1
|
Hawash M. Advances in Cancer Therapy: A Comprehensive Review of CDK and EGFR Inhibitors. Cells 2024; 13:1656. [PMID: 39404419 PMCID: PMC11476325 DOI: 10.3390/cells13191656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Protein kinases have essential responsibilities in controlling several cellular processes, and their abnormal regulation is strongly related to the development of cancer. The implementation of protein kinase inhibitors has significantly transformed cancer therapy by modifying treatment strategies. These inhibitors have received substantial FDA clearance in recent decades. Protein kinases have emerged as primary objectives for therapeutic interventions, particularly in the context of cancer treatment. At present, 69 therapeutics have been approved by the FDA that target approximately 24 protein kinases, which are specifically prescribed for the treatment of neoplastic illnesses. These novel agents specifically inhibit certain protein kinases, such as receptor protein-tyrosine kinases, protein-serine/threonine kinases, dual-specificity kinases, nonreceptor protein-tyrosine kinases, and receptor protein-tyrosine kinases. This review presents a comprehensive overview of novel targets of kinase inhibitors, with a specific focus on cyclin-dependent kinases (CDKs) and epidermal growth factor receptor (EGFR). The majority of the reviewed studies commenced with an assessment of cancer cell lines and concluded with a comprehensive biological evaluation of individual kinase targets. The reviewed articles provide detailed information on the structural features of potent anticancer agents and their specific activity, which refers to their ability to selectively inhibit cancer-promoting kinases including CDKs and EGFR. Additionally, the latest FDA-approved anticancer agents targeting these enzymes were highlighted accordingly.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus P.O. Box 7, Palestine
| |
Collapse
|
2
|
Parveen S, Babbar R, Badavath VN, Nath SK, Kumar S, Rawat R, Chigurupati S, Karunakaran R, Wal P, Gulati M, Behl T. Recent insights into synthesis, biological activities, structure activity relationship and molecular interactions of thiazolidinone hybrids: A systematic review. SYNTHETIC COMMUN 2024; 54:1-21. [DOI: 10.1080/00397911.2023.2269582] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Indexed: 01/12/2025]
Affiliation(s)
- Sabnam Parveen
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
- School of Medical Science, Adamas University, West Bengal, India
| | - Ritchu Babbar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Suman Kumar Nath
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sourabh Kumar
- City College of Pharmacy, Lucknow, Uttar Pradesh, India
| | - Ravi Rawat
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam, Chennai, India
| | - Rohini Karunakaran
- Unit of Biochemistry, Faculty of Medicine, AIMST University, Semeling, Kedah, Malaysia
- Department of Computational Biology, Saveetha School of Engineering, Institute of Bioinformatics, Chennai, Tamil Nadu, India
| | - Pranay Wal
- Pharmacy, Pranveer Singh Institute of Technology, Kanpur, Uttar Pradesh, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Faculty of Health, ARCCIM, University of Technology, Sydney, NSW, Australia Ultimo
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| |
Collapse
|
3
|
Identification of RdRp inhibitors against SARS-CoV-2 through E-pharmacophore-based virtual screening, molecular docking and MD simulations approaches. Int J Biol Macromol 2023; 237:124169. [PMID: 36990409 PMCID: PMC10043960 DOI: 10.1016/j.ijbiomac.2023.124169] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
The outbreak of novel Coronavirus, an enduring pandemic declared by WHO, has consequences to an alarming ongoing public health menace which has already claimed several million human lives. In addition to numerous vaccinations and medications for mild to moderate COVID-19 infection, lack of promising medication or therapeutic pharmaceuticals remains a serious concern to counter the ongoing coronavirus infections and to hinder its dreadful spread. Global health emergencies have called for urgency for potential drug discovery and time is the biggest constraint apart from the financial and human resources required for the high throughput drug screening. However, computational screening or in-silico approaches appeared to be an effective and faster approach to discover potential molecules without sacrificing the model animals. Accumulated shreds of evidence on computational studies against viral diseases have revealed significance of in-silico drug discovery approaches especially in the time of urgency. The central role of RdRp in SARS-CoV-2 replication makes it promising drug target to curtain on going infection and its spread. The present study aimed to employ E-pharmacophore-based virtual screening to reveal potent inhibitors of RdRp as potential leads to block the viral replication. An energy-optimised pharmacophore model was generated to screen the Enamine REAL DataBase (RDB). Then, ADME/T profiles were determined to validate the pharmacokinetics and pharmacodynamics properties of the hit compounds. Moreover, High Throughput Virtual Screening (HTVS) and molecular docking (SP & XP) were employed to screen the top hits from pharmacophore-based virtual screening and ADME/T screen. The binding free energies of the top hits were calculated by conducting MM-GBSA analysis followed by MD simulations to determine the stability of molecular interactions between top hits and RdRp protein. These virtual investigations revealed six compounds having binding free energies of −57.498, −45.776, −46.248, −35.67, −25.15 and −24.90 kcal/mol respectively as calculated by the MM-GBSA method. The MD simulation studies confirmed the stability of protein ligand complexes, hence, indicating as potent RdRp inhibitors and are promising candidate drugs to be further validated and translated into clinics in future.
