1
|
Güneş F, Güller U, Güller P, Anil B, Koca M. Synthesis and Carbonic Anhydrase Inhibition Profiles of N-(3-sulfamoylphenyl)propanamide/benzamide Derivatives: Experimental and Computational Insights With Absorption, Distribution, Metabolism, and Excretion Profiling. Chem Biodivers 2025:e03435. [PMID: 40424632 DOI: 10.1002/cbdv.202403435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 05/01/2025] [Accepted: 05/01/2025] [Indexed: 05/29/2025]
Abstract
Carbonic anhydrases (CA) I and II are the most abundant CA isozymes in erythrocytes and have been therapeutic targets in treating glaucoma, hypertension, ulcers, osteoporosis, and, neurological disorders. In this study, N-(3-sulfamoylphenyl) propanamide/benzamide derivatives were synthesized. Then, the CA isozymes were isolated and the inhibitory effects of the synthesized derivatives on these enzymes were investigated experimentally. The mechanism of inhibition was estimated by molecular docking studies. Finally, the Absorption, Distribution, Metabolism, and Excretion properties of derivatives were evaluated and analyzed in terms of pharmacokinetics and drug similarity. P4 was the most effective inhibitor among derivatives against both hCA-I and hCA-II with Ki constants as 0.22 ± 0.01 and 0.33 ± 0.05 µM, respectively. Besides, P4 had a higher binding affinity to both enzymes with free binding energies of -8.14 and -8.03 kcal/mol. According to drug-likeness analysis, it was predicted that the derivatives comply with Lipinski's rule of five without any deviation.
Collapse
Affiliation(s)
- Ferhat Güneş
- Department of Pharmaceutical Chemistry, Atatürk University, Faculty of Pharmacy, Erzurum, Türkiye
- Department of Pharmaceutical Chemistry, Gazi University, Institute of Health Sciences, Ankara, Türkiye
| | - Uğur Güller
- Department of Food Engineering, Iğdır University, Faculty of Engineering, Iğdır, Türkiye
| | - Pinar Güller
- Department of Chemistry, Atatürk University, Faculty of Sciences, Erzurum, Türkiye
| | - Bariş Anil
- Department of Chemistry, Atatürk University, Faculty of Sciences, Erzurum, Türkiye
| | - Mehmet Koca
- Department of Pharmaceutical Chemistry, Atatürk University, Faculty of Pharmacy, Erzurum, Türkiye
| |
Collapse
|
2
|
Kalay E, Korkmaz IN, Kacı FN, Aslan ON, Güller P, Tokalı FS, Kalın R. Design, synthesis, and biological studies of isoniazid-based hydrazone Derivatives: Antibacterial, anticancer, and enzyme inhibitory properties. Arch Biochem Biophys 2025; 770:110450. [PMID: 40334960 DOI: 10.1016/j.abb.2025.110450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/17/2025] [Accepted: 05/04/2025] [Indexed: 05/09/2025]
Abstract
Discovery of novel and effective molecules is of vital importance in solving global health problems such as cancer, neurodegenerative diseases and antibiotic resistance. In this study, a series of isoniazid-based hydrazone derivatives were synthesized for the first time via the condensation of isoniazid with structurally diverse aldehydes, including Mannich base, acylated, and sulfonate-containing derivatives. The primary focus was to assess their anticancer properties, antibacterial efficacy, and enzyme inhibition potential, contributing to the development of promising therapeutic agents. In addition, enzyme inhibition mechanisms were predicted by molecular docking methods, structural explanations were made for the biological activities and drug likeness characters of these molecules. The highest inhibitory effects were exhibited by compounds 6a for hCAI, 5b for hCAII, and 6a for AChE with Ki constants of 0.020 ± 0.003, 0.019 ± 0.002, and 0.027 ± 0.004 μM respectively. For hCAs acetazoleamide was used as standard inhibitor (having IC50 0.068 μM and 0.273 μM for hCAI and hCAII) and tacrine was used for AChE with 0.047 μM IC50. Compound 5b showed the highest binding scores for all enzymes in molecular docking tests having -8.15, -8.56, and -11.09 kcal/mol against CAI, CAII and AChE receptors. For both antibacterial and anticancer research, compound 5b had the most significant outcomes. In particular, mechanistic investigation of antibacterial, anticancer and enzyme inhibition effects will help new treatment options and better understanding of biochemical mechanisms. The study presents a new and up-to-date technique for chemical synthesis and biological evaluation.
