1
|
Xue XY, He JL, Song MW, Yu ZE, Shuang-Liu, Lin MJ, Zhang CP, Bo-Ding, Hao-Wang, Ma ZH, Zhang WH, Zou YY, Qing-Yuan, Jing-Ji, Shi DH. Design, synthesis, bioactivity, X-ray crystallography, and molecular docking studies of chrysin-1,3,5-triazine derivatives as anticancer agents. Bioorg Chem 2025; 161:108486. [PMID: 40288011 DOI: 10.1016/j.bioorg.2025.108486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/05/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
In order to discover new effective anti-cancer drugs, fifteen derivatives of chrysin-1,3,5-triazine were designed and synthesized as potential novel anti-cancer agents. The structure of the target compounds were characterized by 1H NMR, 13C NMR, IR, and HR-MS. The purity of all compounds were detected by HPLC. The structure of compound 4a was subjected to further investigation through single crystal X-ray diffraction, and elaborate discussions were conducted on the Hirshfeld surface and two-dimensional fingerprint diagram to explore the molecular conformation, crystal packing mode and molecular interactions. The antiproliferative activity of these compounds was assessed by the MTT (methylthiazolyl tetrazolium) assay against MDA-MB-231 (breast cancer cells), HeLa (cervical cancer cells), HCCLM3 (liver cancer cells), and HCT116 (colon cancer cells). Positive controls were cisplatin and chrysin. The results show that some chrysin-1,3,5-triazine derivatives have better anti-cancer activity than cisplatin and chrysin. Chrysin-1,3,5-triazine derivatives selectively targets HeLa cervical cancer cells. Compound 4c (7-((4-(Dibutylamino)-1,3,5-triazin-2-yl)oxy)-5-hydroxy-2-phenyl-4H-chromen-4-one) exhibits the strongest antiproliferative activity against HeLa cells (IC50 = 9.86 ± 0.37 μM), superior to cisplatin and chrysin (IC50 values of 28.09 ± 0.47 μM and 29.51 ± 0.51 μM, respectively). Further studies showed that compound 4c not only inhibits the invasion, adhesion, and proliferation of HeLa cells, but also has a strong inhibitory effect on the proliferation of HeLa tumor heterotopic xenografts in vivo. Molecular docking studies suggest that compound 4c can interact with phosphatidylinositol 3-kinase(PI3K)and cysteine aspartic acid proteinase-3 (Caspase-3). Western blot results demonstrated that compound 4c inhibited PI3K expression at the protein level and promoted the degradation of Pro-caspase-3, thereby activating the caspase-3-dependent apoptotic pathway. Furthermore, the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of these compounds suggest that they may have pharmacological characteristics and safety. Thus, compound 4c has the potential to be a highly promising candidate for cancer treatment.
Collapse
Affiliation(s)
- Xuan-Yi Xue
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Jing-Liang He
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Meng-Wei Song
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Zi-En Yu
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Shuang-Liu
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Meng-Jie Lin
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Chi-Peng Zhang
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Bo-Ding
- Jiangsu Henghai Pharmaceutical Research Institute Co., LTD, Lianyungang 222005, People's Republic of China
| | - Hao-Wang
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Zhi-Hao Ma
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Wei-Heng Zhang
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Yang-Yang Zou
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Qing-Yuan
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Jing-Ji
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China.
| | - Da-Hua Shi
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China.
| |
Collapse
|
2
|
Tumosienė I, Stasevych M, Zvarych V, Jonuškienė I, Kantminienė K, Petrikaitė V. Novel 5-Oxopyrrolidine-3-carbohydrazides as Potent Protein Kinase Inhibitors: Synthesis, Anticancer Evaluation, and Molecular Modeling. Int J Mol Sci 2025; 26:3162. [PMID: 40243953 PMCID: PMC11989890 DOI: 10.3390/ijms26073162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/22/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
A series of novel hydrazones bearing diphenylamine and 5-oxopyrrolidine moieties, along with benzene and naphthalene rings substituted with hydroxy, alkoxy, or carboxylic groups, were synthesized. Their anticancer activity was evaluated in vitro using both 2D (MTT and 'wound healing' assays) and 3D (cell spheroid) models against human melanoma IGR39 cells, the triple-negative breast cancer cell line MDA-MB-231, and pancreatic carcinoma Panc-1 cell line. Compounds 8 (2-hydroxybenzylidene derivative) and 12 (2-hydroxynaphthalenylmethylene derivative) demonstrated the highest cytotoxicity in both 2D and 3D assays, while compounds 4 (2,5-dimethoxybenzylidene derivative) and 6 (2,4,6-trimethoxybenzylidene derivative) were most effective at inhibiting cell migration. Notably, all compounds exhibited lower activity against the Panc-1 cancer cell line in a cell monolayer, but the effects on spheroid cell viability in 3D models were comparable across all tested cancer cell lines. Molecular docking studies of the most active hydrazones suggested that these compounds may act as multikinase inhibitors. In particular, 2-hydroxynaphthalenylmethylene derivative 12 showed high binding affinity values (-11.174 and -11.471 kcal/mol) to the active sites of two key protein kinases-a non-receptor TK (SCR) and STPK (BRAF)-simultaneously.