Collapse
|
4
|
Farhan MM, Guma MA, Rabeea MA, Ahmad I, Patel H. Synthesizes, characterization, molecular docking and in vitro bioactivity study of new compounds containing triple beta lactam rings. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
5
|
Bhowmick S, Saha A, AlFaris NA, ALTamimi JZ, ALOthman ZA, Aldayel TS, Wabaidur SM, Islam MA. Identification of potent food constituents as SARS-CoV-2 papain-like protease modulators through advanced pharmacoinformatics approaches. J Mol Graph Model 2021; 111:108113. [PMID: 34959151 PMCID: PMC8688376 DOI: 10.1016/j.jmgm.2021.108113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/05/2021] [Accepted: 12/18/2021] [Indexed: 12/15/2022]
Abstract
The current ongoing pandemic of COVID-19 urges immediate treatment measures for controlling the highly contagious SARS-CoV-2 infections. The papain-like protease (PLpro), which is released from nsp3, is presently being evaluated as a significant anti-viral drug target for COVID-19 therapy development. Particularly, PLpro is implicated in the cleavage of viral polyproteins and antagonizes the host innate immune response through its deubiquitinating and deISGylating actions, thus making it a high-profile antiviral therapeutic target. The present study reports a few specific food compounds that can bind tightly with the SARS-CoV-2 PLpro protein identified through extensive computational screening techniques. Precisely, extensive advanced computational approaches combining target-based virtual screening, particularly employing sub-structure based similarity search, molecular docking, molecular dynamics (MD) simulations, and MM-GBSA based binding free energy calculations have been employed for the identification of the most promising food compounds with substantial functional implications as SARS-CoV-2 PLpro protein inhibitors/modulators. Observations from the present research investigation also provide a deeper understanding of the binding modes of the proposed four food compounds with SARS-CoV-2 PLpro protein. In docking analyses, all compounds have established essential inter-molecular interaction profiles at the active site cavity of the SARS-CoV-2 PLpro protein. Similarly, the long-range 100 ns conventional MD simulation studies also provided an in-depth understanding of probable interactions and dynamic behaviour of the SARS-CoV-2 PLpro protein-food compound complexes. Binding free energies of all molecular systems revealed a strong interaction affinity of food compounds towards the SARS-CoV-2 PLpro protein. Moreover, clear-cut comparative analyses against the known standard inhibitor also suggest that proposed food compounds may act as potential active chemical entities for modulating the action of the SARS-CoV-2 PLpro protein.
