism of antibacterial activity involves the inhibition of the MurB enzyme of E. coli, while CYP51 of C. albicans appears to be involved in the mechanism of antifungal activity. It is worth mentioning that none of the tested compounds violated Lipinski's rule of five.
Collapse
Affiliation(s)
- Natalia Sucman
- Laboratory of Organic Synthesis, Moldova State University, 3 str. Academiei, Chisinau, MD-2028, Moldova
| | - Eugenia Stingaci
- Laboratory of Organic Synthesis, Moldova State University, 3 str. Academiei, Chisinau, MD-2028, Moldova
| | - Lucian Lupascu
- Laboratory of Organic Synthesis, Moldova State University, 3 str. Academiei, Chisinau, MD-2028, Moldova
| | - Anastasia Smetanscaia
- Scientific Center for Drug Research, "Nicolae Testemitanu" State University of Medicine and Pharmacy, 165 bd. Stefan Cel Mare si Sfant, Chisinau, MD-2004, Moldova
| | - Vladimir Valica
- Scientific Center for Drug Research, "Nicolae Testemitanu" State University of Medicine and Pharmacy, 165 bd. Stefan Cel Mare si Sfant, Chisinau, MD-2004, Moldova
| | - Livia Uncu
- Scientific Center for Drug Research, "Nicolae Testemitanu" State University of Medicine and Pharmacy, 165 bd. Stefan Cel Mare si Sfant, Chisinau, MD-2004, Moldova
| | - Sergiu Shova
- Department of Inorganic Polymers "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41 A Grigore Ghica Voda Alley, Iasi, 700487, Romania
| | - Anthi Petrou
- Department of Pharmacy School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Jasmina Glamočlija
- Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Beograd, 11060, Serbia
| | - Marina Soković
- Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Beograd, 11060, Serbia
| | - Athina Geronikaki
- Department of Pharmacy School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - FliurZ Macaev
- Laboratory of Organic Synthesis, Moldova State University, 3 str. Academiei, Chisinau, MD-2028, Moldova
| |
Collapse
|
2
|
Ibrahim MA, Al-Harbi SA, Allehyani ES, Alqurashi EA, Alshareef FM. First Synthesis of the Novel Triazolo[3,4- b][1,3,4]Thiadiazoles and Triazolo[3,4- b][1,3,4]Thiadiazines Linked Chromeno[2,3- b]Pyridine. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2173621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Magdy A. Ibrahim
- Department of Chemistry, Faculty of Education, Ain Shams University, Heliopolis, Egypt
| | - Sami A. Al-Harbi
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Esam S. Allehyani
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - F. M. Alshareef
- Department of Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Sethiya A, Joshi D, Manhas A, Sahiba N, Agarwal DK, Jha PC, Agarwal S. Glycerol based carbon sulfonic acid catalyzed synthesis, in silico studies and in vitro biological evaluation of isonicotinohydrazide derivatives as potent antimicrobial and anti-tubercular agents. Heliyon 2023; 9:e13226. [PMID: 36785822 PMCID: PMC9918772 DOI: 10.1016/j.heliyon.2023.e13226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
The present pathway involves synthesis of isonicotinohydrazide derivatives using isoniazid and diversely substituted aldehydes in the presence of EtOH and catalytic amount of glycerol based carbon sulfonic acid catalyst. The developed pathway has so many merits like excellent yields (91-98%), short reaction time (4-10 min), easy reaction set up, no need of column chromatography, large substrate scope, easily recyclable and reusable catalyst. The synthesized compounds were screened for antimicrobial and anti-tubercular activity and it was observed that compounds possessed high biological potency against the Gram positive and Gram negative bacterial and fungal strains. Regarding anti-tubercular activity, compound 3m exhibited high % inhibition against Mycobacterium tuberculosis H37RV strain. Based on the outcome of in vitro studies, all the synthesized compounds were docked against E. coli (1KZN), C. albicans (1IYL), and M. tuberculosis H 37 Rv strain (2NSD). The synthesized derivatives were docked within the binding site of 1KZN, and 1IYL. However, with 2NSD, apart from 3h, all the derivatives displayed interaction within the binding cavity of the protein. All the crucial interactions with Asn46, Asp73, and Arg136 in 1KZN, His227, Leu451 in 1IYL, and Tyr158 in 2NSD were witnessed in the top-scored docked candidates. Molecular docking studies revealed the importance of the substitution at R position on isonicotinohydrazide scaffold. The nitrogen atoms of hydrazide moiety were involved in forming hydrogen bonding with the active site amino acids, and the substitution at the R position occupy the hydrophobic position in the binding pocket. Also, the functional groups present on the substituted R position were involved in forming hydrogen bonding with the crucial active site residues.