Collapse
Affiliation(s)
- Erbay Kalay
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, 36100, Kars, Türkiye
| | - Işıl Nihan Korkmaz
- Muş Alparslan University, Faculty of Applied Sciences, Department of Plant Production and Technologies, 49250, Mus, Türkiye
| | - Fatma Necmiye Kacı
- St. James's University Hospital, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Osman Nuri Aslan
- Eastern Anatolia High Technology Application and Research Center, Atatürk University, 25240, Erzurum, Türkiye
| | - Pınar Güller
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Türkiye
| | - Feyzi Sinan Tokalı
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, 36100, Kars, Türkiye
| | - Ramazan Kalın
- Department of Basic Science, Faculty of Science, Erzurum Technical University, 25050, Erzurum, Türkiye.
| |
Collapse
|
3
|
Kesebir AÖ, Dağalan Z, Güller P, Nişancı B, Küfrevioğlu Öİ. In vitro inhibition potency of malononitrile derivatives on the activity of two pentose phosphate pathway enzymes: accompanied by molecular docking evaluation. Z NATURFORSCH C 2025; 80:33-40. [PMID: 38497359 DOI: 10.1515/znc-2023-0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/21/2024] [Indexed: 03/19/2024]
Abstract
Many disorders, including cancer and malaria, could be targeted via the pentose phosphate pathway (PPP), whose products are key in biosynthetic reactions in cells. The goal of this study was to find new PPP inhibitors. The inhibition effects of malononitrile derivatives on Glucose 6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) were analyzed through in vitro experiments. Besides, molecular docking studies were performed to predict the interactions having role in inhibition of compounds. K i constants of derivatives were found between 4.24 ± 0.46-69.63 ± 7.75 µM for G6PD and 1.91 ± 0.12-95.07 ± 11.08 µM for 6PGD. Derivatives indicated non-competitive inhibition on both enzymes except for compound 4. The findings of the molecular docking studies revealed that free-binding energy estimations agreed with in vitro data. The structure of these malononitrile derivatives may guide for drug discovery in targeting the PPP.
Collapse
Affiliation(s)
- Arzu Öztürk Kesebir
- Department of Property Protection and Security, Vocational School of Patnos, Ağrı Ibrahim Çeçen University, Patnos, Ağrı, Türkiye
| | - Ziya Dağalan
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Türkiye
| | - Pınar Güller
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Türkiye
| | - Bilal Nişancı
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Türkiye
| | | |
Collapse
|
4
|
Güleç Ö, Türkeş C, Arslan M, Demir Y, Dincer B, Ece A, Beydemir Ş. Novel beta-lactam substituted benzenesulfonamides: in vitro enzyme inhibition, cytotoxic activity and in silico interactions. J Biomol Struct Dyn 2024; 42:6359-6377. [PMID: 37540185 DOI: 10.1080/07391102.2023.2240889] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/01/2023] [Indexed: 08/05/2023]
Abstract
In this study, a library of twelve beta-lactam-substituted benzenesulfonamides (5a-l) was synthesized using the tail-approach method. The compounds were characterized using IR, 1H NMR, 13C NMR and elemental analysis techniques. These newly synthesized compounds were tested for their ability to inhibit the activity of two carbonic anhydrases (hCA) isoforms, I and II, and acetylcholinesterase (AChE) in vitro. The results showed that the synthesized compounds were potent inhibitors of hCA I, with KIs in the low nanomolar range (66.60-278.40 nM) than the reference drug acetazolamide (AAZ), which had a KI of 439.17 nM. The hCA II was potently inhibited by compounds 5a, 5d-g and 5l, with KIs of 69.56, 39.64, 79.63, 74.76, 78.93 and 74.94 nM, respectively (AAZ, KI of 98.28 nM). Notably, compound 5a selectively inhibited hCA II with a selectivity of > 4-fold over hCA I. In terms of inhibition of AChE, the synthesized compounds had KIs ranging from 30.95 to 154.50 nM, compared to the reference drug tacrine, which had a KI of 159.61 nM. Compounds 5f, 5h and 5l were also evaluated for their ability to inhibit the MCF-7 cancer cell line proliferation and were found to have promising anticancer activity, more potent than 5-fluorouracil and cisplatin. Molecular docking studies suggested that the sulfonamide moiety of these compounds fits snugly into the active sites of hCAs and interacts with the Zn2+ ion. Furthermore, molecular dynamics simulations were performed for 200 ns to assess the stability and dynamics of each enzyme-ligand complex. The acceptability of the compounds based on Lipinski's and Jorgensen's rules was also estimated from the ADME/T results. These results indicate that the synthesized molecules have the potential to be developed into effective and safe inhibitors of hCAs and AChE and could be lead agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Özcan Güleç
- Department of Chemistry, Faculty of Arts and Science, Sakarya University, Sakarya, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Mustafa Arslan
- Department of Chemistry, Faculty of Arts and Science, Sakarya University, Sakarya, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Busra Dincer
- Department of Pharmacology, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, İstanbul, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