Collapse
Affiliation(s)
- Ingrida Tumosienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Pl. 19, 50254 Kaunas, Lithuania; (I.T.); (I.J.)
| | - Maryna Stasevych
- Department of Technology of Biologically Active Substances, Pharmacy, and Biotechnology, Lviv Polytechnic National University, S. Bandera Str. 12, 79013 Lviv, Ukraine;
| | - Viktor Zvarych
- Department of Automated Control Systems, Lviv Polytechnic National University, S. Bandera Str. 12, 79013 Lviv, Ukraine;
| | - Ilona Jonuškienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Pl. 19, 50254 Kaunas, Lithuania; (I.T.); (I.J.)
| | - Kristina Kantminienė
- Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, 50254 Kaunas, Lithuania
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių Pr. 13, 50162 Kaunas, Lithuania
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio Al. 7, 10257 Vilnius, Lithuania
| |
Collapse
|
3
|
Singh P, Kumar V, Jung TS, Lee JS, Lee KW, Hong JC. Uncovering potential CDK9 inhibitors from natural compound databases through docking-based virtual screening and MD simulations. J Mol Model 2024; 30:267. [PMID: 39012568 DOI: 10.1007/s00894-024-06067-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
CONTEXT Cyclin-dependent kinase 9 (CDK9) plays a significant role in gene regulation and RNA polymerase II transcription under basal and stimulated conditions. The upregulation of transcriptional homeostasis by CDK9 leads to various malignant tumors and therefore acts as a valuable drug target in addressing cancer incidences. Ongoing drug development endeavors targeting CDK9 have yielded numerous clinical candidate molecules currently undergoing investigation as potential CDK9 modulators, though none have yet received Food and Drug Administration (FDA) approval. METHODS In this study, we employ in silico approaches including the molecular docking and molecular dynamics simulations for the virtual screening over the natural compounds library to identify novel promising selective CDK9 inhibitors. The compounds derived from the initial virtual screening were subsequently employed for molecular dynamics simulations and binding free energy calculations to study the compound's stability under virtual physiological conditions. The first-generation CDK inhibitor Flavopiridol was used as a reference to compare with our novel hit compound as a CDK9 antagonist. The 500-ns molecular dynamics simulation and binding free energy calculation showed that two natural compounds showed better binding affinity and interaction mode with CDK9 receptors over the reference Flavopiridol. They also showed reasonable figures in the predicted absorption, distribution, metabolism, excretion, and toxicity (ADMET) calculations as well as in computational cytotoxicity predictions. Therefore, we anticipate that the proposed scaffolds could contribute to developing potential and selective CDK9 inhibitors subjected to further validations.
Collapse
Affiliation(s)
- Pooja Singh
- Division of Applied Life Science, (BK21 Four), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), 501 Jinju-Daero, Jinju, 52828, Republic of Korea
| | - Vikas Kumar
- Department of Bio & Medical Big Data (BK4 Program), Division of Life Sciences, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-Daero, Jinju, 52828, Republic of Korea
- Computational Biophysics Lab, Basque Center for Materials, Applications, and Nanostructures (BCMaterials), Building Martina Casiano, Pl. 3 Parque Científico UPV/EHU Barrio Sarriena, 48940, Leioa, Spain
| | - Tae Sung Jung
- Laboratory of Aquatic Animal Diseases, College of Veterinary Medicine, Research Institute of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jeong Sang Lee
- GSCRO, Research Spin-Off Company, Innopolis Jeonbuk, Jeonju, 55069, Korea
- Department of Food and Nutrition, College of Medical Science, Jeonju University, Jeonju, 55069, Republic of Korea
| | - Keun Woo Lee
- Department of Bio & Medical Big Data (BK4 Program), Division of Life Sciences, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-Daero, Jinju, 52828, Republic of Korea.
