1
|
Geetha Priya C, Venkatraman BR, Arockiaraj I, Sowrirajan S, Elangovan N, Islam MS, Mahalingam SM. Antimicrobial activity prediction, inter- and intramolecular charge transfer investigation, reactivity analysis and molecular docking studies of adenine derivatives. J Biomol Struct Dyn 2025; 43:372-385. [PMID: 37978905 DOI: 10.1080/07391102.2023.2281636] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
The utilization of the density functional theory (DFT) methodology has developed as a highly efficient method for investigating molecular structure and vibrational spectra, and it is increasingly being employed in various applications relating to biological systems. This study focuses on conducting investigations, both experimental and computed, to analyze the molecular structure, electronic properties and features of (E)-4-(((9H-purin-6-yl)imino)methyl)-2-methoxyphenol (ANVA). The expression ANVA should be rewritten as follows: the compound is a derivative of adenine (primary amine), specifically a vanillin (aldehyde). The present study reports the synthesis, characterization, DFT, docking and antimicrobial activity of ANVA. The optimization of the molecular structure was conducted, and the determination of its structural features was performed using DFT with the B3LYP/cc-pVDZ method. The vibrational assignments were determined in detail by analyzing the potential energy distribution. A strong correlation was observed between the spectra that were observed and the spectra that were calculated. The calculation of intramolecular charge transfer was performed using natural bond orbital analysis. In addition, several computational methods were employed, including highest occupied molecular orbital-least unoccupied molecular orbital analysis, molecular electrostatic potential calculations, non-linear optical, reduced density gradient, localization orbital locator and electron localization function analysis. This paper examines the present use of adenine derivatives in combatting bacterial and fungal infections, as well as the inclusion of spectral and quantum chemical calculations in the discussion.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- C Geetha Priya
- Department of Chemistry, Thanthai Periyar Government Arts and Science College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - B R Venkatraman
- Department of Chemistry, Thanthai Periyar Government Arts and Science College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - I Arockiaraj
- Department of Chemistry, St. Joseph's College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - S Sowrirajan
- Research Centre for Computational and Theoretical Chemistry, Tiruchirappalli, Tamil Nadu, India
| | - N Elangovan
- Research Centre for Computational and Theoretical Chemistry, Tiruchirappalli, Tamil Nadu, India
| | | | | |
Collapse
|
2
|
Abedin MM, Pal TK, Uddin MN, Alim MA, Sheikh MC, Paul S. Synthesis, quantum chemical calculations, in silico and in vitro bioactivity of a sulfonamide-Schiff base derivative. Heliyon 2024; 10:e34556. [PMID: 39082025 PMCID: PMC11284382 DOI: 10.1016/j.heliyon.2024.e34556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
The sulfonamide Schiff base compound (E)-4-((4-(dimethylamino)benzylidene)amino)-N-(5-methylisoxazol-3-yl)benzenesulfonamide was successfully prepared and fully characterized. The foremost objective of this study was to explore the molecular geometry of the aforementioned compound and determine its drug likeness characteristics, docking ability as an insulysin inhibitor, anticancer and antioxidant activities. The molecular structure of this compound was optimized using the B3LYP/6-311G+(d,p) level of theory. The compound was completely characterized utilizing both experimental and DFT approaches. Molecular electrostatic potential, frontier molecular orbitals, Fukui function, drug likeness, and in silico molecular docking analyses of this compound were performed. Wave functional properties such as localized orbital locator, electron localization function and non-covalent interactions were also simulated. The compound was screened for anticancer and antioxidant activities using in vitro technique. The observed FT-IR, UV-Vis, and 1H NMR results compared with simulated data and both results were fairly consistent. The experimental and computational spectral findings confirm the formation of the Schiff base compound. Both π-π* and n-π* transitions were observed in both experimental and computational UV-Vis spectra. The examined compound followed to Pfizer, Golden Triangle, GSK, and Lipinski's rules. Consequently, it possesses a more favorable absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile, making it a suitable candidate for non-toxic oral drug use. Moreover, the compound exhibited promising insulysin inhibition activity in an in silico molecular docking. The compound showed in vitro anticancer activity against A549 cancer cells with an IC50 value of 40.89 μg/mL and moderate antioxidant activity.