Collapse
Affiliation(s)
- Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India.
| | - Nora Abdullah AlFaris
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah bint Abdulrahman University, P. O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Jozaa Zaidan ALTamimi
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah bint Abdulrahman University, P. O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Zeid A ALOthman
- Department of Chemistry, P.O. Box 2455, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Tahany Saleh Aldayel
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah bint Abdulrahman University, P. O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Saikh Mohammad Wabaidur
- Department of Chemistry, P.O. Box 2455, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom.
| |
Collapse
|
6
|
Bhowmick S, Saha A, AlFaris NA, ALTamimi JZ, ALOthman ZA, Aldayel TS, Wabaidur SM, Islam MA. Structure-based identification of galectin-1 selective modulators in dietary food polyphenols: a pharmacoinformatics approach. Mol Divers 2021; 26:1697-1714. [PMID: 34482478 PMCID: PMC9209356 DOI: 10.1007/s11030-021-10297-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/12/2021] [Indexed: 11/29/2022]
Abstract
Abstract In this study, a set of dietary polyphenols was comprehensively studied for the selective identification of the potential inhibitors/modulators for galectin-1. Galectin-1 is a potent prognostic indicator of tumor progression and a highly regarded therapeutic target for various pathological conditions. This indicator is composed of a highly conserved carbohydrate recognition domain (CRD) that accounts for the binding affinity of β-galactosides. Although some small molecules have been identified as galectin-1 inhibitors/modulators, there are limited studies on the identification of novel compounds against this attractive therapeutic target. The extensive computational techniques include potential drug binding site recognition on galectin-1, binding affinity predictions of ~ 500 polyphenols, molecular docking, and dynamic simulations of galectin-1 with selective dietary polyphenol modulators, followed by the estimation of binding free energy for the identification of dietary polyphenol-based galectin-1 modulators. Initially, a deep neural network-based algorithm was utilized for the prediction of the druggable binding site and binding affinity. Thereafter, the intermolecular interactions of the polyphenol compounds with galectin-1 were critically explored through the extra-precision docking technique. Further, the stability of the interaction was evaluated through the conventional atomistic 100 ns dynamic simulation study. The docking analyses indicated the high interaction affinity of different amino acids at the CRD region of galectin-1 with the proposed five polyphenols. Strong and consistent interaction stability was suggested from the simulation trajectories of the selected dietary polyphenol under the dynamic conditions. Also, the conserved residue (His44, Asn46, Arg48, Val59, Asn61, Trp68, Glu71, and Arg73) associations suggest high affinity and selectivity of polyphenols toward galectin-1 protein. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India.
| | - Nora Abdullah AlFaris
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Jozaa Zaidan ALTamimi
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Zeid A ALOthman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Tahany Saleh Aldayel
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Saikh Mohammad Wabaidur
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PL, UK. .,Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory Service Tshwane Academic Division, Pretoria, South Africa.
| |
Collapse
|
7
|
Negi M, Chawla P, Faruk A, Chawla V. Role of 4-Thiazolidinone Scaffold in Targeting Variable Biomarkers and Pathways Involving Cancer. Anticancer Agents Med Chem 2021; 22:1458-1477. [PMID: 34229596 DOI: 10.2174/1871520621666210706104227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer can be considered as a genetic as well as a metabolic disorder. Current cancer treatment scenario looks like aggravating tumor cell metabolism, causing the disease to progress even with greater intensity. The cancer therapy is restricted to limitations of poor patient compliance due to toxicities to normal tissues and multi-drug resistance development. There is an emerging need for cancer therapy to be more focused on the better understanding of genetic, epigenetic and transcriptional changes resulting in cancer progression and their relationship with treatment sensitivity. OBJECTIVE The 4-thiazolidinone nucleus possesses marked anticancer potential towards different biotargets, thus targeting different cancer types like breast, prostate, lung, colorectal and colon cancers, renal cell adenocarcinomas and gliomas. Therefore, conjugating the 4-thiazolidinone scaffold with other promising moieties or by directing the therapy towards targeted drug delivery systems like the use of nanocarrier systems, can provide the gateway for optimizing the anticancer efficiency and minimizing the adverse effects and drug resistance development, thus providing stimulus for personalized pharmacotherapy. METHODS An exhaustive literature survey has been carried out to give an insight into the anticancer potential of the 4-thiazolidinone nucleus either alone or in conjugation with other active moieties, with the mechanisms involved in preventing proliferation and metastasis of cancer covering a vast range of publications of repute. CONCLUSION This review aims to summarise the work reported on anticancer activity of 4-thiazolidinone derivatives covering various cancer biomarkers and pathways involved, citing the data from 2005 till now, which may be beneficial to the researchers for future development of more efficient 4-thiazolidinone derivatives.
