1
|
Verma A, Bharatiya P, Jaitak A, Nigam V, Monga V. Advances in the design, discovery, and optimization of aurora kinase inhibitors as anticancer agents. Expert Opin Drug Discov 2025; 20:475-497. [PMID: 40094219 DOI: 10.1080/17460441.2025.2481272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025]
Abstract
INTRODUCTION Aurora kinases (AKs) play key roles during carcinogenesis and show a close relationship with many cellular effects including mitotic entry, spindle assembly and chromosomal alignment biorientation. Indeed, elevated levels of AKs have been reported in several different tumor types, leading research scientists to investigate ways that we can target AKs for the purpose of developing new anticancer therapeutics. AREA COVERED This review examines the design, discovery, and development of Aurora kinase inhibitors (AKIs) as anticancer agents and delineates their roles in cancer progression or development. Various databases like PubMed, Scopus, Google scholar, SciFinder were used to search the relevant information. This article provides a comprehensive overview of recent advances in the medicinal chemistry of AKIs including the candidates under clinical development and list of patents filed. In addition, their mechanistic findings, SARs, and in silico studies have also been discussed to offer prospects in this field. EXPERT OPINION The integration of artificial intelligence and computational approaches is poised to accelerate the development of AKIs as anticancer agents. However, the associated challenges currently hindering its impact in drug development must be overcome before drugs can successfully translate from early drug development into clinical practice.
Collapse
Affiliation(s)
- Anubhav Verma
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Pradhuman Bharatiya
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Aashish Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Vaibhav Nigam
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| |
Collapse
|
2
|
Manna T, Maji S, Maity M, Debnath B, Panda S, Khan SA, Nath R, Akhtar MJ. Anticancer potential and structure activity studies of purine and pyrimidine derivatives: an updated review. Mol Divers 2025; 29:817-848. [PMID: 38856835 DOI: 10.1007/s11030-024-10870-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/02/2024] [Indexed: 06/11/2024]
Abstract
Cancer is the world's leading cause of death impacting millions of lives globally. The increasing research over the past several decades has focused on the development of new anticancer drugs, but still cancer continues to be a global health challenge. Thus, several new alternative therapeutic strategies have been tried for the drug design and discovery. Purine and pyrimidine heterocyclic compounds have received attention recently due to their potential in targeting various cancers. It is evident from the recently published data over the last decade that incorporation of the purine and pyrimidine rings in the synthesized derivatives resulted in the development of potent anticancer molecules. This review presents synthetic strategies encompassing several examples of recently developed purine and pyrimidine-containing compounds as anticancer agents. In addition, their structure-activity relationships are represented in the schemes indicating the fragment or groups that are essential for the enhanced anticancer activities. Purine and pyrimidines combined with other heterocyclic compounds have resulted in many novel anticancer molecules that address the challenges of drug resistance. The purine and pyrimidine derivatives showed significantly enhanced anticancer activities against targeted receptor proteins with numerous compounds with an IC50 value in the nanomolar range. The review will support medicinal chemists and contribute in progression and development of synthesis of more potent chemotherapeutic drug candidates to mitigate the burden of this dreadful disease.
Collapse
Affiliation(s)
- Tanushree Manna
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India
| | - Sumit Maji
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India
| | - Mousumi Maity
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India
| | - Biplab Debnath
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India
| | - Shambo Panda
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India
| | - Shah Alam Khan
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PC 130, Azaiba, Bousher, PO 620, Muscat, Sultanate of Oman
| | - Rajarshi Nath
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India.
- JIS University, Agarpara Campus, Kolkata-81, Nilgunj Road, Agarpara, Kolkata, 700109, India.
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PC 130, Azaiba, Bousher, PO 620, Muscat, Sultanate of Oman.