Collapse
Affiliation(s)
- Ayushi Sethiya
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU, Udaipur, Raj., India
| | - Deepkumar Joshi
- Department of Chemistry, M.N. Sheth Science College, HNGU, Patan, Gujarat, India
| | - Anu Manhas
- Department of Chemistry, Pandit Deendayal Energy University, Gandhinagar-382007, Gujarat, India
| | - Nusrat Sahiba
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU, Udaipur, Raj., India
| | - Dinesh K. Agarwal
- VenkateshwarInsitute of Pharmacy, Sai Tirupati University, Udaipur, Rajasthan, India
| | - Prakash C. Jha
- School of Applied Material Sciences, Central University of Gujarat, Gandhinagar-382030, Gujarat, India
| | - Shikha Agarwal
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU, Udaipur, Raj., India,Corresponding author.
| |
Collapse
|
4
|
Gültekin E, Bekircan O, Kara Y, Güler Hİ, Soylu MS, Kolaylı S. 1,3,4-Thiadiazole and 1,2,4-triazole-5-thione derivatives bearing 2-pentyl-5-phenyl-2,4-dihydro-3H-1,2,4-triazole-3-one ring: Synthesis, molecular docking, urease inhibition, and crystal structure. Arch Pharm (Weinheim) 2023; 356:e2200355. [PMID: 36316247 DOI: 10.1002/ardp.202200355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 01/03/2023]
Abstract
Two series of 1,3,4-thiadiazole (40a-o) and 1,2,4-triazole-5-thione (41a-l) derivatives bearing a 2-pentyl-5-phenyl-1,2,4-triazole-3-one ring were synthesized and then studied for their urease inhibitory activities using thiourea as a standard drug. Among the two groups, the first group (40a-o) did not show good activity while the second group (41a-l) showed excellent activity. Compound 41j (1091.24 ± 14.02 µM) of the second series of compounds showed lower activity than thiourea, while the remaining 11 compounds (41a-i, k, and l) showed better activity than thiourea (183.92 ± 13.14 µM). Among the 11 compounds, 41b (15.96 ± 2.28 µM) having the 3-F group on the phenyl ring showed the highest inhibitory activity. Urease kinetic studies of 41b, which is the most active compound, determined it to have an un-competitive inhibition potential. Moreover, in silico analysis against urease from jack bean with 27 new heterocyclic compounds and the reference molecule was carried out to see the necessary interactions responsible for urease activity. The docking calculations of all compounds supported stronger binding to the receptor than the reference molecule, with high inhibition constants. In addition, compound 40m was characterized by single-crystal X-ray diffraction analysis. X-ray analysis reveals that the structures of the compound 40m crystallize in the monoclinic P21/c space group with the cell parameters: a = 10.2155(9) Å, b = 22.1709(18) Å, c = 21.4858(17) Å, β = 99.677(8)°, V = 4797.0(7) Å3 . X-ray diffraction analyses were also performed to gain insights into the role of weak intermolecular interactions and C-H…X (halogen) interactions in compound 40m that influence the crystal packing.
