1
|
Işilar Ö, Bulut A, Tombul M, Güner A, Şahin O. Urea-sugar and thiourea-sugar diastereomers: synthesis, crystal structure and biological activities. Future Med Chem 2025; 17:991-997. [PMID: 40366764 DOI: 10.1080/17568919.2025.2504328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025] Open
Abstract
AIMS The principal objective of the conducted study is to synthesize enantiomerically pure a class of sugar-based (thio)ureas (9-12) and to investigate their antiproliferative activities against the A549 (lung cancer), MCF-7 (breast cancer), and PANC1 (human pancreatic cancer) cell lines. MATERIALS AND METHODS The synthesis of (thio)urea sugars was performed by two stage procedure. First, the amino sugars (4 and 8) were obtained in three steps (tosylation, substitution and reduction). And secondly, the reaction of 3,5-bis(trifluoromethyl)phenyliso(thio)cyanate with the corresponding amines gave chiral (thio)urea derivatives (9-12). Cell viability was determined in human A549, MCF-7, PANC-1 and noncancer human embryonic kidney (HEK-293) cell lines. RESULTS Four chiral sugar (thio)ureas (9-12) were synthesized and screened against the A549, MCF-7, and PANC1 cell lines. Of the four chiral sugar derivatives, the compound 9 not only showed the best anticancer activity in the A549 cell line but also provided the highest normal cell (HEK-293) viability. CONCLUSION From chiral sugar-derived (thio)ureas obtained, the compound 9 was found to be shown the highest activity against A549 cancer cell line. The compound 9, therefore, gave more promising results for future researches as anti-cancer agents. X-ray studies revealed that amide type hydrogens are playing important roles in anti-cancer activities.
Collapse
Affiliation(s)
- Özer Işilar
- Department of Chemistry, Faculty of Engineering and Natural Sciences, Kırıkkale University, Kırıkkale, Turkey
| | - Adnan Bulut
- Department of Chemistry, Faculty of Engineering and Natural Sciences, Kırıkkale University, Kırıkkale, Turkey
| | - Mustafa Tombul
- Department of Chemistry, Faculty of Engineering and Natural Sciences, Kırıkkale University, Kırıkkale, Turkey
| | - Adem Güner
- Department of Occupational Health & Safety, Faculty of Health Sciences, Sinop University, Sinop, Turkey
| | - Onur Şahin
- Department of Occupational Health & Safety, Faculty of Health Sciences, Sinop University, Sinop, Turkey
| |
Collapse
|
2
|
Zhu J, Li X, Wang Y, Gu X, Wang H, Ma J, Huang Y. Organic sulfur-driven denitrification pretreatment for enhancing autotrophic nitrogen removals from thiourea-containing wastewater: performance and microbial mechanisms. WATER RESEARCH 2025; 282:123753. [PMID: 40319779 DOI: 10.1016/j.watres.2025.123753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/26/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Thiourea (CH4N2S) is a widely used industrial reagent and is frequently detected in both sewage and industrial wastewater. However, treating thiourea-containing wastewater remains challenging due to its toxicity, high ammonium concentration, and low C/N ratio. In this study, a novel integrated autotrophic-heterotrophic denitrification (IAHD)- completely autotrophic nitrogen removal over nitrite (CANON) process was developed. The degradation pathway of toxic compounds, nitrogen, and sulfur release and transformation, as well as variations in functional genes were comprehensively examined. The results show that by incorporating an IAHD unit, prior to CANON, toxic thiourea was effectively degraded by the recycled nitrate from CANON. The released sulfur and organic carbon served as electron donors facilitating efficient NO3--N reduction. The optimal thiourea/NO3--N ratio for IAHD operation was determined to be 4:1 (m:m), achieving NO3- and thiourea removal efficiencies of 90 % and 99 %, respectively. Additionally, NH4+-N and SO42--S concentrations increased by 199.9 mg/L and 201.9 mg/L, respectively. Approximately 53.3 % of thiourea was converted into high-molecular-weight biological metabolites in the IAHD unit, which were subsequently and completely degraded in the CANON unit, where a robust nitrite-shunt and anammox process occurred. 16S rRNA amplicon sequencing revealed that Thiobacillus (with a relative abundance of 39.9 %) was the dominant genera in the IAHD unit, followed by Arenimonas (10.8 %) and norank_o_1013-28-CG33 (12.4 %), indicating that sulfur autotrophic denitrification was the primary pathway for thiourea degradation. Metagenomic analysis further confirmed that thiourea, acting as an electron donor, stimulated the expression of key functional genes involved in denitrification, sulfur oxidation, dissimilatory nitrate reduction, hydrolytic oxidation, and amino acid synthesis and transport pathways. These processes contributed to the active biological transformation of carbon, nitrogen and sulfur in the IAHD unit. This study demonstrates that implementing a prior autotrophic-heterotrophic denitrification unit effectively degrades toxic thiourea, thereby ensuring the subsequent nitrogen removal performance of CANON. This approach offers a new paradigm for the treatment of thiourea-containing wastewater, promoting a more efficient and low-carbon process.
