1
|
Mehra A, Mittal A. Therapeutic Potential of Indole Derivatives: Analytical Perspectives on Their Role in Drug Discovery. Crit Rev Anal Chem 2025:1-21. [PMID: 40340607 DOI: 10.1080/10408347.2025.2500611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Indole was first identified around 1869, this being an indole ring system which is a fused benzene and pyrrole ring system. Research findings illustrate that indole derivatives have gained acceptance as therapeutic agents because they contain structural versatility and access different biological targets. Scientific research has established their strong pharmaceutical properties, especially for oncology medicines because they control essential cellular processes while interrupting defective enzymatic activities of topoisomerases, kinases, and histone deacetylases. Research proves that indole-based compounds display broad antibacterial, antifungal and antiparasitic effects in addition to their cancer-fighting properties. The indole nucleus creates targeted interactions with central nervous system receptors and enzymes for visualization in neurological therapeutic delivery. Research indicates that indole derivatives provide benefits for managing anti-inflammatory responses while lowering blood pressure and diabetes markers although benefiting cardiovascular health through their ability to affect specific disease pathways. The ongoing development of structural optimization methods with synthetic improvements leads to indole compounds which surpass present treatments according to clinical trials. Structural modifications to the indole core system have been explored in recent studies to improve its pharmacological versatility. Research from 2020 to 2024, featuring indole derivatives with their potency, mechanism of action, and strategies to overcome resistance, is highlighted, with a focus on different diseases. Finds from databases such as ScienceDirect, Google Scholar, PubMed, and EMBASE are included in the analysis.
Collapse
Affiliation(s)
- Anuradha Mehra
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Amit Mittal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
2
|
Januário MAP, Junior CDOR, Castro-Gamboa I. Indole Derivatives as Promising Anti-Dengue Agents: A Review of Recent Advances. Chem Biodivers 2025; 22:e202402517. [PMID: 39714443 DOI: 10.1002/cbdv.202402517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Dengue, a mosquito-borne disease transmitted by Aedes mosquitoes, is a significant global health concern. Despite extensive research, effective treatments remain limited. The indole nucleus, known for its diverse pharmacological properties, has emerged as a promising scaffold for anti-dengue drug discovery. This review comprehensively examines recent advancements in the fields of natural products, medicinal chemistry, and computer-aided drug design focused on discovering indole-based anti-dengue agents. We discuss the rationale for targeting indole frameworks, highlight key structural features associated with anti-dengue activity, and summarize recent research findings. The review aims to provide valuable insights for researchers working on developing novel anti-dengue therapeutics.
Collapse
Affiliation(s)
| | | | - Ian Castro-Gamboa
- Departament of Biochemistry and Organic Chemistry, São Paulo State University-UNESP, Araraquara, Brazil
| |
Collapse
|
3
|
Dhameliya TM, Vekariya DD, Bhatt PR, Kachroo T, Virani KD, Patel KR, Bhatt S, Dholakia SP. Synthetic account on indoles and their analogues as potential anti-plasmodial agents. Mol Divers 2025; 29:871-897. [PMID: 38709459 DOI: 10.1007/s11030-024-10842-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/07/2024] [Indexed: 05/07/2024]
Abstract
Malaria caused by P. falciparum, has been recognized as one of the major infectious diseases causing the death of several patients as per the reports from the World Health Organization. In search of effective therapeutic agents against malaria, several research groups have started working on the design and development of novel heterocycles as anti-malarial agents. Heterocycles have been recognized as the pharmacophoric features for the different types of medicinally important activities. Among all these heterocycles, nitrogen containing aza-heterocycles should not be underestimated owing to their wide therapeutic window. Amongst the aza-heterocycles, indoles and fused indoles such as marinoquinolines, isocryptolepines and their regioisomers, manzamines, neocryptolenines, and indolones have been recognized as anti-malarial agents active against P. falciparum. The present work unleashes the synthetic attempts of anti-malarial indoles and fused indoles through cyclocondensation, Fischer-indole synthesis, etc. along with the brief discussions on structure-activity relationships, in vitro or in vivo studies for the broader interest of these medicinal chemists, working on their design and development as potential anti-malarial agents.
