1
|
Hassan SA, Aziz DM, Kader DA, Rasul SM, Muhamad MA, Muhammedamin AA. Design, synthesis, and computational analysis (molecular docking, DFT, MEP, RDG, ELF) of diazepine and oxazepine sulfonamides: biological evaluation for in vitro and in vivo anti-inflammatory, antimicrobial, and cytotoxicity predictions. Mol Divers 2025; 29:2367-2389. [PMID: 39356365 DOI: 10.1007/s11030-024-10996-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/15/2024] [Indexed: 10/03/2024]
Abstract
We report the synthesis and extensive characterization of Diazepane and Oxazepane derivatives, followed by their biological evaluation. These compounds were assessed for in vitro and in vivo antimicrobial, anti-inflammatory, and anticancer activities. Among the synthesized molecules, compound 5b demonstrated remarkable antibacterial activity against Staphylococcus aureus and Staphylococcus epidermidis with MIC values of 20 and 40 μg/mL, respectively. Additionally, 5b exhibited potent anti-inflammatory effects both in vitro and in vivo. Advanced computational studies, including DFT, MEP, RDG, and ELF analyses, were performed to understand the electronic distribution and molecular interactions. The bioactivity and physicochemical properties of these derivatives were further predicted using PASS and pkCSM platforms, emphasizing their potential as promising lead molecules in drug development.
Collapse
Affiliation(s)
- Sangar Ali Hassan
- Department of Chemistry, College of Sciences, University of Raparin, Kurdistan Regional Government, Main Street, Ranyah, 46012, Iraq
| | - Dara Muhammed Aziz
- Department of Chemistry, College of Sciences, University of Raparin, Kurdistan Regional Government, Main Street, Ranyah, 46012, Iraq.
| | - Dana Ali Kader
- Department of Chemistry, College of Education, University of Sulaimani, Old Campus, Sulaymaniyah, 46001, Kurdistan Region, Iraq
- Pharmacy Department, Komar University of Science and Technology, Sulaymaniyah, 46001, Kurdistan Region, Iraq
| | - Shwana Muhamad Rasul
- Department of Chemistry, College of Sciences, University of Raparin, Kurdistan Regional Government, Main Street, Ranyah, 46012, Iraq
| | - Meer Ali Muhamad
- Department of Chemistry, College of Sciences, University of Raparin, Kurdistan Regional Government, Main Street, Ranyah, 46012, Iraq
| | - Alla Ahmad Muhammedamin
- Department of Chemistry, College of Sciences, University of Raparin, Kurdistan Regional Government, Main Street, Ranyah, 46012, Iraq
| |
Collapse
|
2
|
Becerra D, Castillo JC. Recent advances in the synthesis of anticancer pyrazole derivatives using microwave, ultrasound, and mechanochemical techniques. RSC Adv 2025; 15:7018-7038. [PMID: 40041378 PMCID: PMC11878059 DOI: 10.1039/d4ra08866b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/21/2025] [Indexed: 03/06/2025] Open
Abstract
Pyrazole and its derivatives have attracted considerable attention in pharmaceutical and medicinal chemistry, as reflected in their presence in numerous FDA-approved drugs and clinical candidates. This review presents a comprehensive analysis of articles published between 2014 and 2024, focusing on the microwave-, ultrasound-, and mechanochemical-assisted synthesis of pyrazole derivatives with anticancer activity. It explores synthetic methodologies, anticancer efficacy, and molecular docking studies, underscoring the significance of pyrazole derivatives in drug discovery and medicinal chemistry. Notably, microwave irradiation stands out as the most widely employed technique, providing high efficiency by significantly reducing reaction times while maintaining moderate temperatures. Ultrasound irradiation serves as a valuable alternative, particularly for processes that require milder conditions, whereas mechanochemical activation, though less frequently employed, offers distinct advantages in terms of sustainability.
