1
|
Murugaperumal P, Nallathambi S. A comprehensive review on colorimetric and fluorometric investigations of dual sensing chemosensors for Cu 2+ and Fe 3+ ions from the year 2017 to 2023. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125193. [PMID: 39340942 DOI: 10.1016/j.saa.2024.125193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/09/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Dual sensing chemosensors for copper(II) and iron(III) ions are molecules or compounds designed to selectively detect and differentiate between these specific metal ions. Because metal ions like copper(II) and iron(III) are essential to so many industrial, biological, and environmental processes, their detection and measurement have become increasingly important. In this work, a novel dual-sensing chemosensor that combines high selectivity and sensitivity is presented. It is intended to detect copper(II) (Cu2+) and iron (III)(Fe3+) ions concurrently. The chemosensor combines two different recognition components into one platform and achieves dual-mode detection by combining optical and electrochemical sensing approaches. Using a dual sensing chemosensors for two cations can save money and time compared to preparing two separate chemosensors to sense each of those cations separately. We often use various techniques, including spectroscopy, fluorescence, and electrochemistry, to monitor and measure the changes induced by the interaction between the chemosensors and the metal ions. Discussions have been held on the excitation and emission wavelengths, media used in the spectroscopic measurements, binding constant with coordination binding mode, detection mechanism, and detection limit (LOD). This extensive review paper investigates colorimetric and fluorometric dual sensing analysis for Cu2+ and Fe3+ ions which includes more than sixty papers from the year of 2017 to 2023.
Collapse
Affiliation(s)
| | - Sengottuvelan Nallathambi
- Department of Chemistry, Centre for Distance and Online Education (CDOE), Alagappa University, Karaikudi 630003, India.
| |
Collapse
|
2
|
Ullah Q, Khan SA, Arifuddin M, Mohsin M, Kausar S, Fatema N, Ahmer MF. Recent Developments in Colorimetric and Fluorometric Detection Methods of Trivalent Metal Cations (Al 3+, Fe 3+ and Cr 3+) Using Schiff Base Probes: At a Glance. J Fluoresc 2025; 35:543-557. [PMID: 38133749 DOI: 10.1007/s10895-023-03514-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
This review basically concerned with the application of different Schiff bases (SB) based fluorimetric (turn-off and turn-on) and colorimetric chemosensors for the detection of heavy metal cations particularly Al(III), Fe(III), and Cr(III) ions. Chemosensors based on Schiff bases have exhibited outstanding performance in the detection of different metal cations due to their facile and in-expensive synthesis, and their excellent coordination ability with almost all metal cations and stabilize them in different oxidation states. Moreover, Schiff bases have also been used as antifungal, anticancer, analgesic, anti-inflammatory, antibacterial, antiviral, antioxidant, and antimalarial etc. The Schiff base also can be used as an intermediate for the formation of various heterocyclic compounds. In this review, we have focused on the research work performed on the development of chemosensors (colorimetric and fluorometric) for rapid detection of trivalent metal cations particularly Al(III), Fe(III), and Cr(III) ions using Schiff base as a ligand during 2020-2022.
Collapse
Affiliation(s)
- Qasim Ullah
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Salman Ahmad Khan
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Mohammed Arifuddin
- Chemistry Department, Directorate of Distance Education (DDE), Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Md Mohsin
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Samrin Kausar
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Nahid Fatema
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Mohammad Faraz Ahmer
- Department of Electrical and Electronics Engineering, Mewat Engineering College, Nuh Gurugram University Haryana, Gurugram, India.
| |
Collapse
|
3
|
Ranjani M, Thiruppathi GA, Keerthana V, Ramya M, Kalaivani P, Selvakumar S, Shankar R, Srinivasan K, Sundararaj P, Prabhakaran R. Fluorophore-quencher complexes (Cu 2+/Al 3+) of coumarin Schiff bases as chemosensors for the detection of L-glutamic acid and L-arginine: in vitro and in vivo studies. Dalton Trans 2024; 53:16941-16955. [PMID: 39351607 DOI: 10.1039/d4dt01977f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
This study reports the development of new probes RR1 ((1E)-1-(1-(6-bromo-2-oxo-2H-chromen-3-yl)ethylidene)ethyl thiosemicarbazone) and RR2 ((1E)-1-(1-(6-bromo-2-oxo-2H-chromen-3-yl)ethylidene)phenyl thiosemicarbazone), which selectively showed fluorescence turn 'OFF' response towards Cu2+ and Al3+. Further, complexes of RR1-Cu2+ and RR2-Al3+ acted as chemosensors for the detection of L-amino acids. RR1-Cu2+ selectively detected L-arginine (fluorescence turn 'ON'), and RR2-Al3+ selectively detected L-glutamic acid (fluorescence turn 'ON'). The existence of the fluorophore-quencher complexes RR1-Cu2+ and RR2-Al3+ was confirmed by theoretical studies. Further, the chemosensors RR1-Cu2+ and RR2-Al3+ have three possible structural isomers (RR1-Cu2+-L-arginine - A, B and C) and (R2-Al3+-L-glutamic acid - D, E and F), as confirmed by theoretical studies. In vitro bio-imaging of the probes (RR1 and RR2), complexes (RR1-Cu2+ and RR2-Al3+) and complexes associated with L-arginine (RR1-Cu2+-L-arginine) and L-glutamic acid (R2-Al3+-L-glutamic acid) was performed in the MDA-MB-231 cell line using their IC50 concentrations. In addition, in vivo live cell imaging studies were conducted using C. elegans as the model organism.