Collapse
Affiliation(s)
- Tejas M Dhameliya
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India.
- Present Address: Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India.
| | - Drashtiben D Vekariya
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| | - Pooja R Bhatt
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| | - Tarun Kachroo
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| | - Kumkum D Virani
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| | - Khushi R Patel
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| | - Shelly Bhatt
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| | - Sandip P Dholakia
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| |
Collapse
|
4
|
Gavadia R, Rasgania J, Sahu N, Varma-Basil M, Chauhan V, Kumar S, Mor S, Singh D, Jakhar K. Synthesis of indole-functionalized isoniazid conjugates with potent antimycobacterial and antioxidant efficacy. Future Med Chem 2024; 16:1731-1747. [PMID: 39041719 PMCID: PMC11457681 DOI: 10.1080/17568919.2024.2379240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/14/2024] [Indexed: 07/24/2024] Open
Abstract
Aim: Developing potent medicinal alternates for tuberculosis (TB) is highly desirable due to the advent of drug-resistant lethal TB strains.Methods & results: Novel indole-isoniazid integrates have been synthesized with promising antimycobacterial action against the H37Rv strain, and the nitro analogs 4e and 4j show the highest efficacy with a minimum inhibitory concentration of 1.25 μg/ml. The molecular docking studies against InhA support the experimental findings. Indole conjugates display remarkable radical quenching efficiency, and compounds 4e and 4j demonstrate maximum IC50 values of 50.19 and 52.45 μg/ml, respectively. Pharmacokinetic analysis anticipated appreciable druggability for the title compounds.Conclusion: The notable bioaction of the indole-isoniazid templates projects them as potential lead in developing anti-TB medications with synergetic antioxidant action.
Collapse
Affiliation(s)
- Renu Gavadia
- Department of Chemistry, M. D. University, Rohtak, Haryana, 124001, India
| | - Jyoti Rasgania
- Department of Chemistry, M. D. University, Rohtak, Haryana, 124001, India
| | - Neetu Sahu
- Department of Chemistry, M. D. University, Rohtak, Haryana, 124001, India
| | - Mandira Varma-Basil
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007, India
| | - Varsha Chauhan
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007, India
- Department of Microbiology, M. D. UniversityRohtak, Haryana, 124001, India
| | - Sanjay Kumar
- Department of Microbiology, M. D. UniversityRohtak, Haryana, 124001, India
| | - Satbir Mor
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Devender Singh
- Department of Chemistry, M. D. University, Rohtak, Haryana, 124001, India
| | - Komal Jakhar
- Department of Chemistry, M. D. University, Rohtak, Haryana, 124001, India
| |
Collapse
|
5
|
Reddyrajula R, Etikyala U, Manga V, Kumar Dalimba U. Discovery of 1,2,3-triazole incorporated indole-piperazines as potent antitubercular agents: Design, synthesis, in vitro biological evaluation, molecular docking and ADME studies. Bioorg Med Chem 2024; 98:117562. [PMID: 38184947 DOI: 10.1016/j.bmc.2023.117562] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/07/2023] [Accepted: 12/17/2023] [Indexed: 01/09/2024]
Abstract
In this report, a library consisting of three sets of indole-piperazine derivatives was designed through the molecular hybridization approach. In total, fifty new hybrid compounds (T1-T50) were synthesized and screened for antitubercular activity against Mycobacterium tuberculosis H37Rv strain (ATCC-27294). Five (T36, T43, T44, T48 and T49) among fifty compounds exhibited significant inhibitory potency with the MIC of 1.6 µg/mL, which is twofold more potent than the standard first-line TB drug Pyrazinamide and equipotent with Isoniazid. N-1,2,3-triazolyl indole-piperazine derivatives displayed improved inhibition activity as compared to the simple and N-benzyl indole-piperazine derivatives. In addition, the observed activity profile of indole-piperazines was similar to standard anti-TB drugs (isoniazid and pyrazinamide) against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa strains, demonstrating the compounds' selectivity towards the Mycobacterium tuberculosis H37Rv strain. All the active anti-TB compounds are proved to be non-toxic (with IC50 > 300 μg/mL) as verified through the toxicity evaluation against VERO cell lines. Additionally, molecular docking studies against two target enzymes (Inh A and CYP121) were performed to validate the activity profile of indole-piperazine derivatives. Further, in silico-ADME prediction and pharmacokinetic parameters indicated that these compounds have good oral bioavailability.