- Angel I-Drug Design (AiDD), 33-3 Jinyangho-Ro 44, Jinju, 52650, Republic of Korea.
| | - Jong Chan Hong
- Division of Applied Life Science, (BK21 Four), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), 501 Jinju-Daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
4
|
Xiao T, Kong S, Zhang Z, Hua D, Liu F. A review of big data technology and its application in cancer care. Comput Biol Med 2024; 176:108577. [PMID: 38739981 DOI: 10.1016/j.compbiomed.2024.108577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
The development of modern medical devices and information technology has led to a rapid growth in the amount of data available for health protection information, with the concept of medical big data emerging globally, along with significant advances in cancer care relying on data-driven approaches. However, outstanding issues such as fragmented data governance, low-quality data specification, and data lock-in still make sharing challenging. Big data technology provides solutions for managing massive heterogeneous data while combining artificial intelligence (AI) techniques such as machine learning (ML) and deep learning (DL) to better mine the intrinsic connections between data. This paper surveys and organizes recent articles on big data technology and its applications in cancer, dividing them into three different types to outline their primary content and summarize their critical role in assisting cancer care. It then examines the latest research directions in big data technology in cancer and evaluates the current state of development of each type of application. Finally, current challenges and opportunities are discussed, and recommendations are made for the further integration of big data technology into the medical industry in the future.
Collapse
Affiliation(s)
- Tianyun Xiao
- Hebei Key Laboratory of Data Science and Application, North China University of Science and Technology, Tangshan, Hebei, 063210, China; The Key Laboratory of Engineering Computing in Tangshan City, North China University of Science and Technology, Tangshan, Hebei, 063210, China; College of Science, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Shanshan Kong
- College of Science, North China University of Science and Technology, Tangshan, Hebei, 063210, China.
| | - Zichen Zhang
- Hebei Key Laboratory of Data Science and Application, North China University of Science and Technology, Tangshan, Hebei, 063210, China; The Key Laboratory of Engineering Computing in Tangshan City, North China University of Science and Technology, Tangshan, Hebei, 063210, China; College of Science, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Dianbo Hua
- Beijing Sitairui Cancer Data Analysis Joint Laboratory, Beijing, 101149, China
| | - Fengchun Liu
- Hebei Key Laboratory of Data Science and Application, North China University of Science and Technology, Tangshan, Hebei, 063210, China; The Key Laboratory of Engineering Computing in Tangshan City, North China University of Science and Technology, Tangshan, Hebei, 063210, China; College of Science, North China University of Science and Technology, Tangshan, Hebei, 063210, China; Hebei Engineering Research Center for the Intelligentization of Iron Ore Optimization and Ironmaking Raw Materials Preparation Processes, North China University of Science and Technology, Tangshan, Hebei, China; Tangshan Intelligent Industry and Image Processing Technology Innovation Center, North China University of Science and Technology, Tangshan, Hebei, China
| |
Collapse
|
5
|
Gavadia R, Rasgania J, Sahu N, Nimesh S, Loveleen L, Mor S, Jakhar K. Synthesis of Indole-Linked Thiadiazoles and their Anticancer Action against Triple-Negative Breast Cancer. Chem Biodivers 2024; 21:e202302000. [PMID: 38427723 DOI: 10.1002/cbdv.202302000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/03/2024]
Abstract
With a lack of targeted therapy and significantly high metastasis, heterogeneity, and relapse rates, Triple-Negative Breast Cancer (TNBC) offers substantial treatment challenges and demands more chemotherapeutic interventions. In the present study, indole-endowed thiadiazole derivatives have been synthesized and screened for antiproliferative potency against the triple-negative breast cancer MDA-MB-231 cell line. Compound 4 h, possessing chlorophenyl moiety, displays the best anticancer potency (IC50: 0.43 μM) in the cell viability assay. The title compounds demonstrate substantial docking competency against the EGFR receptor (PDB ID: 3POZ), validating their in-vitro ant proliferative action. With a high docking score (-9.9 to -8.7 kcal/mol), the indole hybrids display significant binding propensity comparable to the co-crystallized ligand TAK-285 and occupy a similar strategic position in the active domain of the designated receptor. The quantum and electronic properties of the integrated templates are evaluated through DFT, and optimal values of the deduced global reactivity indices, such as energy gap, electronegativity, ionization potential, chemical potential, electrophilicity, etc., suggest their apt biochemical reactivity. The indole hybrids show near-appropriate pharmacokinetic efficacy and bioavailability in the in-silico studies, indicating their candidacy for potential drug usage. Promising in-vitro anticancer action and binding interfaces project indole conjugates as potential leads in addressing the TNBC dilemma.
