1
|
Lal K, Grover A, Ragshaniya A, Aslam M, Singh P, Kumari K. Current advancements and future perspectives of 1,2,3-triazoles to target lanosterol 14α-demethylase (CYP51), a cytochrome P450 enzyme: A computational approach. Int J Biol Macromol 2025:144240. [PMID: 40389011 DOI: 10.1016/j.ijbiomac.2025.144240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 05/05/2025] [Accepted: 05/13/2025] [Indexed: 05/21/2025]
Abstract
Antifungal resistance has become a significant challenge, necessitating the development of novel antifungal agents. Resistance often arises from prolonged and widespread use of existing treatments, leading to mutations in fungal enzymes that reduce drug efficacy. Amongst various scaffolds, 1,2,3-triazoles have emerged as antifungal agents due to their ability to bind effectively to fungal enzymes. This review examines the binding interactions of 1,2,3-triazoles with lanosterol 14α-demethylase (CYP51), an enzyme in Candida albicans (PDB IDs:5TZ1and5V5Z), highlighting their potential in fighting resistance. The CYP51 family is a captivating topic to investigate the structural and functional roles of P450 and makes for a key medical focus. It is one of crucial step in biosynthesis of sterol in eukaryotes. Antifungals mostly work on CYP51 and could also be used to treat protozoan diseases in the future. 1,2,3-Triazoles exert their antifungal effects by inhibiting the CYP51 enzyme, which is crucial for ergosterol synthesis in fungal cell membranes. Which causes disruption of membrane integrity and ultimately leads to death of fungal cell. In silico studies like including molecular docking and molecular dynamics (MD) simulations, reveal that these compounds establish strong interactions (e.g., π-π, π-alkyl, CH, hydrogen bonding, and Van der Waals interactions) with active site residues, stabilizing the ligand-enzyme complex. This review of virtual screening assays shows the adaptability of the 1,2,3-triazole scaffold and its widespread use in core antifungal compounds, making it a key pharmacophore for new lead development against resistant fungal species.
Collapse
Affiliation(s)
- Kashmiri Lal
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana 125001, India.
| | - Anshul Grover
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana 125001, India
| | - Aman Ragshaniya
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana 125001, India
| | - Mohd Aslam
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi 110007, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi 110007, India
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi, India.
| |
Collapse
|
2
|
Saekee A, Sooknual P, Punpai S, Prachayasittikul V, Hongthong S, Tanechpongtamb W, Prachayasittikul S, Ruchirawat S, Prachayasittikul V, Pingaew R. Synthesis, anti-proliferation, apoptosis induction in breast cancer cells, and aromatase inhibition of coumarin-triazole hybrids: In vitro and in silico studies. Arch Biochem Biophys 2025; 765:110308. [PMID: 39837395 DOI: 10.1016/j.abb.2025.110308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/07/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
Breast cancer is one of the most common cancers found in women worldwide. Besides the availability of clinical drugs, drug resistance and considerable side effects are concerning issues driven the needs for the discovery of novel anticancer agents. Aromatase inhibition is one of the effective strategies for management of hormone-dependent breast cancer. Triazole, coumarin, and isatin are heterocyclic scaffolds holding great attention in the field of drug design. Molecular hybridization is a well-known strategy to achieve new molecules with improved potency and properties. Herein, a set of 27 triazole-based hybrids (i.e., coumarin-triazoles series 5-6 and isatin-triazoles series 7) were synthesized and investigated for their anti-proliferation, apoptosis induction, and aromatase inhibitory potentials. Anti-proliferative study against the hormone-dependent breast cancer (T47D) cell line indicated that coumarin-triazoles 5h (R=NO2) and 6i (R=SO2NH2) were the two most potent antiproliferative agents. Particularly, compound 5h showed comparable potency and superior selectivity index than that of the reference drug, doxorubicin. Moreover, the coumarin-triazole 5h induced cellular apoptosis of the estrogen-dependent breast cancer (MCF-7) cells. Additionally, findings from the aromatase inhibitory assay suggested four compounds as potential aromatase inhibitors (i.e., 5i, 6f, 6g and 6i, IC50 = 1.4-2.4 μM). Two QSAR models with preferable predictive performances were constructed to reveal key properties influencing antiproliferative and aromatase inhibitory effects. Molecular docking was conducted to elucidate the possible binding modalities against the target aromatase enzyme. Key structural features essential for the binding were highlighted. Moreover, the drug-like properties of top-ranking compounds were assessed to ensure their possibilities for successful development.