Collapse
Affiliation(s)
- Rajkumar Reddyrajula
- Central Research facility, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
| | - Umadevi Etikyala
- Medicinal Chemistry Laboratory, Department of Chemistry, Osmania University, Hyderabad 500076, India
| | - Vijjulatha Manga
- Medicinal Chemistry Laboratory, Department of Chemistry, Osmania University, Hyderabad 500076, India
| | - Udaya Kumar Dalimba
- Organic and Materials Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India.
| |
Collapse
|
6
|
Khalilzadeh M, Saberi S, Noori G, Vaziri M, Sepehri S, Bakherad H, Esmaeili-Fallah M, Mirzayi S, Farhadi G. Synthesis, biological assessment, and computational investigations of nifedipine and monastrol analogues as anti-leishmanial major and anti-microbial agents. Mol Divers 2023; 27:2555-2575. [PMID: 36417095 DOI: 10.1007/s11030-022-10569-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022]
Abstract
Leishmaniasis includes a range of parasitic diseases caused by numerous types of the protozoan kinetoplastid parasite. Fungal and bacterial pathogens have led to infectious illnesses causing some main public health problem in current years. A series of dihydropyridine and tetrahydropyrimidine derivatives having fluoro, bromo, and nitro substituents at para-phenyl ring on C4 of dihydropyridine and tetrahydropyrimidine rings were synthesized. Then, anti-leishmanial and antimicrobial potencies of compounds were assessed. All compounds were synthesized via Hantzsch and Biginelli reactions. All derivatives were evaluated for their anti-leishmanial and antimicrobial activities. Moreover, docking and molecular dynamics simulation calculations of the compounds in PRT1 binding site were performed to report the results of anti-leishmanial and antimicrobial activities. Compounds 4a and 4b showed the highest anti-amastigote and anti-promastigote activities. Compound 4a revealed the highest antimicrobial activity against E. coli, P. aeruginosa, and C. albicans strains. In addition, compound 4c showed the highest activity against S. aureus. The fluoro, bromo, and nitro substituents in para-position of phenyl group at C4 of dihydropyridine and tetrahydropyrimidine moieties as well as the bulk and length of the chain linking to the ester moieties are essential for anti-leishmanial and anti-microbial activities of these derivatives. Low cytotoxicity was shown by most of derivatives against macrophages. The molecular docking studies were in agreement with in vitro assay. Moreover, hydrogen binds, RMSF, RMSD, and Rg, strongly showed the steady binding of 4a and 4b compounds in PRT1 active site.
Collapse
Affiliation(s)
- Mahdieh Khalilzadeh
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sedigheh Saberi
- Department of Mycology and Parasitology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ghazal Noori
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mostafa Vaziri
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saghi Sepehri
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Hamid Bakherad
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Esmaeili-Fallah
- Department of Mycology and Parasitology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahar Mirzayi
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ghazaleh Farhadi
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
7
|
Miankooshki FR, Bayat M, Nasri S, Samet NH. 1,3-Dipolar cycloaddition reactions of isatin-derived azomethine ylides for the synthesis of spirooxindole and indole-derived scaffolds: recent developments. Mol Divers 2023; 27:2365-2397. [PMID: 35925529 DOI: 10.1007/s11030-022-10510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/28/2022] [Indexed: 10/16/2022]
Abstract
The unique therapeutic and biological characteristics of spirooxindole have led to the presentation of numerous reactions for the synthesis of spirooxindoles through 1,3-Dipolar cycloaddition of highly reactive isatin-derived azomethine ylides with activated olefins as the main tool for the formation of spirocyclic oxindoles during the last 4 years. Therefore, there is a need to highlight the recent developments in this area, along with the representative synthetic methods and relevant reaction mechanisms from 2018 to 2021. The representative synthetic methodologies were listed in four sections based on the procedure to form the azomethine ylide species including isatins and amino acids, isatin-derived α-(trifluoromethyl)imine, isatins and benzylamines, and from isatin-derived cyclic imine 1,3-dipoles.
