1
|
Alroba AAN, Aazam ES, Zaki M. Metal complexes containing vitamin B6-based scaffold as potential DNA/BSA-binding agents inducing apoptosis in hepatocarcinoma (HepG2) cells. Mol Divers 2024:10.1007/s11030-024-10986-7. [PMID: 39289257 DOI: 10.1007/s11030-024-10986-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
A ligand (HL) was synthesized from the pyridoxal hydrochloride (vitamin B6 form) and 1-(2-Aminoethyl)piperidine in one single step. The metal complexes [Zn(L)(Bpy)]NO3 (1), [Cu(L)(Bpy)]NO3 (2), and [Co(L)(Bpy)]NO3 (3) were prepared by tethering HL and 2,2'-bipyridine. The synthesized HL and metal complexes 1-3 were thoroughly characterized using spectroscopic techniques such as 1H NMR, 13C NMR, FTIR, EI-MS, molar conductance, and magnetic moment, in addition to CHN elemental analysis. The geometry of complexes was square pyramidal around the metal ions {Zn(II), Cu(II), and Co(II)}. The interaction of ligand and metal complexes with DNA and BSA macromolecules was accomplished by UV-Vis absorption and fluorescence spectroscopy in vitro. The hyperchromism in band at 303-325 with no shift supports the groove binding with some partial intercalation in grooves. Similarly, in BSA-binding studies, complex 2 shows greater binding potential in the hydrophobic core probably near the Trp-212 in the subdomain IIA. Furthermore, complex 2 shows excellent cytotoxicity on HepG2 cancer cells with IC50 = 25.0 ± 0.45 µM. The detailed analysis by cell-cycle studies shows cell arrest at the G2/M phase. The type of cell death was authenticated by an annexin V-FTIC dual staining experiment that reveals maximum death by apoptosis together with non-specific necrosis.
Collapse
Affiliation(s)
- Almuhrah A N Alroba
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia
- Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Elham Shafik Aazam
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia
| | - Mehvash Zaki
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia.
| |
Collapse
|
2
|
Gacki M, Kafarska K, Korona-Głowniak I, Schab P, Wojciechowski J, Gierczak N, Wolf WM. 1D and 2D Coordination Polymers of Calcium with Nonsteroidal Anti-Inflammatory Drugs: Synthesis, Crystal Structures, Hirshfeld Surfaces, Antimicrobial and Antioxidant Activities. Chempluschem 2024; 89:e202300734. [PMID: 38216541 DOI: 10.1002/cplu.202300734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/14/2024]
Abstract
Four alkaline earth metal complexes of ketoprofen (Hket) and indomethacin (Hind) were synthesized and characterized: [Ca(ket)2(H2O)2]n (1), [Mg(ket)2(H2O)2] (2), [Ca(ind)2(EtOH)2]n (3), and [Mg(ind)2(EtOH)2] (4). All compounds were studied by elemental analysis (EA), flame atomic absorption spectrometry (FAAS), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). Crystal structures of 1 and 3 were determined by single crystal X-ray diffraction technique T=100 K. The structure of 1 is dominated by a one-dimensional coordination polymer, while 3 is formed by a two-dimensional layer stabilized by the calcium zig-zag chains and π⋅⋅⋅π stacking interactions. Crystal packing arrangements were characterized by fingerprint plots (FPs) that were derived from the Hirshfeld surfaces (HSs). The antioxidant and antimicrobial activities of complexes were evaluated against Gram-positive and Gram-negative bacteria as well as yeasts.
Collapse
Affiliation(s)
- Michał Gacki
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Łódź University of Technology, Żeromskiego 116, 90-924, Łódź, Poland
| | - Karolina Kafarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Łódź University of Technology, Żeromskiego 116, 90-924, Łódź, Poland
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medial University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| | - Patrycja Schab
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Łódź University of Technology, Żeromskiego 116, 90-924, Łódź, Poland
| | | | - Natalia Gierczak
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Łódź University of Technology, Żeromskiego 116, 90-924, Łódź, Poland
| | - Wojciech M Wolf
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Łódź University of Technology, Żeromskiego 116, 90-924, Łódź, Poland
| |
Collapse
|
3
|
Wen SZ, Zhong SD, Kan WQ, Zhao PS, He YC. Experimental and theoretical investigation on the hydrochromic property of a Ni(II)-containing coordination polymer with an inclined 2D → 3D polycatenation architecture. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
4
|
Wang J, Ren J, Tang Q, Wang X, Wang Y, Wang Y, Du Z, Wang W, Huang L, Belfiore LA, Tang J. An Efficient Cyan Emission from Copper (II) Complexes with Mixed Organic Conjugate Ligands. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1719. [PMID: 35268951 PMCID: PMC8910964 DOI: 10.3390/ma15051719] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 01/27/2023]
Abstract
Copper (II) complexes containing mixed ligands were synthesized in dimethyl formamide (DMF). The intense cyan emission at an ambient temperature is observed for solid copper (II) complexes with salicylic acid and a 12% quantum yield with a fluorescent lifetime of approximately 10 ms. Hence, copper (II) complexes with salicylic acid are excellent candidates for photoactive materials. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) reveal that the divalent copper metal centers coordinate with the nitrogen and oxygen lone pairs of conjugate ligands. XPS binding energy trends for core electrons in lower-lying orbitals are similar for all three copper (II) complexes: nitrogen 1s and oxygen 1s binding energies increase relative to those for undiluted ligands, and copper 2p3/2 binding energies decrease relative to that for CuCl2. The thermal behavior of these copper complexes reveals that the thermal stability is characterized by the following pattern: Cu(1,10-phenanthroline)(salicylic acid) > Cu(1,10-phenanthroline)(2,2’-bipyridine) > Cu(1,10-phenanthroline)(1-benzylimidazole)2.
