1
|
AlAli A, Alkanad M, Alkanad K, Venkatappa A, Sirawase N, Warad I, Khanum SA. A comprehensive review on anti-inflammatory, antibacterial, anticancer and antifungal properties of several bivalent transition metal complexes. Bioorg Chem 2025; 160:108422. [PMID: 40187028 DOI: 10.1016/j.bioorg.2025.108422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/19/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Transition metal complexes have been recognized as possible therapeutic agents, attributed to their special biological actions, including anti-inflammatory, antibacterial, antifungal, and anticancer. The pharmacological perspective connected with Copper (Cu), Cobalt (Co), Nickel (Ni), Manganese (Mn), Palladium (Pd), Zinc (Zn), and Platinum (Pt) metal(II) complexes is comprehensively explored in-depth in this research. The complexes show unique coordination chemistry and modes of action that help interactions with biological targets, including DNA binding, enzyme inhibition, and the formation of reactive oxygen species. All the metal(II) complexes showed notable potential impact in their perspective activity. Conspicuously, Co(II) and Ni(II) complexes show better antibacterial and antifungal action, while Cu(II) and Zn(II) combinations show higher anti-inflammatory activity. While research is constantly investigating alternative metal-based anticancer drugs like Pd(II), which seem to have lowered side effects, Pt(II) complexes especially cisplatin continue to be the benchmark in cancer treatment. Although the possible pharmacological actions are motivating, problems with toxicity and biocompatibility still provide major difficulties, especially in relation to Cd(II) and Hg(II) complexes. Strategies like ligand modification, nanoparticle-based delivery, and prodrug methods are used to increase selectivity and reduce side effects related to metal complexes. This review compiles the most recent developments and continuous research, thereby shedding light on the potential revolutionary power of metal(II) complexes in medical therapy. Understanding their mechanisms and enhancing their safety profiles will help us open the path to creative ideas for addressing some of the most urgent medical issues of today.
Collapse
Affiliation(s)
- Anas AlAli
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 006, Karnataka, India
| | - Maged Alkanad
- Department of Pharmacognosy, Sri. Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Mandya, Karnataka 571448, India
| | - Khaled Alkanad
- Department of Studies in Physics, University of Mysore, Mysuru 570 006, Karnataka, India
| | - Annegowda Venkatappa
- Department of Pharmacognosy, Sri. Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Mandya, Karnataka 571448, India
| | - Nischith Sirawase
- Department of Pharmacognosy, Sri. Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Mandya, Karnataka 571448, India
| | - Ismail Warad
- Department of Chemistry, AN-Najah National University, P.O. Box 7, Nablus, Palestine.
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 006, Karnataka, India.
| |
Collapse
|
2
|
Liao AQ, Wen J, Wei JC, Xu BB, Jin N, Lin HY, Qin XY. Syntheses, crystal structures of copper (II)-based complexes of sulfonamide derivatives and their anticancer effects through the synergistic effect of anti-angiogenesis, anti-inflammation, pro-apoptosis and cuproptosis. Eur J Med Chem 2024; 280:116954. [PMID: 39406115 DOI: 10.1016/j.ejmech.2024.116954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/25/2024]
Abstract
Three novel copper(II)-based complexes Cu-1, Cu-2, and Cu-3 containing sulfamethoxazole or sulfamethazine ligand were obtained, and their single structures were characterized. Both Cu-1 and Cu-3 show a broad spectrum of cytotoxicity than Cu-2, and Cu-1 is more cytotoxic than Cu-3. What's interesting is that Cu-1 can exhibit obvious inhibitory effect on the growth of human triple-negative breast cancer in vivo and vitro through anti-proliferative, anti-angiogenic, anti-inflammatory, pro-apoptotic and cuproptotic synergistic effects. Though Cu-3 shows no significant cytotoxicity against MDA-MB-231 cells, it can significantly inhibit the growth of SKOV3 cells in vitro by down-regulating the expression of some key proteins in the VEGF/VEGFR2 signaling pathway and the expression of some pro-inflammatory cytokines, and by disrupting the balance of intracellular reactive oxygen species levels.
Collapse
Affiliation(s)
- Ai-Qiu Liao
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China
| | - Juan Wen
- Department of Pharmacy, The Affiliated Hospital of Guilin Medical University, Guangxi, Guilin, 541001, China
| | - Jing-Chen Wei
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China
| | - Bing-Bing Xu
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China
| | - Nan Jin
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China
| | - Hong-Yu Lin
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China
| | - Xiu-Ying Qin
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China.