Collapse
Affiliation(s)
- Renu Gavadia
- Department of Chemistry, M. D. University, Rohtak, 124001, Haryana, India
| | - Jyoti Rasgania
- Department of Chemistry, M. D. University, Rohtak, 124001, Haryana, India
| | - Neetu Sahu
- Department of Chemistry, M. D. University, Rohtak, 124001, Haryana, India
| | - Surendra Nimesh
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, 305817, India
| | - Lacy Loveleen
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, 305817, India
| | - Satbir Mor
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Komal Jakhar
- Department of Chemistry, M. D. University, Rohtak, 124001, Haryana, India
| |
Collapse
|
6
|
Kavyani B, Saffari F, Afgar A, Kavyani S, Rezaie M, Sharifi F, Ahmadrajabi R. Gallocin-derived Engineered Peptides Targeting EGFR and VEGFR in Colorectal Cancer: A Bioinformatic Approach. Curr Top Med Chem 2024; 24:1599-1614. [PMID: 38840394 DOI: 10.2174/0115680266295587240522050712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) treatment using time-saving and cost-effective targeted therapies with high selectivity and low toxicity drugs, is a great challenge. In primary investigations on Gallocin, as the most proposed factor in CRC pathogenesis caused by Streptococcus gallolyticus, it was surprisingly found that this bacteriocin has four α-helix structures and some anti-cancer sequences. OBJECTIVE The aim of this study was to determine the ability of Gallocin-based anticancer peptides (ACPs) against epidermal growth factor receptor (EGFR) and vascular epidermal growth factor receptor (VEGFR) and the evaluation of their pharmacokinetic properties using bioinformatic approaches. METHODS Support vector machine algorithm web-based tools were used for predicting ACPs. The physicochemical characteristics and the potential of anti-cancer activity of Gallocin-derived ACPs were determined by in silico tools. The 3D structure of predicted ACPs was modeled using modeling tools. The interactions between predicted ACPs and targets were investigated by molecular docking exercises. Then, the stability of ligand-receptor interactions was determined by molecular dynamic simulation. Finally, ADMET analysis was carried out to check the pharmacokinetic properties and toxicity of ACPs. RESULTS Four amino acid sequences with anti-cancer potential were selected. Through molecular docking, Pep2, and Pep3 gained the best scores, more binding affinity, and strong attachments by the formation of reasonable H-bonds with both EGFR and VEGFR. Molecular simulation confirmed the stability of Pep3- EGFR. According to pharmacokinetic analysis, the ACPs were safe and truthful. CONCLUSION Designed peptides can be nominated as drugs for CRC treatment. However, different in-vitro and in-vivo assessments are required to approve this claim.
Collapse
Affiliation(s)
- Batoul Kavyani
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fereshteh Saffari
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Sajjad Kavyani
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Masoud Rezaie
- Student Research Committee, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Roya Ahmadrajabi
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Parate S, Kumar V, Hong JC, Lee KW. Investigation of Macrocyclic mTOR Modulators of Rapamycin Binding Site via Pharmacoinformatics Approaches. Comput Biol Chem 2023; 104:107875. [PMID: 37148678 DOI: 10.1016/j.compbiolchem.2023.107875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/08/2023]
Abstract
The PI3K/Akt/mTOR is an essential intracellular signaling pathway in which the serine/threonine mTOR kinase portrays a major role in cell growth, proliferation and survival. The mTOR kinase is frequently dysregulated in a broad spectrum of cancers, thus making it a potential target. Rapamycin and its analogs (rapalogs) allosterically inhibit mTOR, thereby dodging the deleterious effects prompted by ATP-competitive mTOR inhibitors. However, the available mTOR allosteric site inhibitors exhibit low oral bioavailability and suboptimal solubility. Bearing in mind this narrow therapeutic window of the current allosteric mTOR inhibitors, an in silico study was designed in search of new macrocyclic inhibitors. The macrocycles from the ChemBridge database (12,677 molecules) were filtered for their drug-likeness properties and the procured compounds were subjected for molecular docking within the binding cleft between FKBP25 and FRB domains of mTOR. The docking analysis resulted with 15 macrocycles displaying higher scores than the selective mTOR allosteric site inhibitor, DL001. The docked complexes were refined by subsequent molecular dynamics simulations for a period of 100 ns. Successive binding free energy computation revealed a total of 7 macrocyclic compounds (HITS) demonstrating better binding affinity than DL001, towards mTOR. The consequent assessment of pharmacokinetic properties resulted in HITS with similar or better properties than the selective inhibitor, DL001. The HITS from this investigation could act as effective mTOR allosteric site inhibitors and serve as macrocyclic scaffolds for developing compounds targeting the dysregulated mTOR.