Collapse
Affiliation(s)
- Amporn Saekee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Pichjira Sooknual
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Sakdiphong Punpai
- Innovative Learning Center, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Veda Prachayasittikul
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| | - Sakchai Hongthong
- Division of Chemistry, Faculty of Science and Technology, Rajabhat Rajanagarindra University, Chachoengsao, 24000, Thailand
| | - Wanlaya Tanechpongtamb
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Supaluk Prachayasittikul
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Somsak Ruchirawat
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Program in Chemical Sciences, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Commission on Higher Education, Ministry of Education, Bangkok, 10400, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Ratchanok Pingaew
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand.
| |
Collapse
|
3
|
Nguyen HT, Van KT, Pham-The H, Le QB, Le-Nhat-Thuy G, Dang Thi TA, Hoang Thi P, Nguyen Thi QG, Tuan AN, Vu Ngoc D, Van Nguyen T. Synthesis, cytotoxicity, apoptosis-inducing activity and molecular docking studies of novel isatin-podophyllotoxin hybrids. RSC Adv 2025; 15:2825-2839. [PMID: 39877702 PMCID: PMC11774189 DOI: 10.1039/d4ra08691k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025] Open
Abstract
Podophyllotoxin, along with its numerous derivatives and related compounds, is well known for its broad-spectrum pharmacological activity, especially for anticancer potential. In this study, several isatin-podophyllotoxin hybrid compounds were successfully synthesized with good yields through microwave-prompted three-component reactions of 2-amino-1,4-naphthoquinone, various substituted isatins, and tetronic acid. Their cytotoxicity was assessed against four types of human cancer cell lines, HepG2 (hepatoma carcinoma), MCF7 (breast cancer), A549 (non-small lung cancer), and KB (epidermoid carcinoma), alongside nontumorigenic HEK-293 human embryonic kidney cells. Among 14 compounds screened, 7f possessed the strongest cytotoxicity to KB and A549 cell lines, with IC50 values of 1.99 ± 0.22 and 0.90 ± 0.09 μM, respectively. Further studies revealed that product 7f could arrest the cell cycle of A549 cells at S phase and induce apoptosis of A549 cells. This compound was examined for its binding ability against cyclin-dependent kinases (CDKs) and procaspase/caspase systems. The results indicated that 7f exhibited significant interactions with the residues of the ATP binding sites of CDK2/cyclin A and CDK5/p25 and also activated procaspase 6 through stable zinc chelation. Additionally, physicochemical and pharmacokinetic properties related to drug-likeness, in parallel with toxicity, were computationally assessed to identify the main issues that need to be addressed in structural optimization. Taken together, compound 7f was identified as a potent cytotoxic agent that could be considered for anticancer drug discovery and development.
Collapse
Affiliation(s)
- Ha Thanh Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology, VAST 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Ket Tran Van
- Graduate University of Science and Technology, VAST 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Military Technical Academy 236 Hoang Quoc Viet, Bac Tu Liem Hanoi Vietnam
| | - Hai Pham-The
- University of Science and Technology of Hanoi, VAST 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Quang-Bao Le
- University of Science and Technology of Hanoi, VAST 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Giang Le-Nhat-Thuy
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology, VAST 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Tuyet Anh Dang Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology, VAST 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Phuong Hoang Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology, VAST 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Quynh Giang Nguyen Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Anh Nguyen Tuan
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology, VAST 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Doan Vu Ngoc
- Military Technical Academy 236 Hoang Quoc Viet, Bac Tu Liem Hanoi Vietnam
| | - Tuyen Van Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology, VAST 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| |
Collapse
|
4
|
Maiuolo L, Tallarida MA, Meduri A, Fiorani G, Jiritano A, De Nino A, Algieri V, Costanzo P. 1,2,3-Triazole Hybrids Containing Isatins and Phenolic Moieties: Regioselective Synthesis and Molecular Docking Studies. Molecules 2024; 29:1556. [PMID: 38611835 PMCID: PMC11013233 DOI: 10.3390/molecules29071556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
The synthesis of hybrid molecules is one of the current strategies of drug discovery for the development of new lead compounds. The 1,2,3-triazole moiety represents an important building block in Medicinal Chemistry, extensively present in recent years. In this paper, we presented the design and the synthesis of new 1,2,3-triazole hybrids, containing both an isatine and a phenolic core. Firstly, the non-commercial azide and the alkyne synthons were prepared by different isatines and phenolic acids, respectively. Then, the highly regioselective synthesis of 1,4-disubstituted triazoles was obtained in excellent yields by a click chemistry approach, catalyzed by Cu(I). Finally, a molecular docking study was performed on the hybrid library, finding four different therapeutic targets. Among them, the most promising results were obtained on 5-lipoxygenase, an enzyme involved in the inflammatory processes.