Collapse
Affiliation(s)
- Jingjing Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (J.W.); (J.R.); (Q.T.); (X.W.); (Y.W.); (Y.W.); (Z.D.); (W.W.); (L.H.); (L.A.B.)
| | - Junjie Ren
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (J.W.); (J.R.); (Q.T.); (X.W.); (Y.W.); (Y.W.); (Z.D.); (W.W.); (L.H.); (L.A.B.)
| | - Qinglin Tang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (J.W.); (J.R.); (Q.T.); (X.W.); (Y.W.); (Y.W.); (Z.D.); (W.W.); (L.H.); (L.A.B.)
| | - Xinzhi Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (J.W.); (J.R.); (Q.T.); (X.W.); (Y.W.); (Y.W.); (Z.D.); (W.W.); (L.H.); (L.A.B.)
| | - Yao Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (J.W.); (J.R.); (Q.T.); (X.W.); (Y.W.); (Y.W.); (Z.D.); (W.W.); (L.H.); (L.A.B.)
| | - Yanxin Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (J.W.); (J.R.); (Q.T.); (X.W.); (Y.W.); (Y.W.); (Z.D.); (W.W.); (L.H.); (L.A.B.)
| | - Zhonglin Du
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (J.W.); (J.R.); (Q.T.); (X.W.); (Y.W.); (Y.W.); (Z.D.); (W.W.); (L.H.); (L.A.B.)
| | - Wei Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (J.W.); (J.R.); (Q.T.); (X.W.); (Y.W.); (Y.W.); (Z.D.); (W.W.); (L.H.); (L.A.B.)
| | - Linjun Huang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (J.W.); (J.R.); (Q.T.); (X.W.); (Y.W.); (Y.W.); (Z.D.); (W.W.); (L.H.); (L.A.B.)
| | - Laurence A. Belfiore
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (J.W.); (J.R.); (Q.T.); (X.W.); (Y.W.); (Y.W.); (Z.D.); (W.W.); (L.H.); (L.A.B.)
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (J.W.); (J.R.); (Q.T.); (X.W.); (Y.W.); (Y.W.); (Z.D.); (W.W.); (L.H.); (L.A.B.)
| |
Collapse
|
5
|
Kargar H, Fallah-Mehrjardi M, Behjatmanesh-Ardakani R, Bahadori M, Moghadam M, Ashfaq M, Munawar KS, Tahir MN. Pd(II) and Ni(II) complexes containing ONNO tetradentate Schiff base ligand: Synthesis, crystal structure, spectral characterization, theoretical studies, and use of PdL as an efficient homogeneous catalyst for Suzuki–Miyaura cross-coupling reaction. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Yasir Khan H, Parveen S, Yousuf I, Tabassum S, Arjmand F. Metal complexes of NSAIDs as potent anti-tumor chemotherapeutics: Mechanistic insights into cytotoxic activity via multiple pathways primarily by inhibition of COX–1 and COX–2 enzymes. Coord Chem Rev 2022; 453:214316. [DOI: 10.1016/j.ccr.2021.214316] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Bhattacherjee P, Roy M, Naskar A, Tsai H, Ghosh A, Patra N, John RP. A trinuclear copper (II) complex of naproxen‐appended salicylhydrazide: Synthesis, crystal structure, DNA binding and molecular docking study. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Prama Bhattacherjee
- Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad India
| | - Mousam Roy
- Department of Biochemistry Bose Institute Kolkata India
| | - Avigyan Naskar
- Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad India
| | - Hsieh‐Chih Tsai
- Graduate Institute of Applied Science and Technology National Taiwan University of Science and Technology Taipei Taiwan
- Advanced Membrane Materials Center National Taiwan University of Science and Technology Taipei Taiwan
| | | | - Niladri Patra
- Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad India
| | - Rohith P. John
- Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad India
| |
Collapse
|
8
|
Song C, Yang C, Meng S, Li M, Wang X, Zhu Y, Kong L, Lv W, Qiao H, Sun Y. Deciphering the mechanism of Fang-Ji-Di-Huang-Decoction in ameliorating psoriasis-like skin inflammation via the inhibition of IL-23/Th17 cell axis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114571. [PMID: 34464701 DOI: 10.1016/j.jep.2021.114571] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 08/06/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In the theory of traditional Chinese medicine (TCM), the etiology of psoriasis is assigned to damp-heat internal depression, blood poisoning, Yin deficiency and loss of nourishment. Fang-Ji-Di-Huang-Decoction (FJDH), a well-known Chinese traditional formula, is recorded in Synopsis of