Collapse
Affiliation(s)
- Md. Minhazul Abedin
- Department of Chemistry, Rajshahi University of Engineering & Technology, 6204, Bangladesh
| | - Tarun Kumar Pal
- Department of Chemistry, Rajshahi University of Engineering & Technology, 6204, Bangladesh
| | - Md. Najem Uddin
- Pharmaceutical Sciences Research Division, BCSIR Laboratories (Dhaka), Bangladesh Council of Scientific and Industrial Research (BCSIR), Bangladesh
| | - Mohammad Abdul Alim
- Department of Chemistry, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | | | - Subrata Paul
- Department of Chemistry, Rajshahi University of Engineering & Technology, 6204, Bangladesh
| |
Collapse
|
3
|
Elangovan N, Arumugam N, Thirumavalavan M, Queenthy Sabarimuthu S, Padmanaban R, Bhagavathsingh J, Mathew S. Solute-solvent interaction and adsorption studies of sulpha drug derivative: A DFT study. J Mol Liq 2024; 406:125150. [DOI: 10.1016/j.molliq.2024.125150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
|
4
|
Kiruthika M, Raveena R, Yogeswaran R, Elangovan N, Arumugam N, Padmanaban R, Djearamane S, Wong LS, Kayarohanam S. Spectroscopic characterization, DFT, antimicrobial activity and molecular docking studies on 4,5-bis[(E)-2-phenylethenyl]-1H,1'H-2,2'-biimidazole. Heliyon 2024; 10:e29566. [PMID: 38707390 PMCID: PMC11066587 DOI: 10.1016/j.heliyon.2024.e29566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024] Open
Abstract
The newly synthesized imidazole derivative namely, 4,5-bis[(E)-2-phenylethenyl]-1H,1'H-2,2'-biimidazole (KA1), was studied for its molecular geometry, docking studies, spectral analysis and density functional theory (DFT) studies. Experimental vibrational frequencies were compared with scaled ones. The reactivity sites were determined using average localized ionization analysis (ALIE), electron localized function (ELF), localized orbital locator (LOL), reduced density gradient (RDG), Fukui functions and frontier molecular orbital (FMO). Due to the solvent effect, a lower gas phase energy gap was observed. Through utilization of the noncovalent interaction (NCI) method, the hydrogen bond interaction, steric effect and Vander Walls interaction were investigated. Molecular docking simulations were employed to determine the specific atom inside the molecules that exhibits a preference for binding with protein. The parameters for the molecular electrostatic potential (MESP) and global reactivity descriptors were also determined. The thermodynamic characteristics were determined through calculations employing the B3LYP/cc-pVDZ basis set. Antimicrobial activity was carried out using the five different microorganisms like Escherichia coli, Streptococcus pneumoniae, Staphylococcus aureus, Klebsiella pneumoniae and Candida albicans.
Collapse
Affiliation(s)
- M. Kiruthika
- Department of Chemistry, Arignar Anna Government Arts College, Affiliated to Bharathidasan University, Musiri, 621211, Tiruchirappalli, Tamilnadu, India
| | - R. Raveena
- Department of Chemistry, Arignar Anna Government Arts College, Affiliated to Bharathidasan University, Musiri, 621211, Tiruchirappalli, Tamilnadu, India
| | - R. Yogeswaran
- Department of Chemistry, Arignar Anna Government Arts College, Affiliated to Bharathidasan University, Musiri, 621211, Tiruchirappalli, Tamilnadu, India
| | - N. Elangovan
- Research Centre for Computational and Theoretical Chemistry, Musiri, Anjalam, 621208, Tiruchirappalli, Tamilnadu, India
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - R. Padmanaban
- Department of Chemistry, School of Physical, Chemical & Applied Sciences, Pondicherry University, R.V. Nagar, Kalapet, Puducherry, 605 014, India
| | - Sinouvassane Djearamane
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan universiti, Bandar Barat, Kampar, 31900, Malaysia
- Biomedical Research Unit and Lab Animal Research Centre, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - Saminathan Kayarohanam
- Faculty of Bioeconomics and Health Sciences, University Geomatika Malaysia, Kuala Lumpur, 54200, Malaysia
| |
Collapse
|
5
|