Collapse
Affiliation(s)
- Shraddha Parate
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Division of Applied Life Science, Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, South Korea; Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden.
| | - Vikas Kumar
- Department of Bio & Medical Big Data (BK4 Program), Division of Life Sciences, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, South Korea
| | - Jong Chan Hong
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Division of Applied Life Science, Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, South Korea.
| | - Keun Woo Lee
- Department of Bio & Medical Big Data (BK4 Program), Division of Life Sciences, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, South Korea.
| |
Collapse
|
8
|
Design, synthesis and anti-cancer evaluation of genistein-1,3,5-triazine derivatives. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
9
|
Identification of Activated Cdc42-Associated Kinase Inhibitors as Potential Anticancer Agents Using Pharmacoinformatic Approaches. Biomolecules 2023; 13:biom13020217. [PMID: 36830587 PMCID: PMC9953130 DOI: 10.3390/biom13020217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/08/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Activated Cdc42-associated kinase (ACK1) is essential for numerous cellular functions, such as growth, proliferation, and migration. ACK1 signaling occurs through multiple receptor tyrosine kinases; therefore, its inhibition can provide effective antiproliferative effects against multiple human cancers. A number of ACK1-specific inhibitors were designed and discovered in the previous decade, but none have reached the clinic. Potent and selective ACK1 inhibitors are urgently needed. METHODS In the present investigation, the pharmacophore model (PM) was rationally built utilizing two distinct inhibitors coupled with ACK1 crystal structures. The generated PM was utilized to screen the drug-like database generated from the four chemical databases. The binding mode of pharmacophore-mapped compounds was predicted using a molecular docking (MD) study. The selected hit-protein complexes from MD were studied under all-atom molecular dynamics simulations (MDS) for 500 ns. The obtained trajectories were ranked using binding free energy calculations (ΔG kJ/mol) and Gibb's free energy landscape. RESULTS Our results indicate that the three hit compounds displayed higher binding affinity toward ACK1 when compared with the known multi-kinase inhibitor dasatinib. The inter-molecular interactions of Hit1 and Hit3 reveal that compounds form desirable hydrogen bond interactions with gatekeeper T205, hinge region A208, and DFG motif D270. As a result, we anticipate that the proposed scaffolds might help in the design of promising selective ACK1 inhibitors.
Collapse
|
10
|
Singh P, Kumar V, Lee G, Jung TS, Ha MW, Hong JC, Lee KW. Pharmacophore-Oriented Identification of Potential Leads as CCR5 Inhibitors to Block HIV Cellular Entry. Int J Mol Sci 2022; 23:ijms232416122. [PMID: 36555761 PMCID: PMC9784205 DOI: 10.3390/ijms232416122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Cysteine-cysteine chemokine receptor 5 (CCR5) has been discovered as a co-receptor for cellular entry of human immunodeficiency virus (HIV). Moreover, the role of CCR5 in a variety of cancers and various inflammatory responses was also discovered. Despite the fact that several CCR5 antagonists have been investigated in clinical trials, only Maraviroc has been licensed for use in the treatment of HIV patients. This indicates that there is a need for novel CCR5 antagonists. Keeping this in mind, the present study was designed. The active CCR5 inhibitors with known IC50 value were selected from the literature and utilized to develop a ligand-based common feature pharmacophore model. The validated pharmacophore model was further used for virtual screening of drug-like databases obtained from the Asinex, Specs, InterBioScreen, and Eximed chemical libraries. Utilizing computational methods such as molecular docking studies, molecular dynamics simulations, and binding free energy calculation, the binding mechanism of selected inhibitors was established. The identified Hits not only showed better binding energy when compared to Maraviroc, but also formed stable interactions with the key residues and showed stable behavior throughout the 100 ns MD simulation. Our findings suggest that Hit1 and Hit2 may be potential candidates for CCR5 inhibition, and, therefore, can be considered for further CCR5 inhibition programs.
Collapse
Affiliation(s)
- Pooja Singh
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Vikas Kumar
- Department of Bio & Medical Big Data (BK), Division of Life Sciences, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Gihwan Lee
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Tae Sung Jung
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Woo Ha
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - Jong Chan Hong
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
- Correspondence: (J.C.H.); (K.W.L.)
| | - Keun Woo Lee
- Department of Bio & Medical Big Data (BK), Division of Life Sciences, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
- Correspondence: (J.C.H.); (K.W.L.)