Collapse
Affiliation(s)
- Loredana Maiuolo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy; (L.M.); (A.J.); (A.D.N.)
| | | | - Angelo Meduri
- RINA Consulting—Centro Sviluppo Materiali SpA, Zona Industriale San Pietro Lametino, Comparto 1, 88046 Lamezia Terme, CZ, Italy;
| | - Giulia Fiorani
- Department Molecular Sciences and Nanosystems, University Ca’ Foscari Venezia, 30172 Mestre, VE, Italy;
| | - Antonio Jiritano
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy; (L.M.); (A.J.); (A.D.N.)
| | - Antonio De Nino
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy; (L.M.); (A.J.); (A.D.N.)
| | - Vincenzo Algieri
- IRCCS NEUROMED—Istituto Neurologico Mediterraneo, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Paola Costanzo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy; (L.M.); (A.J.); (A.D.N.)
| |
Collapse
|
5
|
Tian G, Song Q, Liu Z, Guo J, Cao S, Long S. Recent advances in 1,2,3- and 1,2,4-triazole hybrids as antimicrobials and their SAR: A critical review. Eur J Med Chem 2023; 259:115603. [PMID: 37478558 DOI: 10.1016/j.ejmech.2023.115603] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/17/2023] [Accepted: 06/25/2023] [Indexed: 07/23/2023]
Abstract
With the widespread use and sometimes even abuse of antibiotics, the problem of bacterial resistance to antibiotics has become very serious, and it is posing a great threat to global health. Therefore, development of new antibiotics is imperative. Triazoles are five-membered, nitrogen-containing aromatic heterocyclic scaffolds, with two isomeric forms, i.e. 1,2,3-triazole and 1,2,4-triazole. Triazole-containing compounds have a wide range of biological activities such as antibacterial, antifungal, anticancer, antioxidant, antitubercular, antimalarial, anti-HIV, anticonvulsant, anti-inflammatory, antiulcer, analgesic, and etc. The bioactivities and the diversity of triazole-containing drugs have attracted wide interest in these heterocycles. Various antibiotic triazole hybrids have been developed, and most of which have shown potent antimicrobial activities. In this review, we summarized the recent advances in triazole hybrids as potential antibacterial agents and their structure-activity relationships (SARs). The information gained through SAR studies will provide further insights into the development of new triazole antimicrobials.
Collapse
Affiliation(s)
- Guimiao Tian
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Qiuyi Song
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Ziwei Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Ju Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Shuang Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China.
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China.
| |
Collapse
|
6
|
Abdelgawad MA, Bukhari SNA, Musa A, Elmowafy M, Nayl AA, El-Ghorab AH, Sadek Abdel-Bakky M, Omar HA, Hadal Alotaibi N, Hassan HM, Ghoneim MM, Bakr RB. Phthalazone tethered 1,2,3-triazole conjugates: In silico molecular docking studies, synthesis, in vitro antiproliferative, and kinase inhibitory activities. Bioorg Chem 2023; 133:106404. [PMID: 36812829 DOI: 10.1016/j.bioorg.2023.106404] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/14/2023] [Accepted: 01/29/2023] [Indexed: 02/16/2023]
Abstract
New phthalazone tethered 1,2,3-triazole derivatives 12-21 were synthesized utilizing the Cu(I)-catalyzed click reactions of alkyne-functionalized phthalazone 1 with functionalized azides 2-11. The new phthalazone-1,2,3-triazoles structures 12-21 were confirmed by different spectroscopic tools, like IR; 1H, 13C, 2D HMBC and 2D ROESY NMR; EI MS, and elemental analysis. The antiproliferative efficacy of the molecular hybrids 12-21 against four cancer cell lines was evaluated, including colorectal cancer, hepatoblastoma, prostate cancer, breast adenocarcinoma, and the normal cell line WI38. The antiproliferative assessment of derivatives 12-21 showed potent activity of compounds 16, 18, and 21 compared to the anticancer drug doxorubicin. Compound 16 showed selectivity (SI) towardthe tested cell lines ranging from 3.35 to 8.84 when compared to Dox., that showed SI ranged from 0.75 to 1.61. Derivatives 16, 18 and 21 were assessed towards VEGFR-2 inhibitory activity and result in that derivative 16 showed the potent activity (IC50 = 0.123 µM) in comparison with sorafenib (IC50 = 0.116 µM). Compound 16 caused an interference with the cell cycle distribution of MCF7 and increased the percentage of cells in S phase by 1.37-fold. In silico molecular docking of the effective derivatives 16, 18, and 21 against vascular endothelial growth factor receptor-2 (VEGFR-2) confirmed the formation of stable protein-ligand interactions within the pocket.