Collapse
Affiliation(s)
- Diana Becerra
- Escuela de Ciencias Químicas, Universidad Pedagógica y Tecnológica de Colombia Avenida Central del Norte 39-115 Tunja Colombia
| | - Juan-Carlos Castillo
- Escuela de Ciencias Químicas, Universidad Pedagógica y Tecnológica de Colombia Avenida Central del Norte 39-115 Tunja Colombia
| |
Collapse
|
3
|
Yadav AR, Katariya AP, Kanagare AB, Patil PDJ, Tagad CK, Dake SA, Nagwade PA, Deshmukh SU. Review on advancements of pyranopyrazole: synthetic routes and their medicinal applications. Mol Divers 2024; 28:3557-3604. [PMID: 38236443 DOI: 10.1007/s11030-023-10757-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/22/2023] [Indexed: 01/19/2024]
Abstract
Pyranopyrazoles are among the most distinguished, biologically potent, and exciting scaffolds in medicinal chemistry and drug discovery. Synthesis and design of pyranopyrazoles using functional modifications via multicomponent reactions (MCRs) are thoroughly found in synthetic protocols by forming new C-C, C-N, and C-O bonds. This review aims to focus on the biological importance of pyranopyrazoles as well as on a diverse synthetic approach for their synthesis using various catalytic systems such as acid-catalyzed, base-catalyzed, ionic liquids and green media-catalyzed, nano-particle-catalyzed, metal oxide-supported catalysts, and silica-supported catalysts. In this review, we have summarized data on the advancements in synthesizing pyranopyrazole from the last two decades to the mid-2023 and research papers describing the importance of these scaffolds. This review will be significant for synthetic organic chemists and researchers working in organic chemistry.
Collapse
Affiliation(s)
- Ashok R Yadav
- Department of Chemistry, Deogiri College, Aurangabad, Maharashtra, 431005, India
| | - Ashishkumar P Katariya
- Department of Chemistry, SAJVPM'S Smt. S. K. Gandhi Arts, Amolak Science & P. H. Gandhi, Commerce College, Kada, Beed, Maharashtra, 414202, India
| | - Anant B Kanagare
- Department of Chemistry, Deogiri College, Aurangabad, Maharashtra, 431005, India.
| | - Pramod D Jawale Patil
- Department of Chemistry, Balbhim Arts, Science and Commerce College, Beed, Maharashtra, 431122, India
| | - Chandrakant K Tagad
- Department of Biochemistry, S.B.E.S. College of Science, Aurangabad, Maharashtra, 431001, India
| | - Satish A Dake
- Department of Chemistry, Sunderrao Solanke Mahavidyalaya, Majalgaon, Maharashtra, 431131, India
| | - Pratik A Nagwade
- Department of Chemistry, Shri Anand College, Pathardi, Ahmednagar, Maharashtra, 414102, India
| | - Satish U Deshmukh
- Department of Chemistry, Deogiri College, Aurangabad, Maharashtra, 431005, India.
| |
Collapse
|
4
|
Muhammed Aziz D, Hassan SA, Amin AAM, Abdullah MN, Qurbani K, Aziz SB. A synergistic investigation of azo-thiazole derivatives incorporating thiazole moieties: a comprehensive exploration of their synthesis, characterization, computational insights, solvatochromism, and multimodal biological activity assessment. RSC Adv 2023; 13:34534-34555. [PMID: 38024963 PMCID: PMC10668576 DOI: 10.1039/d3ra06469g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
In the present study, a novel series of azo-thiazole derivatives (3a-c) containing a thiazole moiety was successfully synthesized. The structure of these derivatives was examined by spectroscopic techniques, including 1H NMR, 13C NMR, FT-IR, and HRMS. Further, the novel synthesized compounds were evaluated for their in vitro biological activities, such as antibacterial and anti-inflammatory activities, and an in silico study was performed. The antibacterial results demonstrated that compounds 3a and 3c (MIC = 10 μg mL-1) have a notable potency against Staphylococcus aureus compared to azithromycin (MIC = 40 μg mL-1). Alternatively, compound 3b displayed a four-fold higher potency (24 recovery days, 1.83 mg day-1) than Hamazine (28 recovery days, 4.14 mg day-1) in promoting burn wound healing, and it also exhibited a comparable inhibitory activity against screened bacterial pathogens compared to the reference drug. Docking on 1KZN, considering the excellent impact of compounds on the crystal structure of E. coli1KZN, a 24 kDa domain, in complex with clorobiocin, indicated the close binding of compounds 3a-c with the active site of the 1KZN protein, which is consistent with their observed biological activity. Additionally, we conducted molecular dynamics simulations on the docked complexes of compounds 3a-c with 1KZN retrieved from the PDB to assess their stability and molecular interactions. Furthermore, we assessed their electrochemical characteristics via DFT calculations. Employing PASS and pkCSM platforms, we gained insights into controlling the bioactivity and physicochemical features of these compounds, highlighting their potential as new active agents.