Collapse
Affiliation(s)
- Meenakshi Negi
- Department of Pharmaceutical Sciences, HNB Garhwal University, Srinagar Garhwal, Uttarakhand, India
| | - Pooja Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Abdul Faruk
- Department of Pharmaceutical Sciences, HNB Garhwal University, Srinagar Garhwal, Uttarakhand, India
| | - Viney Chawla
- University Institute of Pharmaceutical Sciences and Research, BFUHS University, Faridkot, India
| |
Collapse
|
8
|
Mahajan M, Suryavanshi S, Bhowmick S, Alasmary FA, Almutairi TM, Islam MA, Kaul-Ghanekar R. Matairesinol, an active constituent of HC9 polyherbal formulation, exhibits HDAC8 inhibitory and anticancer activity. Biophys Chem 2021; 273:106588. [PMID: 33848944 DOI: 10.1016/j.bpc.2021.106588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Histone deacetylase 8 (HDAC8) has emerged as a promising drug target for cancer therapeutics development. HDAC8 has been reported to regulate cancer cell proliferation, invasion and promote metastasis through modulation of cell cycle associated proteins. Of late, phytocompounds have been demonstrated to exhibit anticancer and anti-HDAC8 activity. Here, we have shown the HDAC8 inhibitory potential of an active phytocompound from HC9 (herbal composition-9), a polyherbal anticancer formulation based on the traditional Ayurvedic drug, Stanya Shodhan Kashaya. HC9 was recently reported to exhibit anticancer activity against breast cancer cells through induction of cell cycle arrest, decrease in migration and invasion as well as regulation of inflammation and chromatin modulators. In silico studies such as molecular docking, molecular dynamics (MD) simulation and binding free energy analyses showed greater binding energy values and interaction stability of MA with HDAC8 compared to other phytocompounds of HC9. Interestingly, in vitro validation confirmed the anti-HDAC8 activity of MA. Further, in vitro studies showed that MA significantly decreased the viability of breast and prostate cancer cell lines, thereby confirming its anticancer potential.
Collapse
Affiliation(s)
- Minal Mahajan
- Cancer Research Lab., Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed to be University, Pune-Satara Road, Pune 411043, Maharashtra, India
| | - Snehal Suryavanshi
- Cancer Research Lab., Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed to be University, Pune-Satara Road, Pune 411043, Maharashtra, India
| | - Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, 91 APC Road, Kolkata 700 009, India
| | - Fatmah Ali Alasmary
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Tahani Mazyad Almutairi
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Ruchika Kaul-Ghanekar
- Cancer Research Lab., Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed to be University, Pune-Satara Road, Pune 411043, Maharashtra, India.
| |
Collapse
|
9
|
Shakya A, Chikhale RV, Bhat HR, Alasmary FA, Almutairi TM, Ghosh SK, Alhajri HM, Alissa SA, Nagar S, Islam MA. Pharmacoinformatics-based identification of transmembrane protease serine-2 inhibitors from Morus Alba as SARS-CoV-2 cell entry inhibitors. Mol Divers 2021; 26:265-278. [PMID: 33786727 PMCID: PMC8009078 DOI: 10.1007/s11030-021-10209-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/10/2021] [Indexed: 12/23/2022]
Abstract
Transmembrane protease serine-2 (TMPRSS2) is a cell-surface protein expressed by epithelial cells of specific tissues including those in the aerodigestive tract. It helps the entry of novel coronavirus (n-CoV) or Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in the host cell. Successful inhibition of the TMPRSS2 can be one of the crucial strategies to stop the SARS-CoV-2 infection. In the present study, a set of bioactive molecules from Morus alba Linn. were screened against the TMPRSS2 through two widely used molecular docking engines such as Autodock vina and Glide. Molecules having a higher binding affinity toward the TMPRSS2 compared to Camostat and Ambroxol were considered for in-silico pharmacokinetic analyses. Based on acceptable pharmacokinetic parameters and drug-likeness, finally, five molecules were found to be important for the TMPRSS2 inhibition. A number of bonding interactions in terms of hydrogen bond and hydrophobic interactions were observed between the proposed molecules and ligand-interacting amino acids of the TMPRSS2. The dynamic behavior and stability of best-docked complex between TRMPRSS2 and proposed molecules were assessed through molecular dynamics (MD) simulation. Several parameters from MD simulation have suggested the stability between the protein and ligands. Binding free energy of each molecule calculated through MM-GBSA approach from the MD simulation trajectory suggested strong affection toward the TMPRSS2. Hence, proposed molecules might be crucial chemical components for the TMPRSS2 inhibition.