Collapse
Affiliation(s)
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.
| | - Shima Nasri
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Narges Habibi Samet
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
8
|
Liu T, Yao X, Zhang R, Wu T, Liu Z, Li D, Dong Q. Design, Synthesis and Biological Evaluation of Novel Indole-piperazine Derivatives as Antibacterial Agents. Bioorg Med Chem Lett 2023; 89:129320. [PMID: 37156392 DOI: 10.1016/j.bmcl.2023.129320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/10/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
Herein, a series of novel indole-piperazine derivatives were synthesized. Bioassay results showed the title compounds exhibited moderate to good bacteriostatic efficacy against the test Gram-positive bacteria and Gram-negative bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). Among theses compounds, three remarkable compounds 8f, 9a, and 9h exhibited superior in vitro antibacterial profiles for anti- S. aureus and anti-MRSA to that of gentamicin. Hit compound 9a manifested a rapid bactericidal kinetic effect on MRSA,with no resistance observed after 19 days of sequential passaging. And 8 µg/mL of compound 9a displayed considerable post antibacterial effects to that of ciprofloxacin at the concentration of 2 µg/mL. Cytotoxic and ADMET studies indicated, to some extent, compounds 8f, 9a, and 9h were up to the standard for antibacterial drugs. These results suggest that indole/piperazine derivatives based on the title compounds can serve as a new scaffold for antimicrobial development.
Collapse
Affiliation(s)
- Ting Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Xiaofang Yao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Rongrong Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Tianling Wu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Zhigang Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China.
| | - Ding Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China.
| | - Qingjian Dong
- Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Rzepka Z, Bębenek E, Chrobak E, Wrześniok D. Synthesis and Anticancer Activity of Indole-Functionalized Derivatives of Betulin. Pharmaceutics 2022; 14:2372. [PMID: 36365190 PMCID: PMC9694481 DOI: 10.3390/pharmaceutics14112372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 09/01/2023] Open
Abstract
Pentacyclic triterpenes, including betulin, are widespread natural products with various pharmacological effects. These compounds are the starting material for the synthesis of substances with promising anticancer activity. The chemical modification of the betulin scaffold that was carried out as part of the research consisted of introducing the indole moiety at the C-28 position. The synthesized new 28-indole-betulin derivatives were evaluated for anticancer activity against seven human cancer lines (A549, MDA-MB-231, MCF-7, DLD-1, HT-29, A375, and C32). It was observed that MCF-7 breast cancer cells were most sensitive to the action of the 28-indole-betulin derivatives. The study shows that the lup-20(29)-ene-3-ol-28-yl 2-(1H-indol-3-yl)acetate caused the MCF-7 cells to arrest in the G1 phase, preventing the cells from entering the S phase. The performed cytometric analysis of DNA fragmentation indicates that the mechanism of EB355A action on the MCF-7 cell line is related to the induction of apoptosis. An in silico ADMET profile analysis of EB355A and EB365 showed that both compounds are bioactive molecules characterized by good intestinal absorption. In addition, the in silico studies indicate that the 28-indole-betulin derivatives are substances of relatively low toxicity.