Elangovan N, Thirumavalavan M, Sankar Ganesan T, Sowrirajan S, Chandrasekar S, Arumugam N. Comparison study (experimental and theoretical), hydrogen bond interaction through water, donor acceptor investigation and molecular docking study of 3,3-((1,2-phenylenebis (azaneylylidene)) bis (methaneylylidene)) diphenol. J Biomol Struct Dyn 2024:1-16. [PMID: 38656235 DOI: 10.1080/07391102.2024.2333465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/16/2024] [Indexed: 04/26/2024]
Abstract
The novel Schiff's base (CS6) was synthesized and confirmed by various studies. The B3LYP/cc-pVDZ basis set was used for theoretical study and the results indicated that both the theoretical and experimental studies correlated well. The interaction energy of CS6-water complex calculated by using the local energy decomposition analysis was found to be -7.28 kcal/mol. The TD-TFT method was used for the calculation of electronic absorption spectrum. This study confirmed that the observed wavelength and the simulated wavelength in the electronic spectra were almost similar. The electrophilic and nucleophilic attacking sites of the titled compound were identified by using FMO and MEP studies. The highest stabilization energy (30.19 kcal/mol) formed by LP (2) O24 to anti-bonding σ*(C18-C19) was confirmed by the NBO study. The localized and delocalized electrons were confirmed by ELF and LOL studies. The hydrogen bond interaction as well as the physical and chemical properties of CS6 indicated that it showed a moderate similarity to the drugs. The docking study confirmed that the dehydro-L-gulonate decarboxylase inhibitor (1Q6O) could interact with CS6 compound with the binding energy of -5.26 kcal/mol.
Collapse
Affiliation(s)
- N Elangovan
- Research Centre for Computational and Theoretical Chemistry, Musiri, Tiruchirappalli, Tamilnadu, India
| | - Munusamy Thirumavalavan
- Department of Chemistry, Saveetha Engineering College, Thandalam, Chennai, Tamil Nadu, India
| | - T Sankar Ganesan
- Department of Chemistry, Arignar Anna Government Arts College, Musiri-621211, Affiliated to Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| | - S Sowrirajan
- Research Centre for Computational and Theoretical Chemistry, Musiri, Tiruchirappalli, Tamilnadu, India
| | - S Chandrasekar
- Department of Chemistry, Arignar Anna Government Arts College, Musiri-621211, Affiliated to Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Elangovan N, Arumugam N, Almansour AI, Mathew S, Djearamane S, Wong LS, Kayarohanam S. Synthesis, solvent role, absorption and emission studies of cytosine derivative. Heliyon 2024; 10:e28623. [PMID: 38590870 PMCID: PMC11000011 DOI: 10.1016/j.heliyon.2024.e28623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
The (E)-4-((4-hydroxy-3-methoxy-5-nitrobenzylidene) amino) pyrimidin-2(1H)-one (C5NV) was synthesized from cytosine and 5-nitrovanilline by simple straightforward condensation reaction. The structural characteristics of the compound was determined and optimized by WB97XD/cc-pVDZ basis set. The vibrational frequencies were computed and subsequently compared to the experimental frequencies. We investiated the electronic properties of the synthesized compound in gas and solvent phases using the time-dependent density functional theory (TD-DFT) approach, and compared them to experimental values. The fluorescence study showed three different wavelengths indicating the nature of the optical material properties. Frontier molecular orbital (FMO) and molecular electrostatic potential (MEP) analyses were conducted for the title compound, and electron localized functions (ELF) and localized orbital locators (LOL) were used to identify the orbital positions of localized and delocalized atoms. Non-covalent interactions (H-bond interactions) were investigated using reduced density gradients (RDGs). The objective of the study was to determine the physical, chemical, and biological properties of the C5NV. The molecular docking study was conducted between C5NV and 2XNF protein, its lowest binding energy score is -7.92 kcal/mol.