5
|
Uddin KM, Sakib M, Siraji S, Uddin R, Rahman S, Alodhayb A, Alibrahim KA, Kumer A, Matin MM, Bhuiyan MMH. Synthesis of New Derivatives of Benzylidinemalononitrile and Ethyl 2-Cyano-3-phenylacrylate: In Silico Anticancer Evaluation. ACS OMEGA 2023; 8:25817-25831. [PMID: 37521603 PMCID: PMC10373203 DOI: 10.1021/acsomega.3c01123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/16/2023] [Indexed: 08/01/2023]
Abstract
In this study, microwave-assisted Knoevenagel condensation was used to produce two novel series of derivatives (1-6) from benzylidenemalononitrile and ethyl 2-cyano-3-phenylacrylate. The synthesized compounds were characterized using Fourier transform infrared (FT-IR) and 1H NMR spectroscopies. The pharmacodynamics, toxicity profiles, and biological activities of the compounds were evaluated through an in silico study using prediction of activity spectra for substances (PASS) and Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) studies. According to the PASS prediction results, compounds 1-6 showed greater antineoplastic potency for breast cancer than other types of cancer. Molecular docking was employed to investigate the binding mode and interaction sites of the derivatives (1-6) with three human cancer targets (HER2, EGFR, and human FPPS), and the protein-ligand interactions of these derivatives were compared to those reference standards Tyrphostin 1 (AG9) and Tyrphostin 23 (A23). Compound 3 showed a stronger effect on two cell lines (HER2 and FPPS) than the reference drugs. A 20 ns molecular dynamics (MD) simulation was also conducted to examine the ligand's behavior at the active binding site of the modeled protein, utilizing the lowest docking energy obtained from the molecular docking study. Enthalpies (ΔH), Gibbs free energies (ΔG), entropies (ΔS), and frontier molecular orbital parameters (highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap, hardness, and softness) were calculated to confirm the thermodynamic stability of all derivatives. The consistent results obtained from the in silico studies suggest that compound 3 has potential as a new anticancer and antiparasitic drug. Further research is required to validate its efficacy.
Collapse
Affiliation(s)
- Kabir M. Uddin
- Department
of Biochemistry and Microbiology, North
South University, Bashundhara, Dhaka 1217, Bangladesh
| | - Mohiuddin Sakib
- Department
of Biochemistry and Microbiology, North
South University, Bashundhara, Dhaka 1217, Bangladesh
| | - Siam Siraji
- Department
of Biochemistry and Microbiology, North
South University, Bashundhara, Dhaka 1217, Bangladesh
| | - Riaz Uddin
- Biorganic
and Medicinal Chemistry Laboratory, Department of Chemistry, University of Chittagong, Chattogram 4331, Bangladesh
| | - Shofiur Rahman
- Biological
and Environmental Sensing Research Unit, King Abdullah Institute for
Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Alodhayb
- Biological
and Environmental Sensing Research Unit, King Abdullah Institute for
Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
- Research
Chair for Tribology, Surface, and Interface Sciences, Department of
Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khuloud A. Alibrahim
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ajoy Kumer
- Department
of Chemistry, European University of Bangladesh, Gabtoli, Dhaka 1216, Bangladesh
| | - M. Mahbubul Matin
- Biorganic
and Medicinal Chemistry Laboratory, Department of Chemistry, University of Chittagong, Chattogram 4331, Bangladesh
| | - Md. Mosharef H. Bhuiyan
- Biorganic
and Medicinal Chemistry Laboratory, Department of Chemistry, University of Chittagong, Chattogram 4331, Bangladesh
| |
Collapse
|
6
|
Korkmaz IN, Güller U, Kalın R, Özdemir H, Küfrevioğlu Öİ. Structure-Activity Relationship of Methyl 4-Aminobenzoate Derivatives as Being Drug Candidate Targeting Glutathione Related Enzymes: in Vitro and in Silico Approaches. Chem Biodivers 2023; 20:e202201220. [PMID: 37043708 DOI: 10.1002/cbdv.202201220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/13/2023] [Indexed: 04/14/2023]
Abstract
A thiol compound, glutathione, is essential for healthy cell defence against xenobiotics and oxidative stress. Glutathione reductase (GR) and glutathione S-transferase (GST) are two glutathione-related enzymes that function in the antioxidant and the detoxification systems. In this study, potential inhibitory effects of methyl 4-aminobenzoate derivatives on GR and GST were examined in vitro. GR and GST were isolated from human erythrocytes with 7.63 EU/mg protein and 5.66 EU/mg protein specific activity, respectively. It was found that compound 1 (methyl 4-amino-3-bromo-5-fluorobenzoate with Ki value of 0.325±0.012 μM) and compound 5 (methyl 4-amino-2-nitrobenzoate with Ki value of 92.41±22.26 μM) inhibited GR and GST stronger than other derivatives. Furthermore, a computer-aided method was used to predict the binding affinities of derivatives, ADME characteristics, and toxicities. Derivatives 4 (methyl 4-amino-2-bromobenzoate) and 6 (methyl 4-amino-2-chlorobenzoate) were estimated to have the lowest binding energies into GR and GST receptors, respectively according to results of in silico studies.
