1
|
Kalantari N, Gosselin N. Sleep and circadian rhythms after traumatic brain injury. HANDBOOK OF CLINICAL NEUROLOGY 2025; 206:125-140. [PMID: 39864922 DOI: 10.1016/b978-0-323-90918-1.00004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Traumatic brain injury (TBI) is a serious public health concern and is one of the major causes of death and chronic disability in young individuals. Sleep-wake disturbances are among the most persistent and debilitating consequences of TBI and are reported by 50%-70% of TBI patients regardless of TBI severity. Excessive daytime sleepiness, fatigue, hypersomnia, and insomnia are the most common sleep disturbances in TBI patients. Post-TBI sleep-wake disturbances are often associated with pain, anxiety, depression, and posttraumatic stress disorder. They may exacerbate cognitive impairment following TBI, reduce community integration, and delay recovery and return to normal life. Changes in sleep architecture following TBI have been reported in the literature but cannot fully explain the extent and intensity of the sleep-wake disturbances reported by TBI patients. The alteration in the circadian timing system is another factor that may partially account for the presence of post-TBI sleep-wake disturbances. Current literature supports cognitive behavioral therapy and sleep hygiene education, light therapy, and certain pharmacologic interventions for treating sleep disturbances in TBI patients. Due to heterogeneous consequences of TBI, early screening and individualized approaches to treatment must be prioritized to improve sleep in TBI patients and consequently speed up recovery.
Collapse
Affiliation(s)
- Narges Kalantari
- Department of Psychology, Université de Montréal, Montreal, QC, Canada; Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, QC, Canada
| | - Nadia Gosselin
- Department of Psychology, Université de Montréal, Montreal, QC, Canada; Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, QC, Canada.
| |
Collapse
|
2
|
Lanzilao L, Bianchi I, Grassi S, Defraia B, Brogi M, Da Ros M, Biagioli T, Fanelli A, Pinchi V, Focardi M. Biomarkers of traumatic brain injury in vitreous humor: A pilot study. Forensic Sci Int 2023; 350:111782. [PMID: 37467521 DOI: 10.1016/j.forsciint.2023.111782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/18/2023] [Accepted: 07/02/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) is one of the major causes of morbidity and mortality worldwide. The patients' and injuries' heterogeneity associated with TBI, alongside with its variable clinical manifestations, make it challenging to make diagnosis and predict prognosis. Therefore, the identification of reliable prognostic markers would be relevant both to support clinical decision-making and forensic evaluation of polytraumatic deaths and cases of medical malpractice. This pilot study aimed to evaluate some of the main biomarkers specific for brain damage in sTBI and mmTBI deaths in samples of vitreous humor (VH) in order to verify whether predictors of prognosis in TBI can be found in this matrix. METHODS VH were obtained from both eyes (right and left) of 30 cadavers (20 sTBI and 10 mmTBI) and analysed. These factors were evaluated: NSE (neuron-specific enolase), S100 calcium-binding protein (S100), glial fibrillary acidic protein (GFAP), Brain-derived neurotrophic factor (BDNF), Copeptin, Interleukin 6 (IL-6), Ferritin, Lactate dehydrogenase (LDH), C-Reactive Protein (CRP), Procalcitonin (PCT), Glucose and Neutrophil gelatinase-associated lipocalin (N-Gal). RESULTS Four of the analysed proteins (LDH, ferritin, S100 and NSE) proved to be particularly promising. In particular, logistic regression analysis found a good discriminatory power. CONCLUSIONS Given the peculiarity of the matrix and the poor standardization of the sampling, such promising results need to be furtherly investigated in serum before being implemented in the forensic practice.
