1
|
Li Y, Wang X, Guo X, Wei L, Cui H, Wei Q, Cai J, Zhao Z, Dong J, Wang J, Liu J, Xia Z, Hu Z. Rapid screening of the novel bioactive peptides with notable α-glucosidase inhibitory activity by UF-LC-MS/MS combined with three-AI-tool from black beans. Int J Biol Macromol 2024; 266:130982. [PMID: 38522693 DOI: 10.1016/j.ijbiomac.2024.130982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 03/26/2024]
Abstract
This work aimed to propose a rapid method to screen the bioactive peptides with anti-α-glucosidase activity instead of traditional multiple laborious purification and identification procedures. 242 peptides binding to α-glycosidase were quickly screened and identified by bio-affinity ultrafiltration combined with LC-MS/MS from the double enzymatic hydrolysate of black beans. Top three peptides with notable anti-α-glucosidase activity, NNNPFKF, RADLPGVK and FLKEAFGV were further rapidly screened and ranked by the three artificial intelligence tools (three-AI-tool) BIOPEP database, PeptideRanker and molecular docking from the 242 peptides. Their IC50 values were in order as 4.20 ± 0.11 mg/mL, 2.83 ± 0.03 mg/mL, 1.32 ± 0.09 mg/mL, which was opposite to AI ranking, for the hydrophobicity index of the peptides was not included in the screening criteria. According to the kinetics, FT-IR, CD and ITC analyses, the binding of the three peptides to α-glucosidase is a spontaneous and irreversible endothermic reaction that results from hydrogen bonds and hydrophobic interactions, which mainly changes the α-helix structure of α-glucosidase. The peptide-activity can be evaluated vividly by AFM in vitro. In vivo, the screened FLKEAFGV and RADLPGVK can lower blood sugar levels as effectively as acarbose, they are expected to be an alternative to synthetic drugs for the treatment of Type 2 diabetes.
Collapse
Affiliation(s)
- Yuancheng Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China
| | - Xinlei Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China
| | - Xumeng Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China
| | - Lulu Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China
| | - Haichen Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China
| | - Qingkai Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China
| | - Jingyi Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China
| | - Zhihui Zhao
- Ningxiahong Gouqi Industry Company Limited, Zhongwei 755100, China
| | - Jianfang Dong
- Ningxiahong Gouqi Industry Company Limited, Zhongwei 755100, China
| | - Jiashu Wang
- Ningxiahong Gouqi Industry Company Limited, Zhongwei 755100, China
| | - Jianhua Liu
- Ningxiahong Gouqi Industry Company Limited, Zhongwei 755100, China
| | - Zikun Xia
- Hanyin County Inspection and Testing Center, China
| | - Zhongqiu Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
Baccari W, Saidi I, Filali I, Znati M, Lazrag H, Tounsi M, Marchal A, Waffo-Teguo P, Ben Jannet H. Semi-synthesis, α-amylase inhibition, and kinetic and molecular docking studies of arylidene-based sesquiterpene coumarins isolated from Ferula tunetana Pomel ex Batt. RSC Adv 2024; 14:4654-4665. [PMID: 38318626 PMCID: PMC10840089 DOI: 10.1039/d3ra07540k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/13/2024] [Indexed: 02/07/2024] Open
Abstract
Despite all the significant progresses made to enhance the efficacy of the existing bank of drugs used to manage and cure type II diabetes mellitus, there is still a need to search and develop novel bioactive compounds with superior efficacy and minimal adverse effects. This study describes the valorization of the natural bioactive sesquiterpene coumarin via the semi-synthesis of new analogs and the study of their α-amylase inhibition activity. The sesquiterpene coumarin named coladonin (1) was quantitatively isolated from the chloroform extract of endemic Ferula tunetana roots. Subsequently, the oxidation of 1via the Jones oxidation reaction, used as a key reaction, afforded precursor 2. The condensation of oxidized coladonin (2) with various aryl aldehydes provided a series of new arylidene-based sesquiterpene coumarin derivatives (3a-m), which were characterized by NMR and ESI-HRMS experiments. All derivatives evaluated in vitro for their α-amylase inhibitory potential showed interesting α-amylase inhibition with IC50 values ranging from 7.24 to 28.98 μM. Notably, compounds 3k and 3m exhibited lower IC50 values (7.24 μM and 8.38 μM, respectively) compared to the standard (acarbose: IC50 = 9.83 μM). In addition, the structure-activity relationship (SAR) for all the compounds was studied. The most active compounds were found to be mixed-type inhibitors, which was revealed by kinetic studies. Furthermore, molecular in silico docking studies were established for all synthesized analogs with the binding site for the α-amylase enzyme.