Collapse
Affiliation(s)
- Zuzanna Rzepka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Ewa Bębenek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Elwira Chrobak
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| |
Collapse
|
10
|
Chudasama SJ, Shah BJ, Patel KM, Dhameliya TM. The spotlight review on ionic liquids catalyzed synthesis of aza- and oxa-heterocycles reported in 2021. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Sureja DK, Shah AP, Gajjar ND, Jadeja SB, Bodiwala KB, Dhameliya TM. In-silico Computational Investigations of AntiViral Lignan Derivatives as Potent Inhibitors of SARS CoV-2. ChemistrySelect 2022; 7:e202202069. [PMID: 35942360 PMCID: PMC9349937 DOI: 10.1002/slct.202202069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/05/2022] [Indexed: 11/11/2022]
Abstract
Due to alarming outbreak of pandemic COVID-19 in recent times, there is a strong need to discover and identify new antiviral agents acting against SARS CoV-2. Among natural products, lignan derivatives have been found effective against several viral strains including SARS CoV-2. Total of twenty-seven reported antiviral lignan derivatives of plant origin have been selected for computational studies to identify the potent inhibitors of SARS CoV-2. Molecular docking study has been carried out in order to predict and describe molecular interaction between active site of enzyme and lignan derivatives. Out of identified hits, clemastatin B and erythro-strebluslignanol G demonstrated stronger binding and high affinity with all selected proteins. Molecular dynamics simulation studies of clemastin B and savinin against promising targets of SARS CoV-2 have revealed their inhibitory potential against SARS CoV-2. In fine, in-silico computational studies have provided initial breakthrough in design and discovery of potential SARS CoV-2 inhibitors.
Collapse
Affiliation(s)
- Dipen K. Sureja
- Department of Pharmaceutical Chemistry and Quality AssuranceL. M. College of Pharmacy, NavrangpuraAhmedabad380009, GujaratIndia
| | - Ashish P. Shah
- Department of Pharmacy, Sumandeep VidyapeethVadodara391760, GujaratIndia
| | - Normi D. Gajjar
- Department of Pharmaceutical Chemistry and Quality AssuranceL. M. College of Pharmacy, NavrangpuraAhmedabad380009, GujaratIndia
| | - Shwetaba B. Jadeja
- Department of Pharmaceutical Chemistry and Quality AssuranceL. M. College of Pharmacy, NavrangpuraAhmedabad380009, GujaratIndia
| | - Kunjan B. Bodiwala
- Department of Pharmaceutical Chemistry and Quality AssuranceL. M. College of Pharmacy, NavrangpuraAhmedabad380009, GujaratIndia
| | - Tejas M. Dhameliya
- Department of Pharmaceutical Chemistry and Quality AssuranceL. M. College of Pharmacy, NavrangpuraAhmedabad380009, GujaratIndia
| |
Collapse
|
12
|
Bajad NG, Singh SK, Singh SK, Singh TD, Singh M. Indole: A promising scaffold for the discovery and development of potential anti-tubercular agents. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100119. [PMID: 35992375 PMCID: PMC9389259 DOI: 10.1016/j.crphar.2022.100119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/13/2022] [Accepted: 07/05/2022] [Indexed: 11/08/2022] Open
Abstract
Indole-containing small molecules have been reported to have diverse pharmacological activities. The aromatic heterocyclic scaffold, which resembles various protein structures, has received attention from organic and medicinal chemists. Exploration of indole derivatives in drug discovery has rapidly yielded a vast array of biologically active compounds with broad therapeutic potential. Nature is the major source of indole scaffolds, but various classical and advanced synthesis methods for indoles have also been reported. One-pot synthesis is widely considered an efficient approach in synthetic organic chemistry and has been used to synthesize some indole compounds. The rapid emergence of drug-resistant tuberculosis is a major challenge to be addressed. Identifying novel targets and drug candidates for tuberculosis is therefore crucial. Researchers have extensively explored indole derivatives as potential anti-tubercular agents or drugs. Indole scaffolds containing the novel non-covalent (decaprenylphosphoryl-β-D-ribose2'-epimerase) DprE1 inhibitor 1,4-azaindole is currently in clinical trials to treat Mycobacterium tuberculosis. In addition, DG167 indazole sulfonamide with potent anti-tubercular activity is undergoing early-stage development in preclinical studies. Indole bearing cationic amphiphiles with high chemical diversity have been reported to depolarize and disrupt the mycobacterial membrane. Some indole-based compounds have potential inhibitory activities against distinct anti-tubercular targets, including the inhibition of cell wall synthesis, replication, transcription, and translation, as summarized in the graphical abstract. The success of computer-aided drug design in the fields of cancer and anti-viral drugs has accelerated in silico studies in antibacterial drug development. This review describes the sources of indole scaffolds, the potential for novel indole derivatives to serve as anti-tubercular agents, in silico findings, and proposed actions to facilitate the design of novel compounds with anti-tubercular activity.