| |
Collapse
|
3
|
Moroni AB, Bottoso T, Lionello DF, Vega DR, Kaufman TS, Calvo NL. Synthesis, crystal structure and Hirshfeld surface analysis of sulfamethoxazolium methyl-sulfate monohydrate. Acta Crystallogr E Crystallogr Commun 2024; 80:1064-1068. [PMID: 39372179 PMCID: PMC11451484 DOI: 10.1107/s2056989024009204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
The mol-ecular salt sulfamethoxazolium {or 4-[(5-methyl-1,2-oxazol-3-yl)sulf-amo-yl]anilinium methyl sulfate monohydrate}, C10H12N3O3S+·CH3O4S-·H2O, was prepared by the reaction of sulfamethoxazole and H2SO4 in methanol and crystallized from methanol-ether-water. Protonation takes place at the nitro-gen atom of the primary amino group. In the crystal, N-H⋯O hydrogen bonds (water and methyl-sulfate anion) and inter-molecular N-H⋯N inter-actions involving the sulfonamide and isoxazole nitro-gen atoms, link the components into a tri-dimensional network, additional cohesion being provided by face-to-face π-π inter-actions between the phenyl rings of adjacent mol-ecules. A Hirshfeld surface analysis was used to verify the contributions of the different inter-molecular inter-actions, showing that the three most important contributions for the crystal packing are from H⋯O (54.1%), H⋯H (29.2%) and H⋯N (5.0%) inter-actions.
Collapse
Affiliation(s)
- Aldana B. Moroni
- Instituto de Química Rosario (IQUIR CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario. Suipacha 531 2000 RosarioArgentina
| | - Tiago Bottoso
- Instituto de Química Rosario (IQUIR CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario. Suipacha 531 2000 RosarioArgentina
| | - Diego F. Lionello
- Departamento Física de la Materia Condensada, Gerencia de Investigación y, Aplicaciones, Centro Atómico Constituyentes, Comisión Nacional de Energía, Atómica, Av. Gral. Paz 1499, B1650KNA, San Martín, Buenos Aires, Argentina
| | - Daniel R. Vega
- Departamento Física de la Materia Condensada, Gerencia de Investigación y, Aplicaciones, Centro Atómico Constituyentes, Comisión Nacional de Energía, Atómica, Av. Gral. Paz 1499, B1650KNA, San Martín, Buenos Aires, Argentina
| | - Teodoro S. Kaufman
- Instituto de Química Rosario (IQUIR CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario. Suipacha 531 2000 RosarioArgentina
| | - Natalia L. Calvo
- Instituto de Química Rosario (IQUIR CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario. Suipacha 531 2000 RosarioArgentina
| |
Collapse
|
4
|
Benali F, Boukoussa B, Issam I, Iqbal J, Mokhtar A, Hachemaoui M, Habeche F, Hacini S, Abboud M. Zinc nanoparticles encapsulated in porous biopolymer beads for reduction of water pollutants and antimicrobial activity. Int J Biol Macromol 2023; 248:125832. [PMID: 37473883 DOI: 10.1016/j.ijbiomac.2023.125832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
This work focuses on the preparation of composite beads from alginate crosslinked with copper at several loading percent and also loaded with ZnNPs. Th obtained samples were applied as catalysts for the reduction of the organic polluants 4-NP, MB, OG, MO, and CR in simple and binary systems. XRD results and TEM images confirmed the presence of ZnNPs in the polymer matrix. XRF and TGA analysis showed that the percentage of the cross-linking agent significantly influences the content of ZnNPs as well as the thermal stability of the resulting material. The catalytic activity of the composite beads showed that the Cu(4 %)-ALG(ZnNPs) sample was the best catalyst for all pollutants. In the simple system, the recorded rate constants for MB, MO, 4-NP, OG, and CR were 0.0133 s-1, 0.0076 s-1, 0.005 s-1, 0.0042 s-1, 0.0036 s-1, respectively. The catalyst was more selective towards the cationic MB dye for binary systems. For antibacterial and antifungal applications, the different materials containing ZnNPs and their counterparts containing Zn2+ were found to be active across all bacterial strains (Gram positive and Gram negative) as well as fungi, and the Zn2+-containing composites in particular performed better across all bacteria and fungi.
Collapse
Affiliation(s)
- Fadila Benali
- Département de Génie des Matériaux, Faculté de Chimie, Université des Sciences et de la Technologie Mohamed Boudiaf, BP 1505, El-Mnaouer, 31000 Oran, Algeria
| | - Bouhadjar Boukoussa
- Département de Génie des Matériaux, Faculté de Chimie, Université des Sciences et de la Technologie Mohamed Boudiaf, BP 1505, El-Mnaouer, 31000 Oran, Algeria; Laboratoire de Chimie des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran, Algeria
| | - Ismail Issam
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, P.O. Box 144534, Abu Dhabi, United Arab Emirates
| | - Adel Mokhtar
- Laboratoire de Chimie des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran, Algeria; Département Génie des Procédés, Institut des Sciences et Technologies, Université Ahmed Zabana, 48000 Relizane, Algeria.