| |
Collapse
|
11
|
Kadam US, Trinh KH, Kumar V, Lee KW, Cho Y, Can MHT, Lee H, Kim Y, Kim S, Kang J, Kim JY, Chung WS, Hong JC. Identification and structural analysis of novel malathion-specific DNA aptameric sensors designed for food testing. Biomaterials 2022; 287:121617. [PMID: 35728408 DOI: 10.1016/j.biomaterials.2022.121617] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/02/2022] [Accepted: 05/30/2022] [Indexed: 11/02/2022]
Abstract
Malathion is an organophosphate chemical (OPC) and a toxic contaminant that adversely impacts food quality, human health, biodiversity, and the environment. Due to its small size and unavailability of sensitive sensors, detection of malathion remains a challenging task. Often chromatographic methods employed to analyze OPCs suffer from several shortcomings, including cost, immobility, laboriousness, and unsuitability for point-of-care settings. Hence, developing a specific and sensitive diagnostic sensor for quick and inexpensive food testing is essential. We discovered four unique malathion-specific ssDNA aptamers; designed two independent sensing strategies using fluorescence labeling and Thioflavin T (ThT) displacement. Selected aptamers formed the G4-quadruplex-like (G4Q) structure, which helped develop a label-free detection approach with a 2.01 ppb limit of detection. Additionally, 3D structures of aptamers were generated and validated using a series of computational modeling programs. Furthermore, we explored structural features using CD spectroscopy and molecular docking, probing ligands' binding mode, and revealed vital intermolecular interactions with aptamers. Subsequently, the novel sensors were optimized to detect malathion from food samples. The novel sensors could be further developed to meet the demands of sensing and quantifying toxic contaminants from real food samples in field conditions.
Collapse
Affiliation(s)
- Ulhas Sopanrao Kadam
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
| | - Kien Hong Trinh
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea; Faculty of Biotechnology, Vietnam National University of Agriculture, 12400, Hanoi, Viet Nam
| | - Vikas Kumar
- Department of Bio and Medical Big Data (BK21 Four), Division of Life Science, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, 52828, Gyeongnam, South Korea
| | - Keun Woo Lee
- Department of Bio and Medical Big Data (BK21 Four), Division of Life Science, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, 52828, Gyeongnam, South Korea
| | - Yuhan Cho
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
| | - Mai-Huong Thi Can
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
| | - Hyebi Lee
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
| | - Yujeong Kim
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
| | - Sundong Kim
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
| | - Jaehee Kang
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
| | - Jae-Yean Kim
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
| | - Woo Sik Chung
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
| | - Jong Chan Hong
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea; Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
12
|
Kumar V, Parate S, Danishuddin, Zeb A, Singh P, Lee G, Jung TS, Lee KW, Ha MW. 3D-QSAR-Based Pharmacophore Modeling, Virtual Screening, and Molecular Dynamics Simulations for the Identification of Spleen Tyrosine Kinase Inhibitors. Front Cell Infect Microbiol 2022; 12:909111. [PMID: 35846777 PMCID: PMC9280624 DOI: 10.3389/fcimb.2022.909111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Spleen tyrosine kinase (SYK) is an essential mediator of immune cell signaling and has been anticipated as a therapeutic target for autoimmune diseases, notably rheumatoid arthritis, allergic rhinitis, asthma, and cancers. Significant attempts have been undertaken in recent years to develop SYK inhibitors; however, limited success has been achieved due to poor pharmacokinetics and adverse effects of inhibitors. The primary goal of this research was to identify potential inhibitors having high affinity, selectivity based on key molecular interactions, and good drug-like properties than the available inhibitor, fostamatinib. In this study, a 3D-QSAR model was built for SYK based on known inhibitor IC50 values. The best pharmacophore model was then used as a 3D query to screen a drug-like database to retrieve hits with novel chemical scaffolds. The obtained compounds were subjected to binding affinity prediction using the molecular docking approach, and the results were subsequently validated using molecular dynamics (MD) simulations. The simulated compounds were ranked according to binding free energy (ΔG), and the binding affinity was compared with fostamatinib. The binding mode analysis of selected compounds revealed that the hit compounds form hydrogen bond interactions with hinge region residue Ala451, glycine-rich loop residue Lys375, Ser379, and DFG motif Asp512. Identified hits were also observed to form a desirable interaction with Pro455 and Asn457, the rare feature observed in SYK inhibitors. Therefore, we argue that identified hit compounds ZINC98363745, ZINC98365358, ZINC98364133, and ZINC08789982 may help in drug design against SYK.
Collapse
|
13
|
Putative dual inhibitors of mTOR and RET kinase from natural products: Pharmacophore-based hierarchical virtual screening. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Patil SM, Asgaonkar KD, Bakhle B, Abhang K, Khater A, Singh M, Chitre TS. In search of HIV entry inhibitors using molecular docking, ADME and toxicity studies of some Thiazolidinone-Pyrazine derivatives against CXCR4 co-receptor. Curr HIV Res 2022; 20:152-162. [PMID: 35156573 DOI: 10.2174/1570162x20666220214123331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/07/2021] [Accepted: 01/10/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Entry inhibitors prevent binding of human immunodeficiency virus protein to the chemokine receptor CXCR4 and are used along with conventional anti-HIV therapy. They aid in restoring immunity and can prevent the development of HIV-TB co-infection. AIM In the present study various thiazolidinone-pyrazine derivatives earlier studied for NNRT inhibition activity were gauged for their entry inhibitor potential. OBJECTIVE Objective of the study is to perform molecular docking, ADME, toxicity studies of some Thiazolidinone-Pyrazine Derivatives as entry inhibitors targeting CXCR4 co-receptors. METHODS In-silico docking studies were performed using AutoDock Vina software and compounds were further studied for ADME and toxicity using SwissADME and pkCSM software respectively. RESULTS Taking into consideration the docking results, pharmacokinetic behaviour and toxicity profile four molecules (compound 1, 9, 11 and 16) have shown potential as entry inhibitors. CONCLUSION These compounds have shown potential as both NNRTI and entry inhibitors and hence can be used in management of immune compromised diseases like TB-HIV coinfection.