| |
Collapse
|
3
|
Ragab A. Recent advances in the synthesis, reaction, and bio-evaluation potential of purines as precursor pharmacophores in chemical reactions: a review. RSC Adv 2025; 15:3607-3645. [PMID: 39906628 PMCID: PMC11793083 DOI: 10.1039/d4ra08271k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025] Open
Abstract
Purines are nitrogenous heterocyclic compounds characterized by the presence of two fused rings: pyrimidine and imidazole. Their significance is underscored by their widespread occurrence in natural products as the metabolic processes of all living organisms heavily rely on purines and their synthetic derivatives. Furthermore, purines exhibit considerable bioactivity, highlighting their importance in biological systems. Given their unique structural characteristics and ability to yield a diverse array of bioactive molecules, purines have attracted substantial attention from researchers. This review illustrates the recent methods for the synthesis of purines from diaminomaleonitrile, urea derivatives, imidazole, and pyrimidine derivatives reported from 2019 to 2024. Additionally, it elucidates the various chemical modifications applied to the purine nucleus, including benzoylation, alkylation, halogenation, amination, selenylation, thiolation, condensation, diazotization, coupling reactions, and other miscellaneous reactions. Moreover, this review discusses several biological evaluations, including the mechanisms of action of purine derivatives as anticancer, antimicrobial, anti-inflammatory, antiviral, antioxidant, and anti-Alzheimer agents. This review aims to assist researchers in synthetic organic and medicinal chemistry toward the development and enhancement of novel methodologies for the synthesis of new purine molecules while supporting biologists in the identification of new targets for bio-evaluation.
Collapse
Affiliation(s)
- Ahmed Ragab
- Chemistry Department, Faculty of Science, Galala University Galala City Suez 43511 Egypt
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University Nasr City Cairo 11884 Egypt
| |
Collapse
|
4
|
Abu-Hashem AA, Hakami O, El-Shazly M, El-Nashar HAS, Yousif MNM. Caffeine and Purine Derivatives: A Comprehensive Review on the Chemistry, Biosynthetic Pathways, Synthesis-Related Reactions, Biomedical Prospectives and Clinical Applications. Chem Biodivers 2024; 21:e202400050. [PMID: 38719741 DOI: 10.1002/cbdv.202400050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024]
Abstract
Caffeine and purine derivatives represent interesting chemical moieties, which show various biological activities. Caffeine is an alkaloid that belongs to the family of methylxanthine alkaloids and it is present in food, beverages, and drugs. Coffee, tea, and some other beverages are a major source of caffeine in the human diet. Caffeine can be extracted from tea or coffee using hot water with dichloromethane or chloroform and the leftover is known as decaffeinated coffee or tea. Caffeine and its derivatives were synthesized via different procedures on small and large scales. It competitively antagonizes the adenosine receptors (ARs), which are G protein-coupled receptors largely distributed in the human body, including the heart, vessels, brain, and kidneys. Recently, many reports showed the effect of caffeine derivatives in the treatment of many diseases such as Alzheimer's, asthma, parkinsonism, and cancer. Also, it is used as an antioxidant, anti-inflammatory, analgesic, and hypocholesterolemic agent. The present review article discusses the synthesis, reactivity, and biological and pharmacological properties of caffeine and its derivatives. The biosynthesis and biotransformation of caffeine in coffee and tea leaves and the human body were summarized in the review.
Collapse
Affiliation(s)
- Ameen A Abu-Hashem
- Photochemistry Department, National Research Centre, 12622, Dokki, Giza, Egypt
- Chemistry Department, Faculty of Science, Jazan University, 45142 and 2097, Jazan, KSA, Saudi Arabia
| | - Othman Hakami
- Chemistry Department, Faculty of Science, Jazan University, 45142 and 2097, Jazan, KSA, Saudi Arabia
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Mahmoud N M Yousif
- Photochemistry Department, National Research Centre, 12622, Dokki, Giza, Egypt
| |
Collapse
|
5
|
An insight into the rational design of recent purine-based scaffolds in targeting various cancer pathways. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Aurora Kinase B Inhibition: A Potential Therapeutic Strategy for Cancer. Molecules 2021; 26:molecules26071981. [PMID: 33915740 PMCID: PMC8037052 DOI: 10.3390/molecules26071981] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/23/2022] Open
Abstract
Aurora kinase B (AURKB) is a mitotic serine/threonine protein kinase that belongs to the aurora kinase family along with aurora kinase A (AURKA) and aurora kinase C (AURKC). AURKB is a member of the chromosomal passenger protein complex and plays a role in cell cycle progression. Deregulation of AURKB is observed in several tumors and its overexpression is frequently linked to tumor cell invasion, metastasis and drug resistance. AURKB has emerged as an attractive drug target leading to the development of small molecule inhibitors. This review summarizes recent findings pertaining to the role of AURKB in tumor development, therapy related drug resistance, and its inhibition as a potential therapeutic strategy for cancer. We discuss AURKB inhibitors that are in preclinical and clinical development and combination studies of AURKB inhibition with other therapeutic strategies.
Collapse
|