1
|
Dash UC, Nayak V, Navani HS, Samal RR, Agrawal P, Singh AK, Majhi S, Mogare DG, Duttaroy AK, Jena AB. Understanding the molecular bridges between the drugs and immune cell. Pharmacol Ther 2025; 267:108805. [PMID: 39908660 DOI: 10.1016/j.pharmthera.2025.108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/11/2025] [Accepted: 01/21/2025] [Indexed: 02/07/2025]
Abstract
The interactions of drugs with the host's immune cells determine the drug's efficacy and adverse effects in patients. Nonsteroidal Anti-Inflammatory Drugs (NSAID), such as corticosteroids, NSAIDs, and immunosuppressants, affect the immune cells and alter the immune response. Molecularly, drugs can interact with immune cells via cell surface receptors, changing the antigen presentation by modifying the co-stimulatory molecules and interacting with the signaling pathways of T cells, B cells, Natural killer (NK) cells, mast cells, basophils, and macrophages. Immunotoxicity, resulting from drug-induced changes in redox status, generation of Reactive Oxygen Species (ROS)/Reactive Nitrogen Species (RNS), and alterations in antioxidant enzymes within immune cells, leads to immunodeficiency. This, in turn, causes allergic reactions, autoimmune diseases, and cytokine release syndrome (CRS). The treatment options should include the evaluation of immune status and utilization of the concept of pharmacogenomics to minimize the chances of immunotoxicity. Many strategies in redox, like targeting the redox pathway or using redox-active agents, are available for the modulation of the immune system and developing drugs. Case studies highlight significant drug-immune cell interactions and patient outcomes, underscoring the importance of understanding these complexities. The future direction focuses on the drugs to deliver antiviral therapy, new approaches to immunomodulation, and modern technologies for increasing antidote effects with reduced toxicity. In conclusion, in-depth knowledge of the interaction between drugs and immune cells is critical to protect the patient from the adverse effects of the drug and improve therapeutic outcomes of the treatment process. This review focuses on the multifaceted interactions of drugs and their consequences at the cellular levels of immune cells.
Collapse
Affiliation(s)
- Umesh Chandra Dash
- School of Biotechnology, Campus 11, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Vinayak Nayak
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, India
| | - Hiten Shanker Navani
- Biological Materials Laboratory, CSIR- Central Leather Research Institute, Adyar, Chennai 600020, India
| | - Rashmi Rekha Samal
- CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751 013, India
| | - Palak Agrawal
- Unit de Microbiologie Structurale, Institut Pasteur, Paris, France
| | - Anup Kumar Singh
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| | - Sanatan Majhi
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Devraj Ganpat Mogare
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway.
| | - Atala Bihari Jena
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| |
Collapse
|
2
|
Riseh RS, Fathi F, Vatankhah M, Kennedy JF. Catalase-associated immune responses in plant-microbe interactions: A review. Int J Biol Macromol 2024; 280:135859. [PMID: 39307505 DOI: 10.1016/j.ijbiomac.2024.135859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 11/20/2024]
Abstract
Catalase, an enzyme central to maintaining redox balance and combating oxidative stress in plants, has emerged as a key player in plant defense mechanisms and interactions with microbes. This review article provides a comprehensive analysis of catalase-associated immune responses in plant-microbe interactions. It underscores the importance of catalase in plant defense mechanisms, highlights its influence on plant susceptibility to pathogens, and discusses its implications for understanding plant immunity and host-microbe dynamics. This review contributes to the growing body of knowledge on catalase-mediated immune responses and offers insights that can aid in the development of strategies for improved plant health and disease resistance.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Fariba Fathi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
3
|
Ismael AK, Mohaymen Taha TA, Al-Jobory A. Three distinct conductance states in polycyclic aromatic hydrocarbon derivatives. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231734. [PMID: 39100174 PMCID: PMC11295833 DOI: 10.1098/rsos.231734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 08/06/2024]
Abstract
Tight-binding model (TBM) and density functional theory (DFT) calculations were employed. Both simulations have demonstrated that the electrical conductance for eight polycyclic aromatic hydrocarbons (PAHs) can be modulated by varying the number of aromatic rings (NAR) within the aromatic derivatives. TBM simulations reveal three distinct conductance states: low, medium and high for the studied PAH derivatives. The three distinct conductance states suggested by TBM are supported by DFT transmission curves, where the low conductance evidenced by T(E) = 0, for benzene, naphthalene, pyrene and anthracene. While azulene and anthanthrene exhibit a medium conductance as T(E) = 1, and tetracene and dibenzocoronene possess a high conductance with T(E) = 2. Low, medium and high values were elucidated according to the energy gap E g and E g gaps are strongly dependent on the NAR in the PAH derivatives. This study also suggests that any PAH molecules are a conductor if E g < 0.20 eV. A linear relationship between the conductance and NAR (G ∝ NAR) was found and conductance follows the order G (benzene, 1 NAR) < G (anthanthrene, 4 NAR) < G (dibenzocoronene, 9 NAR). The proposed study suggests a relevant step towards the practical application of molecular electronics and future device application.