Collapse
Affiliation(s)
- N. Elangovan
- Research Centre for Computational and Theoretical Chemistry, Anjalam, 621208, Musiri, Tiruchirappalli, Tamilnadu, India
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman I. Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shanty Mathew
- Department of Chemistry, St. Joseph's College Research Center, Shanthinagar, 560027, Bangalore, India
| | - Sinouvassane Djearamane
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar, 31900, Malaysia
- Biomedical Research Unit and Lab Animal Research Centre, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602 105, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - Saminathan Kayarohanam
- Faculty of Bioeconomics and Health Sciences, University Geomatika Malaysia, Kuala Lumpur, 54200, Malaysia
| |
Collapse
|
7
|
Sankar Ganesan T, Elangovan N, Thirumavalavan M, Seenan S, Sowrirajan S, Chandrasekar S, Arumugam N, Almansour AI, Mahalingam SM, V M DD, Kanchi S, Sivaramakrishnan V. Synthesis, topology, molecular docking and dynamics studies of o-phenylenediamine derivative. J Biomol Struct Dyn 2024:1-20. [PMID: 38577881 DOI: 10.1080/07391102.2024.2317981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/07/2024] [Indexed: 04/06/2024]
Abstract
The N, N'-(1,2-phenylene) bis (1- (4- chlorophenyl) methanimine) (CS4) was synthesized and characterized by infrared (IR), absorption (UV-vis) and NMR (1H and 13C) spectral analyses. The structural parameters, vibrational frequencies, potential energy and the distribution analysis (PED) were calculated by using DFT with the basis set of B3LYP/cc-pVDZ and these spectral values were compared to the experimental values. HOMO and LUMO studied were performed in order to understand the stability and biological activity of the compound. The most reactive sites on the compound were investigated by utilizing MEP energy surface and Fukui function descriptor with the natural population analysis (NPA) of the charges. The study of the natural bond orbitals (NBO) reveals the delocalization of the intramolecular interaction of the charges in the compound. Additionally, topological investigations (ELF, LOL), determination of thermodynamic parameters and noncovalent interaction (NCI) study by using topology (RDG) analysis were also carried out. Finally, the molecular docking and molecular dynamics simulations was carried out by examining against glycosylphosphatidylinositol phospholipase D inhibitor receptor for distinct protein targets (3MZG).
Collapse
Affiliation(s)
- T Sankar Ganesan
- Department of Chemistry, Arignar Anna Government Arts College, Affiliated to Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| | - N Elangovan
- Research Centre for Computational and Theoretical Chemistry, Tiruchirappalli, Tamilnadu, India
| | | | - Shanthi Seenan
- Department of Chemistry, Saveetha Engineering College, Chennai, Tamil Nadu, India
| | - S Sowrirajan
- Research Centre for Computational and Theoretical Chemistry, Tiruchirappalli, Tamilnadu, India
| | - S Chandrasekar
- Department of Chemistry, Arignar Anna Government Arts College, Affiliated to Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Datta Darshan V M
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, Andhra Pradesh, India
| | - Subbarao Kanchi
- Department of Physics, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh, India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, Andhra Pradesh, India
| |
Collapse
|
8
|
Gobi T, Elangovan N, Sowrirajan S, Islam MS, Sirajunnisa A. Synthesis, characterization, DFT, vibrational analysis (FT-IR and FT-Raman), topology and molecular docking studies of 3,3′-((1E,1′E)-((sulfonylbis(4,1-phenylene)) bis (azaneylylidene)) bis (methaneylylidene)) diphenol. J Mol Struct 2024; 1296:136805. [DOI: 10.1016/j.molstruc.2023.136805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
|
9
|
Priya C, Venkatraman B, Elangovan N, Kumar M, Arulmozhi T, Sowrirajan S, Islam MS, Bhagavathsingh J. Absorption studies on serotonin neurotransmitter with the platinum metal cluster using the gas phase and different solvents, topological and non-covalent interaction: A DFT approach. CHEMICAL PHYSICS IMPACT 2023; 7:100295. [DOI: 10.1016/j.chphi.2023.100295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
|
10
|
Geethapriya J, Rexalin Devaraj A, Gayathri K, Swadhi R, Elangovan N, S.Manivel, Sowrirajan S, Thomas R. Solid state synthesis of a fluorescent Schiff base (E)-1-(perfluorophenyl)-N-(o-toly)methanimine followed by computational, quantum mechanical and molecular docking studies. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
11
|