Collapse
Affiliation(s)
- Işıl Nihan Korkmaz
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, 25240, Türkiye
| | - Uğur Güller
- Department of Food Engineering, Faculty of Engineering, Iğdır University, Iğdır, 76100, Türkiye
| | - Ramazan Kalın
- Department of Basic Science, Faculty of Science, Erzurum Technical University, Erzurum, 25700, Türkiye
| | - Hasan Özdemir
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, 25240, Türkiye
| | - Ömer İrfan Küfrevioğlu
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, 25240, Türkiye
| |
Collapse
|
7
|
Koca M, Anıl B, Nişancı B, Bayır Y, Ercan Z, Özakar E. Synthesis of New Ester Derivatives of Salicylic Acid and Evaluation of Their COX Inhibitory Potential. Chem Biodivers 2023; 20:e202200509. [PMID: 36514919 DOI: 10.1002/cbdv.202200509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Salicylic acid is an NSAID with serious side effects on the GIS. The side effects of salicylic acid on the GIS are slightly reduced by acetylating salicylic acid. 12 new ester analogs of salicylic acid were synthesized with high yields in this study. The chemical structures of the synthesized compounds were characterized by 1 H-NMR, 13 C-NMR, and HRMS spectra. The inhibitory potential of the compounds was evaluated on COXs by in vitro and in silico studies. The COX2 inhibitory activity of the most potent inhibitor MEST1 (IC50 : 0.048 μM) was found to be much higher than the COX2 inhibitory activity of aspirin (IC50 : 2.60 μM). In docking studies, the strongest inhibitor among the compounds synthesized was predicted to be MEST1, with the lowest binding energy. Docking studies revealed that MEST1 extends from the hydrophobic channel to the top of the cyclooxygenase active site, forming various interactions with residues in the binding pocket.
Collapse
Affiliation(s)
- Mehmet Koca
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, 25240, Turkey
| | - Barış Anıl
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, 25240, Turkey
| | - Bilal Nişancı
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, 25240, Turkey
| | - Yasin Bayır
- Department of Biochemistry, Faculty of Pharmacy, Atatürk University, Erzurum, 25240, Turkey
| | - Zeynep Ercan
- Department of Biochemistry, Faculty of Pharmacy, Atatürk University, Erzurum, 25240, Turkey
| | - Emrah Özakar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Atatürk University, Erzurum, 25240, Turkey
| |
Collapse
|
8
|
Korkmaz IN. 2-amino thiazole derivatives as inhibitors of some metabolic enzymes: An In Vitro and In Silico study. Biotechnol Appl Biochem 2022; 70:659-669. [PMID: 35857901 DOI: 10.1002/bab.2388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022]
Abstract
The thiazole derivatives are desirable compounds in the evaluation of their biological activities such as antiprotozoal antibacterial, antifungal, antituberculosis. Considering the medical application potential of 2-amino thiazole compounds, we aimed to determine the effects of 2-amino thiazole derivatives on the activities of carbonic anhydrase I-II isoenzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Among the chemicals we used in our study, 2-Amino-4-(4-chlorophenyl)thiazole compound exhibited the best inhibition against hCA I with Ki of 0.008±0.001 μM. The 2-Amino-4-(4-bromophenyl)thiazole compound exhibited the best inhibition against hCA II, AChE and BChE with Ki of 0.124±0.017 μM, 0.129±0.030 μM and 0.083±0.041 μM, respectively. Molecular docking analysis showed that compound 2-Amino-4-(5,6,7,8-tetrahydro-2-naphthyl)thiazole had the highest inhibitory potency against hCA I, hCA II, AChE, BChE with the estimated binding energy of -6.75 , -7.61, -7.86, -7.96 kcal/mol, respectively. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Işıl Nihan Korkmaz
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, 25240, Turkey
| |
Collapse
|
9
|