Collapse
Affiliation(s)
- Luisa Lanzilao
- Biochemestry laboratory, Department of Diagnostics, Careggi Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Ilenia Bianchi
- Forensic Medical Sciences, Department of Health Science, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; Laboratory of Personal Identification and Forensic Morphology, Department of Health Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Simone Grassi
- Forensic Medical Sciences, Department of Health Science, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; Laboratory of Personal Identification and Forensic Morphology, Department of Health Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Beatrice Defraia
- Forensic Medical Sciences, Department of Health Science, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; Laboratory of Personal Identification and Forensic Morphology, Department of Health Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Marco Brogi
- Biochemestry laboratory, Department of Diagnostics, Careggi Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Martina Da Ros
- Biochemestry laboratory, Department of Diagnostics, Careggi Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Tiziana Biagioli
- Biochemestry laboratory, Department of Diagnostics, Careggi Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Alessandra Fanelli
- Biochemestry laboratory, Department of Diagnostics, Careggi Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Vilma Pinchi
- Forensic Medical Sciences, Department of Health Science, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; Laboratory of Personal Identification and Forensic Morphology, Department of Health Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Martina Focardi
- Forensic Medical Sciences, Department of Health Science, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; Laboratory of Personal Identification and Forensic Morphology, Department of Health Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| |
Collapse
|
3
|
Design and optimization of metformin-loaded solid lipid nanoparticles for neuroprotective effects in a rat model of diffuse traumatic brain injury: A biochemical, behavioral, and histological study. Eur J Pharm Biopharm 2022; 181:122-135. [PMID: 36307002 DOI: 10.1016/j.ejpb.2022.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/13/2022] [Accepted: 10/18/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Following traumatic brain injury, inflammation, mitochondrial dysfunction, oxidative stress, ischemia, and energy crisis can cause mortality or long-term morbidity. As an activator of AMP-activated protein kinase, metformin reduces the secondary injuries of traumatic brain injury by compensating for the lack of energy in damaged cells. But the blood-brain barrier prevents a hydrophilic drug such as metformin from penetrating the brain tissue. Solid lipid nanoparticles with their lipid nature can cross the blood-brain barrier and solve this challenge. so This study aimed to investigate the effect of metformin-loaded lipid nanoparticles (NanoMet) for drug delivery to the brain and reduce complications from traumatic brain injury. METHOD Different formulations of NanoMet were designed by Box-Behnken, and after formulation, particle size, zeta potential, and entrapment efficiency were investigated. For in vivo study, Male rats were divided into eight groups, and except for the intact and sham groups, the other groups underwent brain trauma by the Marmarou method. After the intervention, the Veterinary Coma Scale, Vestibular Motor function, blood-brain barrier integrity, cerebral edema, level of inflammatory cytokines, and histopathology of brain tissue were assessed. RESULTS The optimal formula had a size of 282.2 ± 9.05 nm, a zeta potential of -1.65 ± 0.33 mV, and entrapment efficiency of 60.61 ± 6.09% which released the drug in 1400 min. Concentrations of 5 and 10 mg/kg of this formula improved the consequences of trauma. CONCLUSION This study showed that nanoparticles could help target drug delivery to the brain and apply the desired result.
Collapse
|
4
|
Acevedo-Aguilar L, Gaitán-Herrera G, Reina-Rivero R, Lozada-Martínez ID, Bohorquez-Caballero A, Paéz-Escallón N, Del Pilar Zambrano-Arenas MD, Ortega-Sierra MG, Moscote-Salazar LR, Janjua T. Pulmonary injury as a predictor of cerebral hypoxia in traumatic brain injury: from physiology to physiopathology. J Neurosurg Sci 2021; 66:251-257. [PMID: 34763389 DOI: 10.23736/s0390-5616.21.05468-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Traumatic brain injury is caused by mechanical forces impacting the skull and its internal structures and constitutes one of the main causes of morbidity and mortality in the world. Clinically, severe traumatic brain injury is associated with the development of acute lung injury and so far, few studies have evaluated the cellular, molecular and immunological mechanisms involved in this pathophysiological process. Knowing and investigating these mechanisms allows us to correlate pulmonary injury as a predictor of cerebral hypoxia in traumatic brain injury and to use this finding in decision making during clinical practice. This review aims to provide evidence on the importance of the pathophysiology of traumatic brain injury-acute lung injury, and thus confirm its role as a predictor of cerebral hypoxia, helping to establish an appropriate therapeutic strategy to improve functional outcomes and reduce mortality.