Kanagavalli A, Jayachitra R, Thilagavathi G, Elangovan N, Sowrirajan S, Thomas R. Synthesis, characterization, computational, excited state properties, wave function, and molecular docking studies of (E)-4-((2-hydroxybenzylidene)amino)N-(thiazol-2-yl) benzenesulfonamide. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
(E)-4-((4-chlorobenzylidene)amino)-N-(thiazole-2yl) benzenesulfonamide: Synthesis, characterization and electronic structure theory and docking studies. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Jayachitra R, Thilagavathi G, Kanagavalli A, Elangovan N, Sowrirajan S, Thomas R. Photophysical properties of (E)-4-((1-phenylethylidene)amino)-N-(pyrimidin-2-yl) benzenesulfonamide; synthesis, characterization, wavefunction and docking studies. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Geethapriya J, Shanthidevi A, Arivazhagan M, Elangovan N, Sowrirajan S, Manivel S, Thomas R. Synthesis, characterization, computational, excited state properties, wave function and molecular docking studies of (E)-1-(perfluorophenyl)-N-(p-tolyl) methanimine. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Synthesis, Computational, Electronic spectra, and molecular docking studies of 4-((diphenylmethylene)amino)-N-(pyrimidin-2-yl)benzenesulfonamide. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
16
|
Kanagavalli A, Jayachitra R, Thilagavathi G, Padmavathy M, Elangovan N, Sowrirajan S, Thomas R. Synthesis, structural, spectral, computational, docking and biological activities of Schiff base (E)-4-bromo-2-hydroxybenzylidene) amino)-N-(pyrimidin-2-yl) benzenesulfonamide from 5-bromosalicylaldehyde and sulfadiazine. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
17
|
Rajimon K, Elangovan N, Amir Khairbek A, Thomas R. Schiff bases from chlorine substituted anilines and salicylaldehyde: Synthesis, characterization, fluorescence, thermal features, biological studies and electronic structure investigations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Kanagavalli A, Thilagavathi G, Jayachitra R, Elangovan N, Sowrirajan S, Shadakshara Murthy KR, Thomas R. Synthesis, Electronic Structure, UV–Vis, Wave Function, and Molecular Docking Studies of Schiff Base (Z)-N-(Thiazol-2-yl)-4-((Thiophene-2-ylmethylene)Amino)Benzenesulfonamide. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2150657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- A. Kanagavalli
- Department of Physics, Government Arts College, Bharathidasan University, Tiruchirappalli, India
| | - G. Thilagavathi
- Department of Physics, Nehru Memorial College, Bharathidasan University, Tiruchirappalli, India
| | - R. Jayachitra
- Department of Physics, Urumu Dhanalakshmi College, Bharathidasan University, Tiruchirappalli, India
| | - N. Elangovan
- Department of Chemistry, St Berchmans College (Autonomous), Mahatma Gandhi University, Changanassery, India
- Department of Mechanical Engineering, University Centre for Research and Development, Chandigarh University, Mohali, India
| | - S. Sowrirajan
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | | | - Renjith Thomas
- Department of Mechanical Engineering, University Centre for Research and Development, Chandigarh University, Mohali, India
| |
Collapse
|
19
|
Sanakarganesan data T, Elangovan data N, Chandrasekar S, Ganesan E, Balachandran data V, Sowrirajan data S, Balasubramani K, Thomas R. Synthesis, Hirshfeld surface analysis, Computational, Wave function properties, Anticancer and Cytotoxicity activity of di[(p-chlorobenzyl) (dibromo)] (4,7-dimethyl-1,10-phenanthroline)tin (IV) complex. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Synthesis, computational, and molecular docking studies, photophysical properties of (Z)-N-(pyrimidin-2-yl)-4-(thiophen-2-ylmethylene)amino) benzenesulfonamide. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Jayachitra R, Padmavathy M, Kanagavalli A, Thilagavathi G, Elangovan N, S.Sowrirajan, Thomas R. Synthesis, computational, experimental antimicrobial activities and theoretical molecular docking studies of (E)-4-((4-hydroxy-3-methoxy-5-nitrobenzylidene) amino)-N-(thiazole-2-yl) benzenesulfonamide. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Bhaskar C, Elangovan N, Sowrirajan S, Chandrasekar S, Ali OAA, Mahmoud SF, Thomas R. Synthesis, XRD, Hirshfeld surface analysis, DFT studies, cytotoxicity and anticancer activity of di(m-chlorobenzyl) (dichloro) (4, 7-diphenyl-1,10-phenanthroline) tin (IV) complex. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Synthesis, spectral, structural features, electronic properties, biological activities, computational, wave function properties, and molecular docking studies of (E)-4-(((pentafluorophenyl) methylene) amino)-N-(pyrimidin2-yl)benzenesulfonamide. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Ali OAA, Elangovan N, Mahmoud SF, El-Gendey MS, Elbasheer HZE, El-Bahy SM, Thomas R. Synthesis, characterization, vibrational analysis and computational studies of a new Schiff base from pentafluoro benzaldehyde and sulfanilamide. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Ganesan TS, Elangovan N, Vanmathi V, Sowrirajan S, Chandrasekar S, Murthy KS, Thomas R. Spectroscopic, Computational(DFT), Quantum mechanical studies and protein-ligand interaction of Schiff base 6,6-((1,2-phenylenebis(azaneylylidene))bis(methaneylylidene))bis(2-methoxyphenol) from o-phenylenediamine and 3- methoxysalicylaldehyde. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
