1
|
Ruiz-Mendoza FJ, Campos-Dominguez E, Guadalupe Torres-Salazar M, Álvarez-Hernández A, Mendoza-Espinosa D. Heteroleptic (NHC/MIC) Biscarbene Ag(I) and Au(I) Complexes: Synthesis, Characterization and Catalytic Applications. Chempluschem 2025; 90:e202400765. [PMID: 39887890 DOI: 10.1002/cplu.202400765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
A series of hetero-biscarbene silver(I) and gold(I) complexes of the general formula [NHC-M-MIC]PF6 (NHC=imidazol-2-ylidene, MIC=1,2,3-triazol-5-ylidene) have been prepared via the treatment of NHC-M-Cl precursors in reaction with an in situ generated mesoionic carbene (MIC). The new heteroleptic complexes have been fully characterized including NMR spectroscopy, elemental analysis, melting points and single crystal X-ray diffraction. The silver(I) derivatives were employed successfully in the solvent free KA2 (ketone-alkyne-amine) coupling for the preparation of a series of quaternary carbon-containing propargyl amines while, the gold(I) biscarbenes, demonstrated a good performance in the A3 (aldehyde, amine, alkyne) coupling and the benzylic oxidation processes under low catalyst loadings.
Collapse
Affiliation(s)
- Francisco J Ruiz-Mendoza
- Área Académica de Química. Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma, Hidalgo, 42090, México
| | - Emmanuel Campos-Dominguez
- Área Académica de Química. Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma, Hidalgo, 42090, México
| | - M Guadalupe Torres-Salazar
- Área Académica de Química. Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma, Hidalgo, 42090, México
| | - Alejandro Álvarez-Hernández
- Área Académica de Química. Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma, Hidalgo, 42090, México
| | - Daniel Mendoza-Espinosa
- Área Académica de Química. Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma, Hidalgo, 42090, México
| |
Collapse
|
2
|
Esarev IV, Wu C, Kirsanova AA, Türck S, Lippmann P, Jones PG, Babak MV, Ott I. Silver N-Heterocyclic Biscarbene Complexes: Potent Inhibitors of Thioredoxin Reductase with Anticancer Activity in Vitro and in Vivo. Chem Asian J 2025; 20:e202401672. [PMID: 39824765 DOI: 10.1002/asia.202401672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 01/20/2025]
Abstract
Silver N-heterocyclic carbene (NHC) complexes are known to form biscarbene species from monocarbene analogs in protic polar solvents. However, the effect of the respective species of silver NHC complexes on their biological activity against bacteria or cancer cells has not been systematically explored, either in vitro or in vivo. The direct and simple conversion of monocarbene silver N-heterocyclic carbene (NHC) halide complexes (NHC)AgX, (X=Cl, Br) 1 a/b-5 a/b to their biscarbene analogues (NHC)2AgX 1 c/d-5 c/d is reported. The biscarbenes demonstrated generally lower activity against bacteria compared to the monocarbene complexes; however, both types showed similar activity against tumor cells and a non-tumor reference cell line. Selected mono- and biscarbene complexes 3 a and 3 c showed similar strong inhibitory effects on thioredoxin reductase in vitro and in cellulo and had a similar level of metal uptake into A549 cells. The subsequent evaluation of their effects in vivo revealed relatively low toxicity and high antitumoral efficacy of both selected complexes in mice. The biscarbene silver organometallic 3 c showed the most pronounced reduction of tumor growth in animals. The results indicate that both (NHC)AgX and (NHC)2AgX complexes could trigger their anticancer activity as biscarbene complexes, making this the preferred form for future anticancer metallodrug development.