Collapse
Affiliation(s)
- Jiheng Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China.
| | - Xin Gu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
3
|
Bouzriba C, Gagné-Boulet M, Chavez Alvarez AC, Ouellette V, Laverdière I, Fortin S. Design, synthesis and biological evaluation of new 2,6-difluorinated phenyl 4-(2-oxoimidazolidin-1-yl)benzenesulfonates as new antimicrotubule agents. Bioorg Chem 2024; 146:107299. [PMID: 38547722 DOI: 10.1016/j.bioorg.2024.107299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 04/13/2024]
Abstract
We previously discovered a novel family of antimicrotubule agents designated as phenyl 4-(2-oxoimidazolidin-1-yl)benzenesulfonates (PIB-SOs). In this study, we evaluated the effect of the difluorination of the aromatic ring bearing the imidazolidin-2-one moiety (ring A) at positions 3, 5 and 2, 6 on their antiproliferative activity on four cancer cell lines, their ability to disrupt the microtubules and their toxicity toward chick embryos. We thus synthesized, characterized and biologically evaluated 24 new difluorinated PIB-SO derivatives designated as phenyl 3,5-difluoro-4-(2-oxoimidazolidin-1-yl)benzenesulfonates (3,5-PFB-SOs, 4-15) and phenyl 2,6-difluoro-4-(2-oxoimidazolidin-1-yl)benzenesulfonates (2,6-PFB-SOs, 16-27). The concentration of the drug required to inhibit cell growth by 50% (IC50) of 3,5-PFB-SOs is over 1000 nM while most of 2,6-PFB-SOs exhibit IC50 in the nanomolar range (23-900 nM). Furthermore, the most potent 2,6-PFB-SOs 19, 26 and 27 arrest the cell cycle progression in G2/M phase, induce cytoskeleton disruption and impair microtubule polymerization. Docking studies also show that the most potent 2,6-PFB-SOs 19, 21, 24, 26 and 27 have binding affinity toward the colchicine-binding site (C-BS). Moreover, their antiproliferative activity is not affected by antimicrotubule- and multidrug-resistant cell lines. Besides, they exhibit improved in vitro hepatic stability in the mouse, rat and human microsomes compared to their non-fluorinated counterparts. They also showed theoretical pharmacokinetic, physicochemical and drug-like properties suited for further in vivo assays. In addition, they exhibit low to no systemic toxicity toward chick embryos. Finally, our study evidences that PIB-SOs must be fluorinated in specific positions on ring A to maintain both their antiproliferative activity and their biological activity toward microtubules.
Collapse
Affiliation(s)
- Chahrazed Bouzriba
- Centre de recherche du CHU de Québec-Université Laval, Axe oncologie, Québec, QC, Canada; Faculté de pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 avenue de la Médecine, Québec QC G1V 0A6, Canada; These authors contributed equally to this work.
| | - Mathieu Gagné-Boulet
- Centre de recherche du CHU de Québec-Université Laval, Axe oncologie, Québec, QC, Canada; Faculté de pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 avenue de la Médecine, Québec QC G1V 0A6, Canada; These authors contributed equally to this work
| | - Atziri Corin Chavez Alvarez
- Centre de recherche du CHU de Québec-Université Laval, Axe oncologie, Québec, QC, Canada; Faculté de pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 avenue de la Médecine, Québec QC G1V 0A6, Canada; Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, 2725 chemin Ste-Foy, Québec QC G1V 4G5, Canada
| | - Vincent Ouellette
- Centre de recherche du CHU de Québec-Université Laval, Axe oncologie, Québec, QC, Canada; Faculté de pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 avenue de la Médecine, Québec QC G1V 0A6, Canada
| | - Isabelle Laverdière
- Centre de recherche du CHU de Québec-Université Laval, Axe oncologie, Québec, QC, Canada; Faculté de pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 avenue de la Médecine, Québec QC G1V 0A6, Canada
| | - Sébastien Fortin
- Centre de recherche du CHU de Québec-Université Laval, Axe oncologie, Québec, QC, Canada; Faculté de pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 avenue de la Médecine, Québec QC G1V 0A6, Canada.
| |
Collapse
|
4
|
Kozyra P, Krasowska D, Pitucha M. New Potential Agents for Malignant Melanoma Treatment-Most Recent Studies 2020-2022. Int J Mol Sci 2022; 23:6084. [PMID: 35682764 PMCID: PMC9180979 DOI: 10.3390/ijms23116084] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 02/05/2023] Open
Abstract
Malignant melanoma (MM) is the most lethal skin cancer. Despite a 4% reduction in mortality over the past few years, an increasing number of new diagnosed cases appear each year. Long-term therapy and the development of resistance to the drugs used drive the search for more and more new agents with anti-melanoma activity. This review focuses on the most recent synthesized anti-melanoma agents from 2020-2022. For selected agents, apart from the analysis of biological activity, the structure-activity relationship (SAR) is also discussed. To the best of our knowledge, the following literature review delivers the latest achievements in the field of new anti-melanoma agents.
Collapse
Affiliation(s)
- Paweł Kozyra
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Danuta Krasowska
- Department of Dermatology, Venerology and Pediatric Dermatology, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Monika Pitucha
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|