Collapse
Affiliation(s)
- Wiem Baccari
- University of Monastir, Faculty of Science of Monastir, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Avenue of Environment 5019 Monastir Tunisia
| | - Ilyes Saidi
- University of Monastir, Faculty of Science of Monastir, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Avenue of Environment 5019 Monastir Tunisia
| | - Insaf Filali
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University Al-Kharj 11942 Saudi Arabia
| | - Mansour Znati
- University of Monastir, Faculty of Science of Monastir, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Avenue of Environment 5019 Monastir Tunisia
| | - Houda Lazrag
- University of Monastir, Higher Institute of Biotechnology of Monastir, Laboratory of Genetics, Biodiversity and Bioresources Valuation LR11S41 5019 Monastir Tunisia
| | - Moncef Tounsi
- Preparatory Year Deanship, Basic Science Department, Prince Sattam Bin Abdulaziz University Alkharj 11942 Saudi Arabia
| | - Axel Marchal
- Université de Bordeaux, Institut des Sciences de la Vigne et du Vin, EA 4577, Unité de Recherche Œnologie 210 Chemin de Leysotte, CS50008 33882 Villenave d'Ornon France
- Université de Bordeaux, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366 OENOLOGIE, ISVV 33140 Villenave d'Ornon France
| | - Pierre Waffo-Teguo
- Université de Bordeaux, Institut des Sciences de la Vigne et du Vin, EA 4577, Unité de Recherche Œnologie 210 Chemin de Leysotte, CS50008 33882 Villenave d'Ornon France
- Université de Bordeaux, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366 OENOLOGIE, ISVV 33140 Villenave d'Ornon France
| | - Hichem Ben Jannet
- University of Monastir, Faculty of Science of Monastir, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Avenue of Environment 5019 Monastir Tunisia
| |
Collapse
|
3
|
Dhameja M, Kumar H, Kurella S, Singh R, Uma A, Gupta P. Inhibition of α-glucosidase enzyme by 'click'-inspired pharmacophore framework 1,3,4-thiadiazole-1,2,3-triazole hybrids. Future Med Chem 2023; 15:345-363. [PMID: 36942781 DOI: 10.4155/fmc-2022-0289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Aim: α-Glucosidase inhibitors are important oral antidiabetic drugs that are used alone or in combination therapy. Materials & methods: In this regard, 1,3,4-thiadiazoles-1,2,3-triazoles were designed, synthesized and evaluated for α-glucosidase enzyme inhibition. Results: The applied synthesis protocol involved a 'click' reaction between a novel alkyne derived from a 1,3,4-thiadiazole derivative and phenylacetamide azides. The hybrid (9n) bearing 2-methyl and 4-nitro substituents was the best inhibitor with an IC50 value of 31.91 μM (acarbose IC50 = 844.81 μM). The blind molecular docking study of the best derivative (9n) showed that it interacted with the allosteric site's amino acid residues of α-glucosidase. Conclusion: 'Click'-inspired potential α-glucosidase inhibitors (1,3,4-thiadiazole-1,2,3-triazole hybrids) were identified and structure-activity relationship and kinetic and molecular docking studies accomplished.
Collapse
Affiliation(s)
- Manoj Dhameja
- Department of Chemistry, School of Physical & Decision Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
| | - Hariom Kumar
- Department of Chemistry, School of Physical & Decision Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
| | - Sirisha Kurella
- Institute of Science & Technology, Jawaharlal Nehru Technical University, Kukatpally, Hyderabad, Telangana, 500085, India
| | - Ravindra Singh
- Department of Chemistry, Maharani Shri Jaya Government Post-Graduate College, Bharatpur, Rajasthan, 321001, India
| | - Adepally Uma
- Institute of Science & Technology, Jawaharlal Nehru Technical University, Kukatpally, Hyderabad, Telangana, 500085, India
| | - Preeti Gupta
- Department of Chemistry, School of Physical & Decision Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
| |
Collapse
|