Collapse
Affiliation(s)
- Nilesh Gajanan Bajad
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Sudhir Kumar Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sushil Kumar Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Tryambak Deo Singh
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Meenakshi Singh
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
13
|
Bhakhar KA, Vaghela PV, Varakala SD, Chudasma SJ, Gajjar ND, Nagar PR, Sriram D, Dhameliya TM. Indole‐2‐carboxamides as New Anti‐Mycobacterial Agents: Design, Synthesis, Biological Evaluation and Molecular Modeling against mmpL3. ChemistrySelect 2022. [DOI: 10.1002/slct.202201813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kaushikkumar A. Bhakhar
- Department of Pharmaceutical Chemistry and Quality Assurance L. M. College of Pharmacy, Navrangpura Ahmedabad 380009 Gujarat India
| | - Punit V. Vaghela
- Department of Pharmaceutical Chemistry and Quality Assurance L. M. College of Pharmacy, Navrangpura Ahmedabad 380009 Gujarat India
| | - Saiprasad D. Varakala
- Department of Pharmacy Birla Institute of Technology & Science - Pilani Hyderabad Campus, Jawahar Nagar Hyderabad 500 078 India
| | - Shrdhhaba J. Chudasma
- Department of Pharmaceutical Chemistry and Quality Assurance L. M. College of Pharmacy, Navrangpura Ahmedabad 380009 Gujarat India
| | - Normi D. Gajjar
- Department of Pharmaceutical Chemistry and Quality Assurance L. M. College of Pharmacy, Navrangpura Ahmedabad 380009 Gujarat India
| | - Prinsa R. Nagar
- Department of Pharmaceutical Chemistry and Quality Assurance L. M. College of Pharmacy, Navrangpura Ahmedabad 380009 Gujarat India
| | - Dharmarajan Sriram
- Department of Pharmacy Birla Institute of Technology & Science - Pilani Hyderabad Campus, Jawahar Nagar Hyderabad 500 078 India
| | - Tejas M. Dhameliya
- Department of Pharmaceutical Chemistry and Quality Assurance L. M. College of Pharmacy, Navrangpura Ahmedabad 380009 Gujarat India
| |
Collapse
|
14
|
|
15
|
Kumar A, Dhameliya TM, Sharma K, Patel KA, Hirani RV. Environmentally Benign Approaches towards the Synthesis of Quinolines. ChemistrySelect 2022. [DOI: 10.1002/slct.202201059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Asim Kumar
- Amity Institute of Pharmacy Amity University Haryana, Panchgaon, Manesar 122 413 Haryana India
| | - Tejas M. Dhameliya
- Department of Pharmaceutical Chemistry and Quality Assurance L. M. College of Pharmacy, Navrangpura, Ahmedabad 380 009 Gujarat India
| | - Kirti Sharma
- Amity Institute of Pharmacy Amity University Haryana, Panchgaon, Manesar 122 413 Haryana India
| | - Krupa A. Patel
- Department of Pharmaceutical Chemistry and Quality Assurance L. M. College of Pharmacy, Navrangpura, Ahmedabad 380 009 Gujarat India
| | - Rajvi V. Hirani
- Department of Pharmaceutical Chemistry and Quality Assurance L. M. College of Pharmacy, Navrangpura, Ahmedabad 380 009 Gujarat India
| |
Collapse
|
16
|
Mikhalyonok SG, Kuz’menok NM, Bezborodov VS, Arol AS. Synthesis of 1,2,6-trisubstituted indoles from 6-propargylcyclohex-2-enones and primary amines. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Dhameliya TM, Devani AA, Patel KA, Shah KC. Comprehensive Coverage on Anti‐mycobacterial Endeavour Reported in 2021. ChemistrySelect 2022. [DOI: 10.1002/slct.202200921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Aanal A. Devani
- L. M. College of Pharmacy, Navrangpura Ahmedabad 380 009 Gujarat India
| | - Krupa A. Patel
- L. M. College of Pharmacy, Navrangpura Ahmedabad 380 009 Gujarat India
| | - Kashvi C. Shah
- L. M. College of Pharmacy, Navrangpura Ahmedabad 380 009 Gujarat India
| |
Collapse
|
18
|
Rani M, Utreja D, Sharma S. Role of Indole Derivatives in Agrochemistry: Synthesis and Future Insights. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220426103835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Heterocycles constitute a wider class of organic compounds which contribute significantly in every facet of pure and applied chemistry. Indole, one of the bicyclic heterocyclic compounds containing nitrogen atom, witnessed unparalleled biological activity such as antiviral, antibacterial, anticancer, anti-depressant and antifungal activities. Different biological activities exhibited by indole derivatives provide the impulsion to explore its activity against anti-phytopathogenic microbes to save the plants from pests and disease, as food security will once again become a rigid demand. This review mainly focuses on various methods related to the synthesis of indole derivatives and its role in agriculture.