the Golden Chamber (in the Eastern Han Dynasty). This decoction is composed of dried roots of Rehmannia glutinosa (Gaertn.) DC., dried roots of Stephania tetrandra S. Moore, roots of Saposhnikovia divaricata (Turcz.) Schischk., dried twigs of Cinnamomum cassia (L.) J. Presl and dry roots and rhizomes of Glycyrrhiza uralensis Fisch. FJDH has the function of clearing heat, removing dampness, and nourishing blood. Therefore, in modern medical theory, FJDH can regulate the infiltration of inflammatory cells and the secretion of inflammatory cytokines in the process of psoriasis. AIM OF THE STUDY This study evaluated whether FJDH treated psoriasis and its specific mechanism for the efficacy in mice. At the same time, it clarified s what important role of the copperware played s in the curative effect of FJDH. METHODS AND MATERIALS We used imiquimod (IMQ) to induce psoriasis-like skin inflammation in mice. Mice were treated with imiquimod for one week, and FJDH was given by intragastric administration one week in advance. Record the weight change and psoriasis Area and Severity Index (PASI) score of the mouse during the whole process to assess the severity of psoriasis were recored mouse. Hematoxylin-eosin staining was used to evaluate skin tissue structure change. Immunohistochemistry was performed to observe the expressions of Ki67 and proliferating cell nuclear antigen (PCNA) in skin tissue. In order to further explore the mechanism of FJDH in the treatment of psoriasis, we used network pharmacology to predict the therapeutic target. TCMSP and Uniprot were used to collect compounds and genes of FJDH. Genecards was used for obtaining genes of psoriasis. String was used to analyze the relationship between genes. Metascape was used for gene enrichment and pathway prediction. Using molecular biological detection methods, we verified whether FJDH could regulate Interleukin 17 signaling pathway and T helper cell 17 (Th17) cell differentiation. Flow cytometry was used to detect Th17 cell differentiation in mouse spleen. Quantitative Real-time PCR was used to detect mRNA expression of IL-17 signaling pathway-related inflammatory factors in mouse skin tissues. UPLC-Triple TOF-MS/MS and Phenol-Sulphate colorimetry were used to explore the main components of FJDH, and further elaborate the mechanism of FJDH in the treatment of psoriasis. RESULTS FJDH with copper was found to improve psoriasis-related pathological symptoms in a dose-dependent manner, possibly by inhibiting IL-23/Th17 cell axis and reducing inflammatory cytokines such as IL-17A, IL-17F, IL-22 and TNF-α. Furthermore, R. glutinosa polysaccharide in FJDH was the main substance that exerted the drug effect and it work by forming a complex with copper. Experimental data proved that Rehmannia glutinosa polysaccharide and copper complex had the same pharmacological activity and therapeutic effect as FJDH. CONCLUSIONS FJDH may attenulated imiquimod-induced psoriasis-like skin inflammation in mice by inhibiting IL-23/Th17 cell axis. The material basis for the therapeutic effect may be the formation of complexes between the polysaccharides of R. glutinosa and copper in FJDH to produce the effect. These findings suggest that FJDH can be used as an effective Chinese medicine to treat psoriasis.
Collapse
Affiliation(s)
- Chenglin Song
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Chenxi Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Siwei Meng
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Manru Li
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Xiao Wang
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Yaoxuan Zhu
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Wen Lv
- Department of Gynecology, Tongde Hospital of Zhejiang Province, 234 Gucui Road, Hangzhou, 310012, China.
| | - Hongzhi Qiao
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
9
|
Nnabuike GG, Salunke-Gawali S, Patil AS, Butcher RJ, Obaleye JA. Cobalt complexes of the non-steroidal anti-inflammatory drug indomethacin: Synthesis and structural studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|