Collapse
Affiliation(s)
- Dara Muhammed Aziz
- Department of Chemistry, College of Sciences, University of Raparin, Kurdistan Regional Government Main Street Ranyah 46012 Iraq
| | - Sangar Ali Hassan
- Department of Chemistry, College of Sciences, University of Raparin, Kurdistan Regional Government Main Street Ranyah 46012 Iraq
| | - Alla Ahmad M Amin
- Department of Chemistry, College of Sciences, University of Raparin, Kurdistan Regional Government Main Street Ranyah 46012 Iraq
| | - Media Noori Abdullah
- Department of Chemistry, College of Science, Salahaddin University Erbil 44002 Iraq
| | - Karzan Qurbani
- Department of Biology, College of Sciences, University of Raparin, Kurdistan Regional Government Main Street Ranyah 46012 Iraq
| | - Shujahadeen B Aziz
- Advanced Polymeric Materials Research Lab, Department of Physics, College of Science, University of Sulaimani, Kurdistan Regional Government Qlyasan Street Sulaimani 46001 Iraq
| |
Collapse
|
5
|
Ammar YA, Ragab A, Migahed MA, Al-Sharbasy S, Salem MA, Riad OKM, Selim HMRM, Abd-Elmaksoud GA, Abusaif MS. Design, green synthesis, and quorum sensing quenching potential of novel 2-oxo-pyridines containing a thiophene/furan scaffold and targeting a LasR gene on P. aeruginosa. RSC Adv 2023; 13:27363-27384. [PMID: 37711372 PMCID: PMC10498153 DOI: 10.1039/d3ra04230h] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023] Open
Abstract
The current trend in fighting bacteria is attacking the virulence and quorum-sensing (QS) signals that control bacterial communication and virulence factors, especially biofilm formation. This study reports new Schiff bases and tetracyclic rings based on a pyridine pharmacophore by two methods: a green approach using CAN and a conventional method. The structure of designed derivatives was confirmed using different spectroscopies (IR and 1H/13C NMR) and elemental analysis. The designed derivatives exhibited good to moderate inhibition zones against bacterial and fungal pathogens. In addition, six compounds 2a,b, 3a,b, and 6a,b displayed potency against tested pathogens with eligible MIC and MBC values compared to standard antimicrobial agents. Compound 2a displayed MIC values of 15.6 μg mL-1 compared to Gentamicin (MIC = 250 μg mL-1 against K. pneumoniae), while compound 6b exhibited super-potent activity against P. aeruginosa, and K. pneumoniae with MIC values of 62.5 and 125 μg mL-1, as well as MBC values of 31.25 and 15.6 μg mL-1 compared to Gentamicin (MIC = 250 and 125 μg mL-1 and MBC = 62.5 μg mL-1), respectively. Surprisingly, these six derivatives revealed bactericidal and fungicidal potency and remarkable anti-biofilm activity that could significantly reduce the biofilm formation against MRSA, E. coli, P. aeruginosa, and C. albicans. Furthermore, the most active derivatives reduced the LasR gene's production between 10-40% at 1/8 MICs compared with untreated P. aeruginosa. Besides, they demonstrated promising safety profile on Vero cells (normal cell lines) with IC50 values ranging between (175.17 ± 3.49 to 344.27 ± 3.81 μg mL-1). In addition, the in silico ADMET prediction was carried out and the results revealed that these compounds could be used with oral bioavailability with low toxicity prediction when administered as a candidate drug. Finally, the molecular docking simulation was performed inside LasR and predicted the key binding interactions responsible for the activity that corroborated the biological results.