Collapse
Affiliation(s)
- Ergün Gültekin
- Science Technology Research and Application Center, Artvin Coruh University, Artvin, Turkey
| | - Olcay Bekircan
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - Yakup Kara
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - Halil İbrahim Güler
- Department of Molecular Biology and Genetics, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - Mustafa Serkan Soylu
- Department of Physics, Art and Science Faculty, Giresun University, Giresun, Turkey
| | - Sevgi Kolaylı
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
5
|
Wang X, Liu Z, Jiang X, Yu L. Self-polishing antifouling coatings based on benzamide derivatives containing capsaicin. MARINE POLLUTION BULLETIN 2022; 181:113844. [PMID: 35749980 DOI: 10.1016/j.marpolbul.2022.113844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
In this study, N-hydroxymethylbenzamide was alkylated with various aromatic compounds to obtain five novel benzamide derivatives containing capsaicin (BDCC), and the BDCC were incorporated into coatings as auxiliary agents. The relationships between properties and structures were discussed based on experimental and theoretical results. The theoretical results showed the optimized configurations of BDCC and confirmed that the benzene ring, phenolic hydroxyl, ester and amide groups were active sites. Experimental results indicated that the antimicrobial and antifouling effects of compounds b1, b2 and b3 were better than those of chlorothalonil, their MIC and MBC values were no more than 64 and 512 μg·mL-1, and their test panels were covered only with small amounts of dirt and biofilms; they worked well as green antifouling additives. The experimental and theoretical results showed that BDCC and BDCC antifouling coatings were effective and eco-friendly.
Collapse
Affiliation(s)
- Xuan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Zhenxia Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Xiaohui Jiang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266100, China.
| | - Liangmin Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China.
| |
Collapse
|
6
|
Srikanth D, Vinayak Joshi S, Ghouse Shaik M, Pawar G, Bujji S, Kanchupalli V, Chopra S, Nanduri S. A Comprehensive Review on Potential Therapeutic Inhibitors of Nosocomial Acinetobacter baumannii Superbugs. Bioorg Chem 2022; 124:105849. [DOI: 10.1016/j.bioorg.2022.105849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/20/2022]
|
7
|
Verma N, Bera S, Gonnade R, Mondal D. Regioselective synthesis of 1,4,5‐Trisubstituted‐1,2,3‐Triazole Derivatives from α,β‐Unsaturated Carbonyls. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Naimish Verma
- Central University of Gujarat School of Chemical Sciences Sector-30 382030 Gandhinagar INDIA
| | - Smritilekha Bera
- Central University of Gujarat School of Chemical Sciences 30 sector 382030 Gandhinagar INDIA
| | - Rajesh Gonnade
- CSIR-National Chemical Laboratory: National Chemical Laboratory CSIR Physical and Materials Chemistry Division 411008 Pune INDIA
| | - Dhananjoy Mondal
- Central University of Gujarat School of Chemical Sciences Sector-30 382030 Gandhinagar INDIA
| |
Collapse
|
8
|
SAMELİUK Y, KAPLAUSHENKO A, NEDOREZANIUK N, OSTRETSOVA L, DİAKOVA F, GUTYJ B. Prospects for the search for new biologically active compounds among the derivatives of the heterocyclic system of 1,2,4-triazole. HACETTEPE UNIVERSITY JOURNAL OF THE FACULTY OF PHARMACY 2022. [DOI: 10.52794/hujpharm.1019625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The authors are not native speakers of Turkish
The purpose of this literature review was to systematize data from studies of the biological activity of 1,2,4-triazole derivatives with substituents in positions 4 and 5. The authors set the task of forming an idea of current directions in the selection of substitutions for 1,2,4-triazole based on research.
As a result of the study, 75 literature sources were analyzed. This made it possible to form a further vector in terms of searching for biologically active structures among 1,2,4-triazole derivatives. The review develops a modern approach to the search for biologically active substances among 1,2,4-triazole derivatives. Systematized data on the nature of substituents in the core of 1,2,4-triazole, which affect a specific type of activity.
The search material was selected over the past decade with the highest number of citations at the time of literature analysis.
