1
|
Gaikwad RW, Sonawane AV, Hakke VS, Sonawane SH, Gaikwad MS, Lakhera SK, Babu G V, Warade AR, Urgunde AB, Sapkal VS. Application of apophyllite and thomsonite natural zeolite as modified adsorbents for the removal of zinc from acid mine drainage. CHEMOSPHERE 2024; 350:141095. [PMID: 38182086 DOI: 10.1016/j.chemosphere.2023.141095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/07/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
Materials composed of natural zeolite have the potential to serve as highly effective adsorbents in the treatment of wastewater. The present study explores zeolite resin-based Apophyllite and Thomsonite as adsorbents for removing Zinc from acid mine drainage solution. The characteristics of the natural zeolites (Apophyllites and Thomsonite) are investigated using X-ray diffraction, Fourier-transform infrared spectroscopy and Field emission scanning electron microscopy analysis. The removal of Zinc from AMD is explored, and the influence of metal ion concentration, resin dose, and pH is investigated using a batch exchange resin-based experimental method. Maximum zinc removal occurs in the pH range of 2-6 with an initial zinc content of 50-250 mg/L and a resin dosage of 25-700 mg/L, indicating that the adsorption process is pH-dependent. Various isotherm models, including those proposed by Freundlich and Langmuir as well as Redlich-Peterson, Dubinin, and Temkin, are used to verify the results of the experimental research. All these isotherm models' constants are determined. Both resins showed different sorption efficiencies at different operating conditions. However, highest Zn removal efficiency of 86.2% was observed for the Thomsonite zeolite resin whereas Apophyllite zeolite resin showed maximum Zn uptake of 81.6%. Thus, Thomsonite was found to be an effective sorbent.
Collapse
Affiliation(s)
- Ravindra W Gaikwad
- Department of Chemical Engineering, Jawaharlal Nehru Engineering College, MGM University, Aurangabad, MS, 431003, India.
| | - Amol Vijay Sonawane
- Department of Chemical Engineering, National Institute of Technology Warangal, Telangana State, 506004, India.
| | - Vikas S Hakke
- Department of Chemical Engineering, National Institute of Technology Warangal, Telangana State, 506004, India.
| | - Shirish H Sonawane
- Department of Chemical Engineering, National Institute of Technology Warangal, Telangana State, 506004, India.
| | - Mahendra S Gaikwad
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, Chhattisgarh, 492010, India
| | - Sandeep Kumar Lakhera
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science & Technology (SRMIST), Kattankulathur, Chengalpattu District, 603203, Tamil Nadu, India.
| | - Venu Babu G
- Shilpa Pharma Life Sciences Ltd, Deosugur, Dist Raicur, India
| | - A R Warade
- Department of Chemical Engineering, Pravara Rural Engineering College, Loni, MS, 413736, India.
| | - Ajay B Urgunde
- Department of Chemistry, Indian Institute of Technology, Jodhpur, Rajasthan, 34203, India.
| | - Vilas S Sapkal
- Department of Chemical Engineering, Jawaharlal Nehru Engineering College, MGM University, Aurangabad, MS, 431003, India.
| |
Collapse
|
2
|
Zhao X, Liu Y, Zhu Q, Gong W. Catechol-Based Porous Organic Polymers for Effective Removal of Phenolic Pollutants from Water. Polymers (Basel) 2023; 15:polym15112565. [PMID: 37299361 DOI: 10.3390/polym15112565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Phenolic pollutants released from industrial activities seriously damage natural freshwater resources, and their elimination or reduction to safe levels is an urgent challenge. In this study, three catechol-based porous organic polymers, CCPOP, NTPOP, and MCPOP, were prepared using sustainable lignin biomass-derived monomers for the adsorption of phenolic contaminants in water. CCPOP, NTPOP, and MCPOP showed good adsorption performance for 2,4,6-trichlorophenol (TCP) with theoretical maximum adsorption capacities of 808.06 mg/g, 1195.30 mg/g, and 1076.85 mg/g, respectively. In addition, MCPOP maintained a stable adsorption performance after eight consecutive cycles. These results indicate that MCPOP is a potential material for the effective treatment of phenol pollutants in wastewater.
Collapse
Affiliation(s)
- Xiaoxiao Zhao
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yiqiong Liu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Qimeng Zhu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Weitao Gong
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
3
|
Huang W, Liu A, Tang B, Fu Y, Zhang J. Efficient degradation of 2,4-dichlorophenol in water by sequential electrocatalytic reduction and oxidation with a Pd-MWCNTs/Ni-foam electrode. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27464-6. [PMID: 37155104 DOI: 10.1007/s11356-023-27464-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
Our previous study indicated excellent dechlorination efficiency and phenol conversion rate in the electrocatalytic reduction of 2,4-dichlorophenol (2,4-DCP) with a Pd-MWCNTs/Ni-foam electrode; it is deserved to investigate whether this electrode can efficiently degrade phenol in electro-Fenton oxidation (EFO) process and realize the effective mineralization of 2,4-DCP in aqueous solution. In this work, the sequential electrocatalytic reduction and oxidation of 2,4-DCP were studied after examining phenol degradation in the EFO process. The results showed that the removal efficiency of 0.31 mM phenol could reach 96.76% after 90-min degradation with the rate constant of 0.0367 min-1, and hydroxy radicals (·OH) were the main active species in the EFO process. In the sequential electrocatalytic reduction and oxidation processes, the removal efficiencies of 2,4-DCP, phenol, and total organic carbon (TOC) reached 99.72%, 97.07%, and 61.45%, respectively. The possible degradation mechanism of 2,4-DCP was proposed through monitoring the reaction products, and the stability and reusability of the electrode were also examined. This study suggested that 2,4-DCP in wastewater can be effectively mineralized to realize its efficient degradation through the sequential electrocatalytic reduction and oxidation.
Collapse
Affiliation(s)
- Weibin Huang
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Andi Liu
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Bobin Tang
- Technical Center, Chongqing Customs, Chongqing Engineering Technology Research Center of Import and Export Food Safety, Chongqing, 400020, People's Republic of China
| | - Yuanhang Fu
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Jinzhong Zhang
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
5
|
Ionic liquids filled hybrid capsules by harnessing interfacial imine chemistry of Janus nanosheets stabilized pickering emulsion for removal of chlorophenols. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|