Collapse
Affiliation(s)
- Igor V Esarev
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106, Braunschweig, Germany
| | - Chengnan Wu
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, China
| | - Anna A Kirsanova
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, China
| | - Sebastian Türck
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106, Braunschweig, Germany
| | - Petra Lippmann
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106, Braunschweig, Germany
| | - Peter G Jones
- Institute of Inorganic and Analytical Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, China
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106, Braunschweig, Germany
| |
Collapse
|
3
|
Ataş AD, Akın-Polat Z, Gülpınar DG, Şahin N. The first evaluation of the in vitro effects of silver(I)-N-heterocyclic carbene complexes on Encephalitozoon intestinalis and Leishmania major promastigotes. J Biol Inorg Chem 2024; 29:499-509. [PMID: 38918208 PMCID: PMC11343777 DOI: 10.1007/s00775-024-02063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
Encephalitozoon intestinalis is an opportunistic microsporidian parasite that primarily infects immunocompromised individuals, such as those with HIV/AIDS or undergoing organ transplantation. Leishmaniasis is responsible for parasitic infections, particularly in developing countries. The disease has not been effectively controlled due to the lack of an effective vaccine and affordable treatment options. Current treatment options for E. intestinalis infection and leishmaniasis are limited and often associated with adverse side effects. There is no previous study in the literature on the antimicrosporidial activities of Ag(I)-N-heterocyclic carbene compounds. In this study, the in vitro antimicrosporidial activities of previously synthesized Ag(I)-N-heterocyclic carbene complexes were evaluated using E. intestinalis spores cultured in human renal epithelial cell lines (HEK-293). Inhibition of microsporidian replication was determined by spore counting. In addition, the effects of the compounds on Leishmania major promastigotes were assessed by measuring metabolic activity or cell viability using a tetrazolium reaction. Statistical analysis was performed to determine significant differences between treated and control groups. Our results showed that the growth of E. intestinalis and L. major promastigotes was inhibited by the tested compounds in a concentration-dependent manner. A significant decrease in parasite viability was observed at the highest concentrations. These results suggest that the compounds have potential anti-microsporidial and anti-leishmanial activity. Further research is required to elucidate the underlying mechanisms of action and to evaluate the efficacy of the compounds in animal models or clinical trials.
Collapse
Affiliation(s)
- Ahmet Duran Ataş
- Departments of Parasitology, Faculty of Medicine, Cumhuriyet University, 58140, Sivas, Turkey
| | - Zübeyda Akın-Polat
- Departments of Parasitology, Faculty of Medicine, Cumhuriyet University, 58140, Sivas, Turkey.
| | - Derya Gül Gülpınar
- Departments of Parasitology, Faculty of Medicine, Cumhuriyet University, 58140, Sivas, Turkey
| | - Neslihan Şahin
- Department of Science Education, Faculty of Education, Cumhuriyet University, 58040, Sivas, Turkey.
| |
Collapse
|
4
|
Bugnon Q, Melendez C, Desiatkina O, Fayolles de Chaptes L, Holzer I, Păunescu E, Hilty M, Furrer J. In vitro antibacterial activity of dinuclear thiolato-bridged ruthenium(II)-arene compounds. Microbiol Spectr 2023; 11:e0095423. [PMID: 37815336 PMCID: PMC10714934 DOI: 10.1128/spectrum.00954-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/28/2023] [Indexed: 10/11/2023] Open
Abstract
IMPORTANCE The in vitro assessment of diruthenium(II)-arene compounds against Escherichia coli, Streptococcus pneumoniae, and Staphylococcus aureus showed a significant antibacterial activity of some compounds against S. pneumoniae, with minimum inhibitory concentration (MIC) values ranging from 1.3 to 2.6 µM, and a medium activity against E. coli, with MIC of 25 µM. The nature of the substituents anchored on the bridging thiols and the compounds molecular weight appear to significantly influence the antibacterial activity. Fluorescence microscopy showed that these ruthenium compounds enter the bacteria and do not accumulate in the cell wall of gram-positive bacteria. These diruthenium(II)-arene compounds exhibit promising activity against S. aureus and S. pneumoniae and deserve to be considered for further studies, especially the compounds bearing larger benzo-fused lactam substituents.