Collapse
Affiliation(s)
- Anshul Shakya
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786 004, India
| | - Rupesh V Chikhale
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR5 7TJ, UK
| | - Hans Raj Bhat
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786 004, India
| | - Fatmah Ali Alasmary
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Tahani Mazyad Almutairi
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Surajit Kumar Ghosh
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786 004, India
| | - Hassna Mohammed Alhajri
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Siham A Alissa
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Shuchi Nagar
- Bioinformatics Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, India
| | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK. .,School of Health Sciences, University of Kwazulu-Natal, Westville Campus, Durban, South Africa. .,Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
10
|
Aldahham BJM, Al-Khafaji K, Saleh MY, Abdelhakem AM, Alanazi AM, Islam MA. Identification of naphthyridine and quinoline derivatives as potential Nsp16-Nsp10 inhibitors: a pharmacoinformatics study. J Biomol Struct Dyn 2020; 40:3899-3906. [PMID: 33252031 DOI: 10.1080/07391102.2020.1851305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This research is a recent effort to explore some new heterocyclic compounds as novel and potential nonstructural protein-16-nonstructural protein-10 (Nsp16-Nsp10) inhibitors for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inhibition. The SARS-CoV-2 is causative agent of coronavirus disease 2019 (COVID-19) pandemic. A set of 58 molecules belongs to the naphthyridine and quinoline derivatives have been recently synthesized and considered for structure-based virtual screening against Nsp16-Nsp10. Molecular docking was virtually performed to screen for anti-SARS-CoV-2 activity against Nsp16-Nsp10. Fourteen out of fifty-eight compounds were exhibited binding affinity higher than co-crystal bound ligand s-adenosylmethionine (SAM) toward Nsp16-Nsp10. Further, the in silico pharmacokinetics assessment was carried out and it was found that two molecules possess the acceptable pharmacokinetic profile, hence considered promising Nsp16-Nsp10 inhibitors. The binding interaction analysis was revealed some crucial binding interactions between the final selected two molecules and ligand-binding amino acid residues of Nsp16-Nsp10 protein. In order to explore the characteristics of the protein-ligand complex and how selected small molecules retained inside the receptor cavity in dynamic states, all-atoms conventional molecular dynamics (MD) simulation was performed. Several factors were obtained from the MD simulation trajectory evidently suggested the potentiality of the molecules and stability of the protein-ligand complex. Finally, the binding affinity of both molecules and SAM was explored through the MM-GBSA approach which explained that both molecules possess strong affection towards the Nsp16-Nsp10. Hence, from the pharmacoinformatics assessment, it can be concluded that both heterocyclic compounds might be crucial for SARS-CoV-2 inhibition, subjected to experimental validation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bilal J M Aldahham
- Department of Chemistry, College of Applied Sciences-Hit, University Of Anbar, Anbar, Hit, Iraq
| | - Khattab Al-Khafaji
- Department of Chemistry, College of Arts and Sciences, Gaziantep University, Gaziantep, Turkey
| | - Mohanad Yakdhan Saleh
- Department of Chemistry, College of Education for Pure Science, University of Mosul, Ninawa, Iraq
| | | | - Amer M Alanazi
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,School of Health Sciences, University of Kwazulu-Natal, Durban, South Africa.,Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory Service Tshwane Academic Division, Pretoria, South Africa
| |
Collapse
|