| | - Mohammed Hachemaoui
- Laboratoire de Chimie des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran, Algeria
| | - Fatima Habeche
- Département de Génie des Matériaux, Faculté de Chimie, Université des Sciences et de la Technologie Mohamed Boudiaf, BP 1505, El-Mnaouer, 31000 Oran, Algeria
| | - Salih Hacini
- Laboratoire de Chimie Fine LCF, Université Oran1 Ahmed Ben Bella, BP-1524, El-Mnaouer, 31000 Oran, Algeria
| | - Mohamed Abboud
- Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
5
|
Benali F, Boukoussa B, Benkhedouda NEH, Cheddad A, Issam I, Iqbal J, Hachemaoui M, Abboud M, Mokhtar A. Catalytic Reduction of Dyes and Antibacterial Activity of AgNPs@Zn@Alginate Composite Aerogel Beads. Polymers (Basel) 2022; 14:polym14224829. [PMID: 36432956 PMCID: PMC9698220 DOI: 10.3390/polym14224829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
This work focuses on the preparation of aerogel composite beads based on Zn(II)-crosslinked alginate and loaded with different percentages of AgNPs using a simple approach. The obtained samples were evaluated in two different applications: the first application consists in their use as catalysts for the reduction of MB, MO, OG and CR dyes in a simple and binary system under the presence of NaBH4. For this, several parameters affecting the catalytic behavior of these catalysts have been investigated and discussed such as the catalyst mass, AgNPs content, dye nature, and the selectivity of the catalyst in a binary system. The second application concerns their antibacterial activities towards two Gram-negative bacteria Escherichia coli (ATCC 25922), and Pseudomonas aeruginosa (ATCC 27853), and a Gram-positive bacteria Staphylococcus aureus (ATCC 25923). The physico-chemical properties of different samples were characterized by XRD, FTIR, SEM/EDS, and TGA analysis. The obtained results confirmed the presence of AgNPs on a highly porous alginate structure. The dispersion of a high percentage of AgNPs leads to the formation of nanoparticles on the outer surface of the alginate which led to their leaching after the catalytic test, while the composite having a low percentage of AgNPs showed good results through all dyes without leaching of AgNPs. For the antibacterial application of the different samples, it was shown that a composite with a higher percentage of AgNPs was the most effective against all bacteria.
Collapse
Affiliation(s)
- Fadila Benali
- Département de Génie des Matériaux, Faculté de Chimie, Université des Sciences et de la Technologie Mohamed Boudiaf, BP 1505, El-Mnaouer, Oran 31000, Algeria
| | - Bouhadjar Boukoussa
- Département de Génie des Matériaux, Faculté de Chimie, Université des Sciences et de la Technologie Mohamed Boudiaf, BP 1505, El-Mnaouer, Oran 31000, Algeria
- Laboratoire de Chimie des Matériaux LCM, Université Oran 1 Ahmed Ben Bella, BP 1524, El-Mnaouer, Oran 31000, Algeria
- Correspondence: (B.B.); (J.I.); (M.A.)
| | - Nour-El-Houda Benkhedouda
- Département de Génie des Matériaux, Faculté de Chimie, Université des Sciences et de la Technologie Mohamed Boudiaf, BP 1505, El-Mnaouer, Oran 31000, Algeria
| | - Amina Cheddad
- Département de Génie des Matériaux, Faculté de Chimie, Université des Sciences et de la Technologie Mohamed Boudiaf, BP 1505, El-Mnaouer, Oran 31000, Algeria
| | - Ismail Issam
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, Abu Dhabi P.O. Box 144534, United Arab Emirates
- Correspondence: (B.B.); (J.I.); (M.A.)
| | - Mohammed Hachemaoui
- Laboratoire de Chimie des Matériaux LCM, Université Oran 1 Ahmed Ben Bella, BP 1524, El-Mnaouer, Oran 31000, Algeria
- Département de Sciences de la Matière, Institut des Sciences et Technologies, Université Ahmed Zabana, Relizane 48000, Algeria
| | - Mohamed Abboud
- Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Correspondence: (B.B.); (J.I.); (M.A.)
| | - Adel Mokhtar
- Laboratoire de Chimie des Matériaux LCM, Université Oran 1 Ahmed Ben Bella, BP 1524, El-Mnaouer, Oran 31000, Algeria
- Département Génie des Procédés, Institut des Sciences et Technologies, Université Ahmed Zabana, Relizane 48000, Algeria
| |
Collapse
|
6
|
Habila I, Bouchene R, Trifa C, Berrah F, Saoudi M, Benmerad B, Boudraa M, Merazig H, Bouacida S. Synthesis, structure characterization, spectral properties, DFT calculations, hirshfeld surface analysis, thermal stability and bioactivity of a new sulfamethoxazole zinc(II) complex. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|