Collapse
Affiliation(s)
- Quentin Bugnon
- Department of Medicine, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Department of Chemistry, Biochemistry and Pharmaceuticals Sciences, University of Bern, Bern, Switzerland
| | - Camilo Melendez
- Department of Chemistry, Biochemistry and Pharmaceuticals Sciences, University of Bern, Bern, Switzerland
| | - Oksana Desiatkina
- Department of Chemistry, Biochemistry and Pharmaceuticals Sciences, University of Bern, Bern, Switzerland
| | - Louis Fayolles de Chaptes
- Department of Chemistry, Biochemistry and Pharmaceuticals Sciences, University of Bern, Bern, Switzerland
| | - Isabelle Holzer
- Department of Chemistry, Biochemistry and Pharmaceuticals Sciences, University of Bern, Bern, Switzerland
| | - Emilia Păunescu
- Department of Chemistry, Biochemistry and Pharmaceuticals Sciences, University of Bern, Bern, Switzerland
| | - Markus Hilty
- Department of Medicine, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Julien Furrer
- Department of Chemistry, Biochemistry and Pharmaceuticals Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Ma FJ, Huang X, Li XY, Tang SL, Li DJ, Cheng YZ, Azam M, Zhang LP, Sun D. Synthesis, structure and biological activity of silver(I) complexes containing triphenylphosphine and non-steroidal anti-inflammatory drug ligands. J Inorg Biochem 2023; 250:112404. [PMID: 39492372 DOI: 10.1016/j.jinorgbio.2023.112404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/05/2024]
Abstract
Two Ag(I) complexes containing triphenylphosphine and non-steroidal anti-inflammatory drug ligands were synthesized and investigated using various spectroscopic studies and single crystal X-ray crystallography. The binding properties of tolfenamic acid, ibuprofen and the two complexes with DNA and BSA were investigated using UV or fluorescence spectroscopy. The results showed that two Ag(I) complexes bound to DNA by the intercalation mode and interacted with BSA using a static quenching procedure. Furthermore, the results of fluorescence titration suggested that the complexes had good affinity for BSA and one binding site close to BSA. The in vitro cytotoxicity of tolfenamic acid, ibuprofen, and the two complexes against four human carcinoma cell lines (MCF-7, HepG-2, A549, and HeLa cells) was tested using an MTT assay. Complex 1 had higher cytotoxicity against HeLa cells. The intracellular reactive oxygen species (ROS) assay showed complex 1 induced the ROS generation in HeLa cells in a concentration dependent manner. Flow cytometry analysis showed complex 1 could suppress the HeLa cells growth during the G0/G1 phase and induce apoptosis in dose-depended manner.
Collapse
Affiliation(s)
- Feng-Jie Ma
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Xiang Huang
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Xue-Ying Li
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Shi-Li Tang
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - De-Jun Li
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Yuan-Zheng Cheng
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China.
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Li-Ping Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China.
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, PR China.
| |
Collapse
|
6
|
Ronga L, Varcamonti M, Tesauro D. Structure-Activity Relationships in NHC-Silver Complexes as Antimicrobial Agents. Molecules 2023; 28:molecules28114435. [PMID: 37298911 DOI: 10.3390/molecules28114435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Silver has a long history of antimicrobial activity and received an increasing interest in last decades owing to the rise in antimicrobial resistance. The major drawback is the limited duration of its antimicrobial activity. The broad-spectrum silver containing antimicrobial agents are well represented by N-heterocyclic carbenes (NHCs) silver complexes. Due to their stability, this class of complexes can release the active Ag+ cations in prolonged time. Moreover, the properties of NHC can be tuned introducing alkyl moieties on N-heterocycle to provide a range of versatile structures with different stability and lipophilicity. This review presents designed Ag complexes and their biological activity against Gram-positive, Gram-negative bacteria and fungal strains. In particular, the structure-activity relationships underlining the major requirements to increase the capability to induce microorganism death are highlighted here. Moreover, some examples of encapsulation of silver-NHC complexes in polymer-based supramolecular aggregates are reported. The targeted delivery of silver complexes to the infected sites will be the most promising goal for the future.
Collapse
Affiliation(s)
- Luisa Ronga
- Institut des Sciences Analytiques et de Physico-Chimie Pour l'Environnement et les Matériaux, Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, 64053 Pau, France
| | - Mario Varcamonti
- Department of Biology, University of Naples "Federico II", Via Cynthia, 80143 Naples, Italy
| | - Diego Tesauro
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Montesano, 49, 80131 Naples, Italy
| |
Collapse
|
7
|
A chiral cylinder-like metallomacrocycles bis tri-N-heterocyclic carbene silver(I): Synthesis, characterization and anticancer study. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Nadeem RY, Yaqoob M, Yam W, Haque RA, Iqbal MA. Synthesis, characterization and biological evaluation of Bis-benzimidazolium salts and their silver(I)-N-heterocyclic carbene complexes. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02942-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Golzadeh B, Kazeri-shandiz S, Akbari A. On the nature of M L bond and the puckering of some B-heterocyclic carbenes and silylenes in their relevant complexes with coinage metals: A theoretical quest. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Demir Atli D, Şen B. Dinuclear silver-bis(N-heterocyclic carbene) complexes: Synthesis, catalytic activity in propargylamine formation and computational studies. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1972097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Deniz Demir Atli
- Faculty of Science and Arts, Department of Chemistry, Manisa Celal Bayar University, Manisa, Turkey
| | - Betül Şen
- Faculty of Science, Department of Physics, Dokuz Eylül University, Izmir, Buca, Turkey
| |
Collapse
|