Kılınç N, Güller U, Alım Z. Identification of the Inhibition Effects of Some Natural Antiproliferative Agents on CA-I, CA-II, and AChE Activities Isolated from Human Erythrocytes by Kinetic and Molecular Docking Studies. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022040124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Koca M, Güller U, Güller P, Dağalan Z, Nişancı B. Design and Synthesis of Novel Dual Cholinesterase Inhibitors: In Vitro Inhibition Studies Supported with Molecular Docking. Chem Biodivers 2022; 19:e202200015. [PMID: 35470963 DOI: 10.1002/cbdv.202200015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/11/2022] [Indexed: 11/05/2022]
Abstract
The major cholinesterase enzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), are important in the therapy of Alzheimer's disease (AD) based on the cholinergic hypothesis. As a result, in recent years, the investigation of dual cholinesterase inhibition methods has become important among scientists. In this study, novel N-(4-chlorobenzyl)-3,4-dimethoxy-N-(m-substituted)benzamide derivatives were synthesized. Then, inhibitory properties of these derivatives were examined in human AChE and BuChE in vitro and possible interactions were determined by molecular docking studies. All benzamide derivatives were exhibited dual inhibitory character and high BBB permeability. The most effective inhibitor was found as N7 for both AChE and BuChE with IC50 values of 1.57 and 2.85 μM, respectively. Besides the most potent inhibitor was predicted as N7 in terms of binding energies with -12.18 kcal/mol and -9.92 kcal/mol, respectively. The reason for these results is that bromine (N7) is the bulkiest molecule among the other substituted groups. These derivatives could be exploited to develop new medications for the treatment of central nervous system-related diseases as AD by acting as dual inhibitors of AChE and BChE.
Collapse
Affiliation(s)
- Mehmet Koca
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Uğur Güller
- Department of Food Engineering, Faculty of Engineering, Iğdır University, Iğdır, Turkey
| | - Pınar Güller
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - Ziya Dağalan
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - Bilal Nişancı
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| |
Collapse
|
11
|
Güller U, Beydemir Ş, Küfrevioğlu Öİ. In vitro and In silico Interactions of Antiulcer, Glucocorticoids and Urological Drugs on Human Carbonic Anhydrase I and II isozymes. Biopharm Drug Dispos 2022; 43:47-56. [PMID: 35080786 DOI: 10.1002/bdd.2309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 11/08/2022]
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) convert carbon dioxide to bicarbonate in metabolism and use Zn2+ ions as a cofactor for their catalytic activity. The activators or inhibitors of CA-I and CA-II, which are the most abundant CA isozymes in erythrocytes, have pharmacological applications in medicine. So, investigation of drug-protein interaction of these isozymes is significant. On this basis, the objective of this study was to clarify the primer effects of widely used drugs on the activity of human CA-I and CA-II enzymes and elucidate the inhibition mechanism through molecular docking studies. For this aim isozymes were purified from human erythrocytes by affinity chromatography technique. Then inhibition profiles of antiulcer, glucocorticoids, and urological drugs were investigated. As a result, while budesonide had the highest inhibitory potency on hydratase activity of hCA-I with the IC50 of 0.08 mM, levofloxacin showed the highest inhibition effect on hCA-II with the IC50 of 0.886 mM. The most effective inhibitor on the esterase activity of isozymes was found as fluticasone propionate with the Ki values of 0.0365±0.016 mM and 0.054±0.018 mM respectively. However, by molecular docking study, it was estimated that budesonide showed maximum inhibition potency for both isozymes with the free binding energy of -7.58 and -6.97 kcal/mol respectively. Consequently, it was observed that some of the drugs studied did not show any inhibitory effect. Drug-enzyme interactions were also estimated by molecular docking. This study could contribute to the discovery of new drug candidates and as well as target proteins. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Uğur Güller
- Department of Food Engineering, Faculty of Engineering, Iğdır University, Iğdır, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| | | |
Collapse
|