Collapse
Affiliation(s)
- Laura Acevedo-Aguilar
- Medical and Surgical Research Center, School of Medicine, University of Cartagena, Cartagena, Colombia
| | - Gustavo Gaitán-Herrera
- Medical and Surgical Research Center, School of Medicine, University of Cartagena, Cartagena, Colombia
| | - Randy Reina-Rivero
- Medical and Surgical Research Center, School of Medicine, University of Cartagena, Cartagena, Colombia
| | - Ivan D Lozada-Martínez
- Medical and Surgical Research Center, School of Medicine, University of Cartagena, Cartagena, Colombia - .,Colombian Clinical Research Group in Neurocritical Care, School of Medicine, University of Cartagena, Cartagena, Colombia.,Latin American Council of Neurocritical Care, Cartagena, Colombia.,Future Surgeons Chapter, Colombian Surgery Association, Bogotá, Colombia
| | | | | | | | - Michael G Ortega-Sierra
- Medical and Surgical Research Center, School of Medicine, Corporación Universitaria Rafael Nuñez, Cartagena, Colombia
| | - Luis R Moscote-Salazar
- Medical and Surgical Research Center, School of Medicine, University of Cartagena, Cartagena, Colombia.,Colombian Clinical Research Group in Neurocritical Care, School of Medicine, University of Cartagena, Cartagena, Colombia.,Latin American Council of Neurocritical Care, Cartagena, Colombia
| | - Tariq Janjua
- Intensive Care, Regions Hospital, Saint Paul, MN, USA
| |
Collapse
|
5
|
Salah M, Saatchi R, Lecky F, Burke D. Traumatic brain injury probability of survival assessment in adults using iterative random comparison classification. Healthc Technol Lett 2020; 7:119-124. [PMID: 33282321 PMCID: PMC7704143 DOI: 10.1049/htl.2019.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 04/22/2020] [Accepted: 07/07/2020] [Indexed: 11/19/2022] Open
Abstract
Trauma brain injury (TBI) is the most common cause of death and disability in young adults. A method to determine the probability of survival (Ps) in trauma called iterative random comparison classification (IRCC) was developed and its performance was evaluated in TBI. IRCC operates by iteratively comparing the test case with randomly chosen subgroups of cases from a database of known outcomes (survivors and not survivors) and determines the overall percentage match. The performance of IRCC to determine Ps in TBI was compared with two existing methods. One was Ps14 that uses regression and the other was predictive statistical diagnosis (PSD) that is based on Bayesian statistic. The TBI database contained 4124 adult cases (mean age 67.9 years, standard deviation 21.6) of which 3553 (86.2%) were survivors and 571 (13.8%) were not survivors. IRCC determined Ps for the survivors and not survivors with an accuracy of 79.0 and 71.4%, respectively, while the corresponding values for Ps14 were 97.4% (survivors) and 40.2% (not survivors) and for PSD were 90.8% (survivors) and 50% (not survivors). IRCC could be valuable for determining Ps in TBI and with a suitable database in other traumas.
Collapse
Affiliation(s)
- Mohammed Salah
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Reza Saatchi
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Fiona Lecky
- Centre for Urgent and Emergency Care Research, Health Services Research Section, School of Health and Related Research, University of Sheffield, Sheffield S10 2TH, UK
| | - Derek Burke
- Sheffield Children's Hospital, Western Bank, Sheffield S10 2TH, UK
| |
Collapse
|
6
|
Hemphill JC. Arterial Partial Pressure of Carbon Dioxide and Secondary Brain Injury—6 Degrees of Separation? JAMA Neurol 2018; 75:787-788. [DOI: 10.1001/jamaneurol.2018.0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- J. Claude Hemphill
- Department of Neurology, University of California, San Francisco
- Brain and Spinal Injury Center, Department of Neurology, Zuckerberg San Francisco General Hospital, San Francisco, California
| |
Collapse
|
7
|
Najem D, Rennie K, Ribecco-Lutkiewicz M, Ly D, Haukenfrers J, Liu Q, Nzau M, Fraser DD, Bani-Yaghoub M. Traumatic brain injury: classification, models, and markers. Biochem Cell Biol 2018; 96:391-406. [PMID: 29370536 DOI: 10.1139/bcb-2016-0160] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and mortality worldwide. Due to its high incidence rate and often long-term sequelae, TBI contributes significantly to increasing costs of health care expenditures annually. Unfortunately, advances in the field have been stifled by patient and injury heterogeneity that pose a major challenge in TBI prevention, diagnosis, and treatment. In this review, we briefly discuss the causes of TBI, followed by its prevalence, classification, and pathophysiology. The current imaging detection methods and animal models used to study brain injury are examined. We discuss the potential use of molecular markers in detecting and monitoring the progression of TBI, with particular emphasis on microRNAs as a novel class of molecular modulators of injury and its repair in the neural tissue.
Collapse
Affiliation(s)
- Dema Najem
- a Department of Translational Bioscience, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Kerry Rennie
- a Department of Translational Bioscience, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Maria Ribecco-Lutkiewicz
- a Department of Translational Bioscience, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Dao Ly
- a Department of Translational Bioscience, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Julie Haukenfrers
- a Department of Translational Bioscience, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Qing Liu
- a Department of Translational Bioscience, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.,b Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Munyao Nzau
- c Paediatric Neurosurgery, Children's Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
| | - Douglas D Fraser
- d Children's Health Research Institute, London, ON N6C 2V5, Canada.,e Departments of Pediatrics and Clinical Neurological Sciences, Western University, London, ON N6A 3K7, Canada
| | - Mahmud Bani-Yaghoub
- a Department of Translational Bioscience, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.,f Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|