Collapse
Affiliation(s)
- M Ranjani
- Department of Chemistry, Bharathiar University, Coimbatore 641046, India.
| | - G A Thiruppathi
- Department of Zoology, Bharathiar University, Coimbatore 641046, India
| | - V Keerthana
- Department of Biochemistry, Bharathiar University, Coimbatore 641046, India
| | - M Ramya
- Department of Physics, Bharathiar University, Coimbatore 641046, India
| | - P Kalaivani
- Department of Chemistry, Nirmala College for Women, Coimbatore 641018, India
| | - S Selvakumar
- Department of Biochemistry, Bharathiar University, Coimbatore 641046, India
| | - R Shankar
- Department of Physics, Bharathiar University, Coimbatore 641046, India
| | - K Srinivasan
- Department of Physics, Bharathiar University, Coimbatore 641046, India
| | - P Sundararaj
- Department of Zoology, Bharathiar University, Coimbatore 641046, India
| | - R Prabhakaran
- Department of Chemistry, Bharathiar University, Coimbatore 641046, India.
| |
Collapse
|
4
|
Güngör Ö, Nuralin L. A Novel Naphthylidene-diimine Chemosensor for Selective Colorimetric and Fluorometric Detection of Al 3+ and CN - Ions. J Fluoresc 2024; 34:1319-1342. [PMID: 37530933 DOI: 10.1007/s10895-023-03368-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023]
Abstract
A naphthylidene-diimine L2 was newly designed, and its structure was identified by elemental analysis and spectroscopic methods. The effect of temperature, acid-base and light on enol-keto tautomerism in this Schiff base was evaluated by colorimetry, UV-Vis and fluorescence spectroscopy. Under irradiation 365 nm, L2 emitted yellow, orange and strong green emission in pure, basic and aqueous DMSO media (v/v, 1/1), respectively. Its ionochromic behavior against various cations (Fe3+, Al3+, Cr3+, Cu2+, Co2+, Ni2+, Zn2+, Cd2+, Pb2+, Ba2+ and Ag+) and anions (F-, Cl-, CH3COO-, SO32-, S2O32-, HSO4-, H2PO4-, NO3-, CN-, and OH-) was investigated in aqueous DMSO media (v/v, 1/1) by UV-Vis and fluorescence experiments. Dark yellow color of L2 changed to colorless for Fe3+, Cr3+ and HSO4- ions, and turned to light yellow for Al3+ and Cu2+ ions, and to orange for CN- and OH- ions. According to UV-Vis data, the chemosensor displayed selective recognition towards Fe3+, Al3+, Cu2+, HSO4-, CN- and OH- with a 1:1 stoichiometric ratio. At the excitation wavelength of 365 nm, L2 gave strong yellowish white emission (λem = 445 and 539 nm) in the presence of Al3+, and the intensity increased about 12.5 times. On the other hand, the chemosensor displayed one emission band at 452 nm and 450 nm in the presence of CN- and OH- with 1.9 fold and 2.3 fold fluorescence enhancement, respectively.
Collapse
Affiliation(s)
- Özlem Güngör
- Department of Chemistry, Faculty of Science, Gazi University, 06500, Ankara, Turkey.
| | - Levent Nuralin
- Department of Chemical Engineering, Faculty of Engineering, Gazi University, 06570, Ankara, Turkey
| |
Collapse
|
5
|
Musikavanhu B, Zhu D, Tang M, Xue Z, Wang S, Zhao L. A naphthol hydrazone Schiff base bearing benzothiadiazole unit for fluorescent detection of Fe 3+ in PC3 cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122242. [PMID: 36542920 DOI: 10.1016/j.saa.2022.122242] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Naphthol hydrazone derivatives are recognized as efficient chelating agents for both qualitative and quantitative detection of metal ions. Here we design a naphthol hydrazine-based chemosensor with covalently linking a strong electron-withdrawing benzothiadiazole group to modulate the molecular electronic structure, nominated as NtHzBtd. The fluorescent probe performs excellent selectivity and sensitivity towards Fe3+ with 1:1 binding stoichiometry, while exhibiting a quick response at 55 s with a relatively low limit of detection of 0.036 µM. A series of spectroscopic measurements in tandem with theoretical calculations suggest that the probe undergoes both intramolecular charge transfer (ICT) and chelation enhanced quenching (CHEQ) processes. Successful color rendering of paper strips and bioimaging in PC3 cells demonstrate the promising applicability of NtHzBtd for portable Fe3+ detection in real samples and biosystems.
Collapse
Affiliation(s)
- Brian Musikavanhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dongwei Zhu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212013, China
| | - Mengran Tang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhaoli Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212013, China
| | - Long Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
6
|
Di-Triphenylamine-based AIE active Schiff base for highly sensitive and selective fluorescence sensing of Cu2+ and Fe3+. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|