Collapse
Affiliation(s)
- Manisha Rani
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Divya Utreja
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Shivali Sharma
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| |
Collapse
|
19
|
Dhameliya TM, Nagar PR, Gajjar ND. Systematic virtual screening in search of SARS CoV-2 inhibitors against spike glycoprotein: pharmacophore screening, molecular docking, ADMET analysis and MD simulations. Mol Divers 2022; 26:2775-2792. [PMID: 35132518 PMCID: PMC8821869 DOI: 10.1007/s11030-022-10394-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/22/2022] [Indexed: 01/08/2023]
Abstract
In the absence of efficient anti-viral medications, the coronavirus disease 2019 (COVID-19), stemming from severe acute respiratory syndrome coronavirus-2 (SARS CoV-2), has spawned a worldwide catastrophe and global emergency. Amidst several anti-viral targets of COVID-19, spike glycoprotein has been recognized as an essential target for the viral entry into the host cell. In the search of effective SARS CoV-2 inhibitors acting against spike glycoprotein, the virtual screening of 175,851 ligands from the 2020.1 Asinex BioDesign library has been performed using in silico tools like SiteMap analysis, pharmacophore-based screening, molecular docking using different levels of precision, such as high throughput virtual screening, standard precision and extra precision, followed by absorption, distribution, metabolism, excretion and toxicity analysis, and molecular dynamics (MD) simulation. Following a molecular docking study, seventeen molecules (with a docking score of less than - 6.0) were identified having the substantial interactions with the catalytic amino acid and nucleic acid residues of spike glycoprotein at the binding site. In investigations using MD simulations for 10 ns, the hit molecules (1 and 2) showed adequate compactness and uniqueness, as well as satisfactory stability. These computational research findings have offered a key starting point in the field of design and development of novel SARS CoV-2 entry inhibitors with appropriate drug likeliness.
Collapse
Affiliation(s)
- Tejas M Dhameliya
- L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| | - Prinsa R Nagar
- L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Normi D Gajjar
- L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India
| |
Collapse
|
20
|
A review on synthetic account of 1,2,4-oxadiazoles as anti-infective agents. Mol Divers 2022; 26:2967-2980. [PMID: 34984590 PMCID: PMC8727175 DOI: 10.1007/s11030-021-10375-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/24/2021] [Indexed: 11/03/2022]
Abstract
Most of the currently marketed drugs consist of heterocyclic scaffolds containing nitrogen and or oxygen as heteroatoms in their structures. Several research groups have synthesized diversely substituted 1,2,4-oxadiazoles as anti-infective agents having anti-bacterial, anti-viral, anti-leishmanial, etc. activities. For the first time, the present review article will provide the coverage of synthetic account of 1,2,4-oxadiazoles as anti-infective agents along with their potential for SAR, activity potential, promising target for mode of action. The efforts have been made to provide the chemical intuitions to the reader to design new chemical entity with potential of anti-infective activity. This review will mark the impact as the valuable, comprehensive and pioneered work along with the library of synthetic strategies for the organic and medicinal chemists for further refinement of 1,2,4-oxadiazole as anti-infective agents.
Collapse
|