Collapse
Affiliation(s)
- Yousry A Ammar
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University 11884 Nasr City Cairo Egypt
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University 11884 Nasr City Cairo Egypt
| | - M A Migahed
- Egyptian Petroleum Research Institute (EPRI) 11727 Nasr City Cairo Egypt
| | - S Al-Sharbasy
- Department of Chemistry, Faculty of Science (girls), Al-Azhar University 11884 Nasr City Cairo Egypt
| | - Mohamed A Salem
- Department of Chemistry, Faculty of Science and Arts, King Khalid University Mohail Assir Saudi Arabia
| | - Omnia Karem M Riad
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University Nasr City Cairo Egypt
| | - Heba Mohammed Refat M Selim
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University Nasr City Cairo Egypt
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Maarefa University Diriyah 13713 Riyadh Saudi Arabia
| | - Gehad A Abd-Elmaksoud
- Department of Chemistry, Faculty of Science (girls), Al-Azhar University 11884 Nasr City Cairo Egypt
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University 11884 Nasr City Cairo Egypt
| |
Collapse
|
6
|
Zelelew D, Endale M, Melaku Y, Geremew T, Eswaramoorthy R, Tufa LT, Choi Y, Lee J. Ultrasonic-Assisted Synthesis of Heterocyclic Curcumin Analogs as Antidiabetic, Antibacterial, and Antioxidant Agents Combined with in vitro and in silico Studies. Adv Appl Bioinform Chem 2023; 16:61-91. [PMID: 37533689 PMCID: PMC10392906 DOI: 10.2147/aabc.s403413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023] Open
Abstract
Background Heterocyclic analogs of curcumin have a wide range of therapeutic potential and the ability to control the activity of a variety of metabolic enzymes. Methods 1H-NMR and 13C-NMR spectroscopic techniques were used to determine the structures of synthesized compounds. The agar disc diffusion method and α-amylase inhibition assay were used to examine the antibacterial and anti-diabetic potential of the compounds against α-amylase enzyme inhibitory activity, respectively. DPPH-free radical scavenging and lipid peroxidation inhibition assays were used to assess the in vitro antioxidant potential. Results and Discussion In this work, nine heterocyclic analogs derived from curcumin precursors under ultrasonic irradiation were synthesized in excellent yields (81.4-93.7%) with improved reaction time. Results of antibacterial activities revealed that compounds 8, and 11 displayed mean inhibition zone of 13.00±0.57, and 19.66±00 mm, respectively, compared to amoxicillin (12.87±1.41 mm) at 500 μg/mL against E. coli, while compounds 8, 11 and 16 displayed mean inhibition zone of 17.67±0.57, 14.33±0.57 and 23.33±00 mm, respectively, compared to amoxicillin (13.75±1.83 mm) at 500 μg/mL against P. aeruginosa. Compound 11 displayed a mean inhibition zone of 11.33±0.57 mm compared to amoxicillin (10.75±1.83 mm) at 500 μg/mL against S. aureus. Compound 11 displayed higher binding affinities of -7.5 and -8.3 Kcal/mol with penicillin-binding proteins (PBPs) and β-lactamases producing bacterial strains, compared to amoxicillin (-7.2 and -7.9 Kcal/mol, respectively), these results are in good agreement with the in vitro antibacterial activities. In vitro antidiabetic potential on α-amylase enzyme revealed that compounds 11 (IC50=7.59 µg/mL) and 16 (IC50=4.08 µg/mL) have higher inhibitory activities than acarbose (IC50=8.0 µg/mL). Compound 8 showed promising antioxidant inhibition efficacy of DPPH (IC50 = 2.44 g/mL) compared to ascorbic acid (IC50=1.24 g/mL), while compound 16 revealed 89.9±20.42% inhibition of peroxide generation showing its potential in reducing the development of lipid peroxides. In silico molecular docking analysis, results are in good agreement with in vitro biological activity. In silico ADMET profiles suggested the adequate oral drug-likeness potential of the compounds without adverse effects. Conclusion According to our findings, both biological activities and in silico computational studies results demonstrated that compounds 8, 11, and 16 are promising α-amylase inhibitors and antibacterial agents against E. coli, P. aeruginosa, and S. aureus, whereas compound 8 was found to be a promising antioxidant agent.
Collapse
Affiliation(s)
- Demis Zelelew
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Milkyas Endale
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Yadessa Melaku
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Teshome Geremew
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | | | - Lemma Teshome Tufa
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
- Research Institute of Materials Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Youngeun Choi
- Department of Chemistry, Department of Chemistry Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jaebeom Lee
- Department of Chemistry, Department of Chemistry Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
7
|
Synthesis, Chemical Identification and Biological Application of Azo-based Molecules containing Different Terminal Group: A Review. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
8
|
Aziz DM, Hassan SA, Mamand DM, Qurbani K. New Azo-Azomethine Derivatives: Synthesis, Characterization, Computational, Solvatochromic UV‒Vis Absorption and Antibacterial Studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
9
|
Arafath MA, Adam F, Ahamed MBK, Karim MR, Uddin MN, Yamin BM, Abdou A. Ni(II), Pd(II) and Pt(II) complexes with SNO-group thiosemicarbazone and DMSO: Synthesis, Characterization, DFT, Molecular Docking and cytotoxicity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
KÜÇÜK C, YURDAKUL S, CELİK S, ERDEM B. Experimental and DFT studies of 2-Methyl-quinoxaline and its Silver (I) complex: Non-covalent interaction analysis, antimicrobial activity and molecular docking study. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|