Collapse
Affiliation(s)
- Ali K. Ismael
- Department of Physics, Lancaster University, LancasterLA1 4YB, UK
- Department of Physics, College of Education for Pure Science, Tikrit University, Tikrit, Iraq
| | - Taha Abdel Mohaymen Taha
- Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf32952, Egypt
| | - Alaa Al-Jobory
- Department of Physics, Lancaster University, LancasterLA1 4YB, UK
- Department of Physics, College of Science, University of Anbar, Anbar, Iraq
| |
Collapse
|
4
|
Zhang J. Hydroxylated polycyclic aromatic hydrocarbons possess inhibitory activity against alpha-glucosidase: An in vitro study using multispectroscopic techniques and molecular docking. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122366. [PMID: 36689906 DOI: 10.1016/j.saa.2023.122366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Alpha-glucosidase (GAA) activity can be affected by exogenous substances. Hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) are typical metabolites of PAHs that can enter the body through various routes. The effects of 1-hydroxynaphthalene (1-OHNap) and 1-hydroxypyrene (1-OHPyr) on GAA activity and the potential mechanisms were investigated viamultispectroscopic methods and molecular docking. First-order derivative synchronous spectrofluorimetry was successfully applied to analyze the fluorescence quenching of GAA in the GAA-1-OHNap and GAA-1-OHPyr systems. 1-OHNap and 1-OHPyr had strong inhibitory effects on GAA activity. GAA could bind with 1-OHNap and 1-OHPyr in 1:1 mode with binding constants of 3.97 × 104 and 9.42 × 104 L/mol at 298 K. Hydrophobic interactions and hydrogen bonds played pivotal roles in the interactions. 1-OHNap was located closer to the active site of GAA than 1-OHPyr. This work suggests that the disturbance of glycometabolism by exogenous pollutants in the human body is worthy of attention and further investigation.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Estuarine Ecological Security and Environmental Health (Fujian Province University), Tan Kah Kee College, Xiamen University, Zhangzhou 363105, PR China.
| |
Collapse
|
5
|
Samal RR, Sundaray K, Tulsiyan KD, Saha S, Chainy GBN, Subudhi U. Compromised conformation and kinetics of catalase in the presence of propylthiouracil: A biophysical study and alleviation by curcumin. Int J Biol Macromol 2023; 226:1547-1559. [PMID: 36455824 DOI: 10.1016/j.ijbiomac.2022.11.266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
In the present study, the inhibitory effect of propylthiouracil (PTU) on bovine liver catalase (BLC) activity was studied in the presence of curcumin (CUR). The results suggest that the PTU-induced decrease in BLC activity was caused by a change in conformation of BLC with reduced α-helical content and decrease in zeta potential. Nevertheless, temperature-dependent activation of CUR protects the activity of BLC by restoring the secondary conformation and zeta potential of BLC. CUR inhibited the time-induced reduction in BLC activity and the protection was increased with increasing concentrations of CUR and found to be significant even from 1:0.1 molar ratios. The enzyme kinetics confirmed the high catalytic efficiency of BLC in presence of CUR than PTU. The protective role of CUR was due to the formation of a more stabilized complex as demonstrated by molecular docking, and fourier-transform infrared study. Isothermal titration calorimetric study supports for a favourable reaction between BLC and PTU or CUR due to the negative ΔH, and positive TΔS. Although the number of binding sites for PTU and CUR was found to be 10 and 7, respectively, the binding affinity between CUR and BLC is approximately 3.72 fold stronger than BLC-PTU complex. The increased melting temperature of BLC was noticed in presence of CUR suggesting the protective potential of CUR towards biomolecules. Indeed, this is the first biophysical study to describe the molecular mechanism of PTU-induced reduction in BLC activity and alleviation by CUR with detail kinetics. Thus, CUR can be further extended to other antioxidant enzymes or compromised biomolecules for therapeutic interventions.
Collapse
Affiliation(s)
- Rashmi R Samal
- Biochemistry & Biophysics Laboratory, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Kajal Sundaray
- Biochemistry & Biophysics Laboratory, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Kiran D Tulsiyan
- School of Chemical Sciences, National Institute of Science Education & Research, Bhubaneswar 752050, Odisha, India; Homi Bhaba National Institute, Mumbai 400094, India
| | - Sumit Saha
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Gagan B N Chainy
- Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Umakanta Subudhi
- Biochemistry & Biophysics Laboratory, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
6
|
Hashemizadeh M, Shiri F, Shahraki S, Razmara Z. A multidisciplinary study for investigating the interaction of an iron complex with bovine liver catalase. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|