Collapse
Affiliation(s)
- Shital M Patil
- AISSMS College of Pharmacy, Kennedy Road, Pune-01, India
| | | | | | | | - Ayush Khater
- AISSMS College of Pharmacy, Kennedy Road, Pune-01, India
| | - Muskan Singh
- AISSMS College of Pharmacy, Kennedy Road, Pune-01, India
| | | |
Collapse
|
15
|
Investigation of Marine-Derived Natural Products as Raf Kinase Inhibitory Protein (RKIP)-Binding Ligands. Mar Drugs 2021; 19:md19100581. [PMID: 34677480 PMCID: PMC8539980 DOI: 10.3390/md19100581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 01/31/2023] Open
Abstract
Raf kinase inhibitory protein (RKIP) is an essential regulator of the Ras/Raf-1/MEK/ERK signaling cascade and functions by directly interacting with the Raf-1 kinase. The abnormal expression of RKIP is linked with numerous diseases including cancers, Alzheimer's and diabetic nephropathy. Interestingly, RKIP also plays an indispensable role as a tumor suppressor, thus making it an attractive therapeutic target. To date, only a few small molecules have been reported to modulate the activity of RKIP, and there is a need to explore additional scaffolds. In order to achieve this objective, a pharmacophore model was generated that explores the features of locostatin, the most potent RKIP modulator. Correspondingly, the developed model was subjected to screening, and the mapped compounds from Marine Natural Products (MNP) library were retrieved. The mapped MNPs after ensuing drug-likeness filtration were escalated for molecular docking, where locostatin was regarded as a reference. The MNPs exhibiting higher docking scores than locostatin were considered for molecular dynamics simulations, and their binding affinity towards RKIP was computed via MM/PBSA. A total of five molecules revealed significantly better binding free energy scores than compared to locostatin and, therefore, were reckoned as hits. The hits from the present in silico investigation could act as potent RKIP modulators and disrupt interactions of RKIP with its binding proteins. Furthermore, the identification of potent modulators from marine natural habitat can act as a future drug-discovery source.
Collapse
|
16
|
Huang B, Bai Z, Ye X, Zhou C, Xie X, Zhong Y, Lin K, Ma L. Structural analysis and binding sites of inhibitors targeting the CD47/SIRPα interaction in anticancer therapy. Comput Struct Biotechnol J 2021; 19:5494-5503. [PMID: 34712395 PMCID: PMC8517548 DOI: 10.1016/j.csbj.2021.09.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/18/2021] [Accepted: 09/30/2021] [Indexed: 12/28/2022] Open
Abstract
Cluster of differentiation 47 (CD47)/signal regulatory protein alpha (SIRPα) is a negative innate immune checkpoint signaling pathway that restrains immunosurveillance and immune clearance, and thus has aroused wide interest in cancer immunotherapy. Blockade of the CD47/SIRPα signaling pathway shows remarkable antitumor effects in clinical trials. Currently, all inhibitors targeting CD47/SIRPα in clinical trials are biomacromolecules. The poor permeability and undesirable oral bioavailability of biomacromolecules have caused researchers to develop small-molecule CD47/SIRPα pathway inhibitors. This review will summarize the recent advances in CD47/SIRPα interactions, including crystal structures, peptides and small molecule inhibitors. In particular, we have employed computer-aided drug discovery (CADD) approaches to analyze all the published crystal structures and docking results of small molecule inhibitors of CD47/SIRPα, providing insight into the key interaction information to facilitate future development of small molecule CD47/SIRPα inhibitors.