26
|
Latha A, Elangovan N, Manoj K, Maheswari V, Balachandran V, Balasubramani K, Sowrirajan S, Chandrasekar S, Thomas R. Synthesis, single crystal (XRD), spectral characterization, computational (DFT), quantum chemical modelling and anticancer activity of di(p-bromobenzyl) (dibromo) (1, 10-phenanthroline) tin (IV) complex. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
Latha A, Elangovan N, Manoj K, Keerthi M, Balasubramani K, Sowrirajan S, Chandrasekar S, Thomas R. Synthesis, XRD, spectral, structural, quantum mechanical and anticancer studies of di(p-chlorobenzyl) (dibromo) (1, 10-phenanthroline) tin (IV) complex. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Cebeci YU, Karaoğlu ŞA. Quinolone‐Rhodanine Hybrid Compounds: Synthesis and Biological Evaluation as Anti‐Bacterial Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202201007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Geethapriya J, Shanthidevi A, Arivazhagan M, Elangovan N, Thomas R. Synthesis, structural, DFT, quantum chemical modeling and molecular docking studies of (E)-4-(((5-methylfuran-2-yl)methylene)amino) benzenesulfonamide from 5-methyl-2-furaldehyde and sulfanilamide. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Schiff base (Z)-4-((furan-2-ylmethylene)amino) benzenesulfonamide: Synthesis, solvent interactions through hydrogen bond, structural and spectral properties, quantum chemical modeling and biological studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118531] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Elangovan N, Thomas R, Sowrirajan S. Synthesis of Schiff base (E)-4-((2-hydroxy-3,5-diiodobenzylidene)amino)-N-thiazole-2-yl)benzenesulfonamide with antimicrobial potential, structural features, experimental biological screening and quantum mechanical studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Synthesis, XRD, Hirshfeld surface analysis, ESP, HOMO-LUMO, Quantum chemical modeling and Anticancer activity of di(p-methyl benzyl)(dibromo)(1,10-phenanthroline) tin(IV) complex. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Elangovan N, Thomas R, Sowrirajan S, Irfan A. Synthesis, spectral and quantum mechanical studies and molecular docking studies of Schiff base (E)2-hydroxy-5-(((4-(N-pyrimidin-2-yl)sulfamoyl)phenyl)imino)methyl benzoic acid from 5-formyl salicylic acid and sulfadiazine. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100144] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Elangovan N, Sowrirajan S. Synthesis, single crystal (XRD), Hirshfeld surface analysis, computational study (DFT) and molecular docking studies of (E)-4-((2-hydroxy-3,5-diiodobenzylidene)amino)-N-(pyrimidine)-2-yl) benzenesulfonamide. Heliyon 2021; 7:e07724. [PMID: 34458601 PMCID: PMC8379672 DOI: 10.1016/j.heliyon.2021.e07724] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/14/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022] Open
Abstract
The Schiff base (E)-4-((2-hydroxy-3,5-diiodobenzylidene)amino)-N-(pyrimidine)-2-yl) benzene sulfonamide (DIDA) compound was synthesis with condensation of 3,5-diiodosalicylaldehyde and sulfadiazine. The compound characterized with FTIR, X-ray crystallography and electronic spectra. The titled compound associated with experimental and theoretical method, DFT used for the theoretical method. The IR was calculated from DFT mode with B3LYP/GENSEP basic set. The electronic spectra computed from TD-DFT method with CAM-B3LYP functional, with IEFPCM solvation model and DMSO used as the solvent. Wave function based properties like localized orbital locator, electron localization function and non-covalent interactions have been studied extensively. The ADMET properties of the compound DIDA indicated that the compound has excellent drug likeness properties and PASS studies showed that it has anti-infective properties, which is confirmed by a docking score of -7.4 kcal/mol.
Collapse
Affiliation(s)
- N Elangovan
- Department of Chemistry, Arignar Anna Government Arts College, Musiri 621211, Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| | - S Sowrirajan
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|