Collapse
Affiliation(s)
- Mohamed A Abdelgawad
- Department of pharmaceutical chemistry, college of pharmacy, Jouf university, sakaka 72431, Saudi Arabia.
| | - Syed Nasir Abbas Bukhari
- Department of pharmaceutical chemistry, college of pharmacy, Jouf university, sakaka 72431, Saudi Arabia
| | - Arafa Musa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - AbdElAziz A Nayl
- Department of chemistry, College of Science, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Ahmed H El-Ghorab
- Department of chemistry, College of Science, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Mohamed Sadek Abdel-Bakky
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hany A Omar
- College of Pharmacy, University of Sharjah, United Arab Emirates
| | - Nasser Hadal Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Hossam M Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62513, Egypt
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Rania B Bakr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| |
Collapse
|
7
|
Kumar V, Lal K, Kumar A, Tittal RK, Singh MB, Singh P. Efficient synthesis, antimicrobial and molecular modelling studies of 3-sulfenylated oxindole linked 1,2,3-triazole hybrids. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04933-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Alshamari AK. Design and Synthesis of Novel 1,2,3-Triazole Levonorgestrel Derivatives via Click Chemistry. Anticancer Activity and Molecular Docking. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s107042802212017x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
9
|
Radwan EK, Rashdan HRM, Hemdan BA, Koryam AA, El-Naggar ME. A dual-functional sulfone biscompound containing 1,2,3-triazole moiety for decolorization and disinfection of contaminated water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77238-77252. [PMID: 35676578 PMCID: PMC9581830 DOI: 10.1007/s11356-022-20932-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/13/2022] [Indexed: 05/28/2023]
Abstract
Water decontamination from toxic dyes and pathogenic microorganisms is critical for life on Earth. Herein, we report the synthesis of sulfone biscompound containing 1,2,3-triazole moiety and evaluation of its dye decolorization and biocidal and disinfection efficiencies. The decolorization efficiency was tested under different experimental conditions, while the biocidal action was examined against various types of waterborne pathogens, and the disinfection of some pathogenic microbes was executed in artificially contaminated water. The findindgs illustrated that the solution initial pH (pHi) affected the decolorization efficiency significantly. About complete removal of 10 mg/L malachite green (MG) dye was achieved after 10 min using 3 g/L of the sulfone biscompound at pHi 6. The pseudo-second-order equation suited the adsorption kinetics accurately, while the equilibrium data was suited by Langmuir isotherm model. Electrostatic, n-π, and π-π interactions brought about the adsorption of MG onto the sulfone biscompound. The biocidal results indicated that the sulfone biscompound had a powerful antibacterial potential against the tested bacterial species. Likewise, the distinction trail revealed that after 70-90 min of direct contact with an effective dose, the tested pathogens could be completely eliminated (6-log reduction). Overall, the newly synthesized sulfone biscompound can efficiently remove cationic dyes and disinfect contaminated water.
Collapse
Affiliation(s)
- Emad K Radwan
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St, Dokki, Giza, 12622, Egypt.
| | - Huda R M Rashdan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Buhouth St, Dokki, Giza, 12622, Egypt
| | - Bahaa A Hemdan
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St, Dokki, Giza, 12622, Egypt
| | - Asmaa A Koryam
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St, Dokki, Giza, 12622, Egypt
| | - Mehrez E El-Naggar
- Institute of Textile Research and Technology, National Research Centre, 33 El Bohouth St, Dokki, Giza, 12622, Egypt.
| |
Collapse
|
10
|
El Malah T, Farag H, Awad HM, Abdelrahman MT, Shamroukh AH. Design and Click Synthesis of Novel 1- Substituted-4-(3,4-Dimethoxyphenyl)-1 H-1,2,3-Triazole Hybrids for Anticancer Evaluation and Molecular Docking. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2137205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Tamer El Malah
- Photochemistry Department, Chemical Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Hanaa Farag
- Pesticide Chemistry Department, Chemical Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Hanem Mohamed Awad
- Department of Tanning Materials and Leather Technology, National Research Centre, Cairo, Egypt
| | - Mohamad Taha Abdelrahman
- Radioisotopes Department, Nuclear Research Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ahmed Hussien Shamroukh
- Photochemistry Department, Chemical Industries Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
11
|
Benzothiazole-tethered 1,2,3-triazoles: Synthesis, antimicrobial, antioxidant, and molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Radwan HA, Ahmad I, Othman IM, Gad-Elkareem MA, Patel H, Aouadi K, Snoussi M, Kadri A. Design, synthesis, in vitro anticancer and antimicrobial evaluation, SAR analysis, molecular docking and dynamic simulation of new pyrazoles, triazoles and pyridazines based isoxazole. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|