Collapse
Affiliation(s)
- Bo Huang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu 211198, China
| | - Zhaoshi Bai
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu 210009, China
| | - Xinyue Ye
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu 211198, China
| | - Chenyu Zhou
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu 211198, China
| | - Xiaolin Xie
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu 211198, China
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu 211198, China
| | - Yuejiao Zhong
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu 210009, China
| | - Kejiang Lin
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu 211198, China
| | - Lingman Ma
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu 211198, China
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu 211198, China
| |
Collapse
|
17
|
Kumar V, Parate S, Thakur G, Lee G, Ro HS, Kim Y, Kim HJ, Kim MO, Lee KW. Identification of CDK7 Inhibitors from Natural Sources Using Pharmacoinformatics and Molecular Dynamics Simulations. Biomedicines 2021; 9:1197. [PMID: 34572383 PMCID: PMC8468199 DOI: 10.3390/biomedicines9091197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 02/02/2023] Open
Abstract
The cyclin-dependent kinase 7 (CDK7) plays a crucial role in regulating the cell cycle and RNA polymerase-based transcription. Overexpression of this kinase is linked with various cancers in humans due to its dual involvement in cell development. Furthermore, emerging evidence has revealed that inhibiting CDK7 has anti-cancer effects, driving the development of novel and more cost-effective inhibitors with enhanced selectivity for CDK7 over other CDKs. In the present investigation, a pharmacophore-based approach was utilized to identify potential hit compounds against CDK7. The generated pharmacophore models were validated and used as 3D queries to screen 55,578 natural drug-like compounds. The obtained compounds were then subjected to molecular docking and molecular dynamics simulations to predict their binding mode with CDK7. The molecular dynamics simulation trajectories were subsequently used to calculate binding affinity, revealing four hits-ZINC20392430, SN00112175, SN00004718, and SN00262261-having a better binding affinity towards CDK7 than the reference inhibitors (CT7001 and THZ1). The binding mode analysis displayed hydrogen bond interactions with the hinge region residues Met94 and Glu95, DFG motif residue Asp155, ATP-binding site residues Thr96, Asp97, and Gln141, and quintessential residue outside the kinase domain, Cys312 of CDK7. The in silico selectivity of the hits was further checked by docking with CDK2, the close homolog structure of CDK7. Additionally, the detailed pharmacokinetic properties were predicted, revealing that our hits have better properties than established CDK7 inhibitors CT7001 and THZ1. Hence, we argue that proposed hits may be crucial against CDK7-related malignancies.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Bio & Medical Big Data (BK4 Program), Division of Life Sciences, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea;
| | - Shraddha Parate
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Division of Applied Life Science, Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea; (S.P.); (G.L.)
| | - Gunjan Thakur
- Department of Veterinary Medicine, Institute of Animal Medicine, Gyeongsang National University (GNU), Jinju 52828, Korea;
| | - Gihwan Lee
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Division of Applied Life Science, Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea; (S.P.); (G.L.)
| | - Hyeon-Su Ro
- Department of Bio & Medical Big Data (BK4 Program), Research Institute of Life Sciences, Gyeongsang National University (GNU), Jinju 52828, Korea;
| | - Yongseong Kim
- School of Cosmetics and Food Development, Kyungnam University, Masan 631-701, Korea;
| | - Hong Ja Kim
- Division of Life Sciences and Applied Life Science (BK21 Four), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea;
| | - Myeong Ok Kim
- Division of Life Sciences and Applied Life Science (BK21 Four), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea;
| | - Keun Woo Lee
- Department of Bio & Medical Big Data (BK4 Program), Division of Life Sciences, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea;
| |
Collapse
|
18
|
Computational Investigation Identified Potential Chemical Scaffolds for Heparanase as Anticancer Therapeutics. Int J Mol Sci 2021; 22:ijms22105311. [PMID: 34156395 PMCID: PMC8157885 DOI: 10.3390/ijms22105311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Heparanase (Hpse) is an endo-β-D-glucuronidase capable of cleaving heparan sulfate side chains. Its upregulated expression is implicated in tumor growth, metastasis and angiogenesis, thus making it an attractive target in cancer therapeutics. Currently, a few small molecule inhibitors have been reported to inhibit Hpse, with promising oral administration and pharmacokinetic (PK) properties. In the present study, a ligand-based pharmacophore model was generated from a dataset of well-known active small molecule Hpse inhibitors which were observed to display favorable PK properties. The compounds from the InterBioScreen database of natural (69,034) and synthetic (195,469) molecules were first filtered for their drug-likeness and the pharmacophore model was used to screen the drug-like database. The compounds acquired from screening were subjected to molecular docking with Heparanase, where two molecules used in pharmacophore generation were used as reference. From the docking analysis, 33 compounds displayed higher docking scores than the reference and favorable interactions with the catalytic residues. Complex interactions were further evaluated by molecular dynamics simulations to assess their stability over a period of 50 ns. Furthermore, the binding free energies of the 33 compounds revealed 2 natural and 2 synthetic compounds, with better binding affinities than reference molecules, and were, therefore, deemed as hits. The hit compounds presented from this in silico investigation could act as potent Heparanase inhibitors and further serve as lead scaffolds to develop compounds targeting Heparanase upregulation in cancer.
Collapse
|