Collapse
Affiliation(s)
| | | | | | | | - Feodosiia DİAKOVA
- KARABUK UNIVERSITY, FACULTY OF ENGINEERING, DEPARTMENT OF MEDICAL ENGINEERING, MEDICAL ENGINEERING PR. (TRNC NATIONAL)
| | - Bogdan GUTYJ
- Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies
| |
Collapse
|
9
|
Novel 1, 2, 4-Triazoles as Antifungal Agents. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4584846. [PMID: 35360519 PMCID: PMC8964166 DOI: 10.1155/2022/4584846] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/03/2022] [Indexed: 12/17/2022]
Abstract
The development of innovative antifungal agents is essential. Some fungicidal agents are no longer effective due to resistance development, various side effects, and high toxicity. Therefore, the synthesis and development of some new antifungal agents are necessary. 1,2,4-Triazole is one of the most essential pharmacophore systems between five-membered heterocycles. The structure-activity relationship (SAR) of this nitrogen-containing heterocyclic compound showed potential antifungal activity. The 1,2,4-triazole core is present as the nucleus in a variety of antifungal drug categories. The most potent and broad activity of triazoles have confirmed them as pharmacologically significant moieties. The goal of this review is to highlight recent developments in the synthesis and SAR study of 1,2,4-triazole as a potential fungicidal compound. In this study, we provide the results of a biological activity evaluation using various structures and figures. Literature investigation showed that 1, 2, 4-triazole derivatives reveal the extensive span of antifungal activity. This review will assist researchers in the development of new potential antifungal drug candidates with high effectiveness and selectivity.
Collapse
|
10
|
Biological Evaluation of 4-(1H-triazol-1-yl)benzoic Acid Hybrids as Antioxidant Agents: In Vitro Screening and DFT Study. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112411642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fourteen triazole benzoic acid hybrids were previously characterized. This work aimed to screen their in vitro antioxidant activity using different assays, i.e., DPPH (1,1-diphenyl-1-picrylhydrazyl), reducing the power capability, FRAP (ferric reducing antioxidants power) and ABTS (2,2′-azino-bis(3-ethylben zothiazoline-6-sulfonate) radical scavenging. The 14 compounds showed antioxidant properties in relation to standard BHA (butylated hydroxylanisole) and Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid). Higher antioxidant activity was observed by the parent (1) at a concentration of 100 µg/mL (89.95 ± 0.34 and 88.59 ± 0.13%) when tested by DPPH and ABTS methods in relation to BHA at 100 µg/mL (95.02 ± 0.74 and 96.18 ± 0.33%). The parent (2) demonstrated remarkable scavenging activity when tested by ABTS (62.00 ± 0.24%), however, 3 was less active (29.98 ± 0.13%). Compounds 5, 6, 9, and 11 exhibited good scavenging activity compared to 1. DFT studies were performed using the B3LYP/6-311++g (2d,2p) level of theory to evaluate different antioxidant descriptors for the targets. Three antioxidant mechanisms, i.e., hydrogen atom transfer (HAT), sequential electron transfer proton transfer (SETPT) and sequential proton loss electron transfer (SPLET) were suggested to describe the antioxidant properties of 1–14. Out of the 14 triazole benzoic acid hybrids, 5, 9, 6, and 11 showed some good theoretical results, which were in agreement with some experimental outcomes. Based on the computed (PA and ETE) and (BDE and IP) values in (SPLET) and (HAT and SETPT) mechanisms, respectively, compound 9 emerged has having good antioxidant activity.
Collapse
|
11
|
Pachuta-Stec A. Antioxidant Activity of 1,2,4-Triazole and Its Derivatives: A Mini Review. Mini Rev Med Chem 2021; 22:1081-1094. [PMID: 33797373 DOI: 10.2174/1389557521666210401091802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/29/2021] [Accepted: 02/21/2021] [Indexed: 02/01/2023]
Abstract
The information about the presence of free radicals in biological materials was given for the first time about 70 years ago. Since then, numerous scientific studies have been conducted and the science of free radicals was born. Today we know that free radicals are by-products of enzymatic reactions occurring in the organism. They are produced during endogenous processes such as: cell respiration, phagocytosis, biosynthesis, catalysis, and biotransformation. They can also be produced by exogenous processes (radiation, sunlight, heavy metals, bacteria, fungi, protozoa and viruses). The overproduction of free radicals affects the aging processes, oxidative stress (OS) and takes part in the pathogenesis of various diseases. Among them are cancer, rheumatoid arthritis, neurodegenerative diseases: Alzheimer and Parkinson, pulmonary diseases, atherosclerosis and DNA damage. Compounds with antioxidant activity are very important nowadays because they allow organisms to keep a balance between the production of free radicals and the speed of their neutralization in the body. Next to the natural antioxidants (flavonoids, carotenoids, vitamins, etc.), synthetic ones are also of great importance. Among synthetic compounds with antioxidant activity are 1,2,4-triazoles and its derivatives. 1,2,4-Triazoles are heterocyclic compounds with three nitrogen atoms. Due to a broad spectrum of biological activities, these derivatives have been of interest to scientists for many years. Some of them are also used as drugs. The finding of new synthetic compounds with antioxidant features in the triazole group has become important problem of medicinal chemistry.
Collapse
Affiliation(s)
- Anna Pachuta-Stec
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin. Poland
| |
Collapse
|
12
|
Strzelecka M, Świątek P. 1,2,4-Triazoles as Important Antibacterial Agents. Pharmaceuticals (Basel) 2021; 14:ph14030224. [PMID: 33799936 PMCID: PMC7999634 DOI: 10.3390/ph14030224] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
The global spread of drug resistance in bacteria requires new potent and safe antimicrobial agents. Compounds containing the 1,2,4-triazole ring in their structure are characterised by multidirectional biological activity. A large volume of research on triazole and their derivatives has been carried out, proving significant antibacterial activity of this heterocyclic core. This review is useful for further investigations on this scaffold to harness its optimum antibacterial potential. Moreover, rational design and development of the novel antibacterial agents incorporating 1,2,4-triazole can help in dealing with the escalating problems of microbial resistance.
Collapse
|
13
|
Channa Basappa V, Hamse Kameshwar V, Kumara K, Achutha DK, Neratur Krishnappagowda L, Kariyappa AK. Design and synthesis of coumarin-triazole hybrids: biocompatible anti-diabetic agents, in silico molecular docking and ADME screening. Heliyon 2020; 6:e05290. [PMID: 33102875 PMCID: PMC7575805 DOI: 10.1016/j.heliyon.2020.e05290] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/26/2020] [Accepted: 10/14/2020] [Indexed: 11/27/2022] Open
Abstract
The current study demonstrates the synthesis of coumarin-triazole hybrids 8 (a-e) in four steps starting from substituted salicylaldehyde 1 (a-e), and diethyl malonate 2. The spectroscopic studies provide the structure proofs of the new compounds, and the molecular structure of an intermediate 3a by crystallographic studies. The crystal structure analysis revealed the C–H...O, C–H... π, C–O...π and π...π molecular interactions. Further, the intermolecular interactions were quantified using Hirshfeld surface analysis and the DFT method B3LYP functional with 6–311++ G (d,p) basis set was employed to optimize the molecular geometry. The synthesized new coumarin-triazole hybrids, 8 (a–e) were screened for their α-amylase inhibitory potentials, and the results suggest that amongst the series, compounds 8c, and 8e show the promising inhibition of the enzyme, and might act as lead molecules for anti-diabetic activities. To understand the mode of action in silico molecular docking and ADME screening were performed.
Collapse
Affiliation(s)
| | - Vivek Hamse Kameshwar
- Department of Biotechnology, Faculty of Natural Sciences, Adichunchanagiri University-Centre for Research and Innovation, Adichunchanagiri University B.G Nagara, Mandya, India
| | - Karthik Kumara
- Department of Studies in Physics, University of Mysore, Mysuru, India.,Department of Physics, School of Sciences, Jain University (Deemed to be University), Bengaluru, India
| | | | | | | |
Collapse
|