1
|
Jiang T, Hou L, Rahman SM, Gong Z, Bai X, Vulpe C, Fasullo M, Gu AZ. Amplified and distinctive genotoxicity of titanium dioxide nanoparticles in transformed yeast reporters with human cytochrome P450 (CYP) genes. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134850. [PMID: 38850947 PMCID: PMC11948300 DOI: 10.1016/j.jhazmat.2024.134850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024]
Abstract
Titanium dioxide nanoparticles (nTiO2) have been considered a possible carcinogen to humans, but most existing studies have overlooked the role of human enzymes in assessing the genotoxicity of nTiO2. Here, a toxicogenomics-based in vitro genotoxicity assay using a GFP-fused yeast reporter library was employed to elucidate the genotoxic potential and mechanisms of nTiO2. Moreover, two new GFP-fused yeast reporter libraries containing either human CYP1A1 or CYP1A2 genes were constructed by transformation to investigate the potential modulation of nTiO2 genotoxicity in the presence of human CYP enzymes. This study found a lack of appreciable nTiO2 genotoxicity as indicated by the yeast reporter library in the absence of CYP expression but a significantly elevated indication of genotoxicity in either CYP1A1- or CYP1A2-expressing yeast. The intracellular reactive oxygen species (ROS) measurement indicated significantly higher ROS in yeast expressing either enzyme. The detected mitochondrial DNA damage suggested mitochondria as one of the target sites for oxidative damage by nTiO2 in the presence of either one of the CYP enzymes. The results thus indicated that the genotoxicity of nTiO2 was enhanced by human CYP1A1 or CYP1A2 enzyme and was associated with elevated oxidative stress, which suggested that the similar mechanisms could occur in human cells.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA; Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Liyuan Hou
- Department of Civil and Environmental Engineering, Utah State University, Logan, UT 84322, USA; Utah Water Research Laboratory, Utah State University, Logan, UT 84322, USA
| | - Sheikh Mokhlesur Rahman
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA; Department of Civil Engineering, Bangladesh University of Engineering and Technology, BUET Central Road, Dhaka 1000, Bangladesh
| | - Zixuan Gong
- Department of Materials, Imperial College London, London LND SW7 2AZ, UK
| | - Xueke Bai
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, UK
| | - Christopher Vulpe
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Michael Fasullo
- Department of Nanoscale Science and Engineering, University at Albany, State University of New York, Albany, NY 12222, USA
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
2
|
Zhao W, Kong L, Guan W, Liu J, Cui H, Cai M, Fang B, Liu X. Yeast UPS1 deficiency leads to UVC radiation sensitivity and shortened lifespan. Antonie Van Leeuwenhoek 2023:10.1007/s10482-023-01847-8. [PMID: 37222845 DOI: 10.1007/s10482-023-01847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 05/16/2023] [Indexed: 05/25/2023]
Abstract
UPS1/YLR193C of Saccharomyces cerevisiae (S. cerevisiae) encodes a mitochondrial intermembrane space protein. A previous study found that Ups1p is needed for normal mitochondrial morphology and that UPS1 deficiency disrupts the intramitochondrial transport of phosphatidic acid in yeast cells and leads to an altered unfolded protein response and mTORC1 signaling activation. In this paper, we first provide evidence showing that the UPS1 gene is involved in the UVC-induced DNA damage response and aging. We show that UPS1 deficiency leads to sensitivity to ultraviolet C (UVC) radiation and that this effect is accompanied by elevated DNA damage, increased intracellular ROS levels, abnormal mitochondrial respiratory function, an increased early apoptosis rate, and shortened replicative lifespan and chronological lifespan. Moreover, we show that overexpression of the DNA damage-induced checkpoint gene RAD9 effectively eliminates the senescence-related defects observed in the UPS1-deficient strain. Collectively, these results suggest a novel role for UPS1 in the UVC-induced DNA damage response and aging.
Collapse
Affiliation(s)
- Wei Zhao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Lingyue Kong
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Wenbin Guan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Jiaxin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Hongjing Cui
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Mianshan Cai
- Precision Medicine Centre, Department of Pediatrics, Puning People's Hospital, Puning, 515300, Guangdong, China
| | - Bingxiong Fang
- Precision Medicine Centre, Department of Pediatrics, Puning People's Hospital, Puning, 515300, Guangdong, China.
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China.
- School of Medical Technology, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
3
|
Di Blasio S, Clarke M, Hind CK, Asai M, Laurence L, Benvenuti A, Hassan M, Semenya D, Man DKW, Horrocks V, Manzo G, Van Der Lith S, Lam C, Gentile E, Annette C, Bosse J, Li Y, Panaretou B, Langford PR, Robertson BD, Lam JKW, Sutton JM, McArthur M, Mason AJ. Bolaamphiphile Analogues of 12-bis-THA Cl 2 Are Potent Antimicrobial Therapeutics with Distinct Mechanisms of Action against Bacterial, Mycobacterial, and Fungal Pathogens. mSphere 2023; 8:e0050822. [PMID: 36511707 PMCID: PMC9942557 DOI: 10.1128/msphere.00508-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
12-Bis-THA Cl2 [12,12'-(dodecane-1,12-diyl)-bis-(9-amino-1,2,3,4-tetrahydroacridinium) chloride] is a cationic bolalipid adapted from dequalinium chloride (DQC), a bactericidal anti-infective indicated for bacterial vaginosis (BV). Here, we used a structure-activity-relationship study to show that the factors that determine effective killing of bacterial, fungal, and mycobacterial pathogens differ, to generate new analogues with a broader spectrum of activity, and to identify synergistic relationships, most notably with aminoglycosides against Acinetobacter baumannii and Pseudomonas aeruginosa, where the bactericidal killing rate was substantially increased. Like DQC, 12-bis-THA Cl2 and its analogues accumulate within bacteria and fungi. More hydrophobic analogues with larger headgroups show reduced potential for DNA binding but increased and broader spectrum antibacterial activity. In contrast, analogues with less bulky headgroups and stronger DNA binding affinity were more active against Candida spp. Shortening the interconnecting chain, from the most lipophilic twelve-carbon chain to six, improved the selectivity index against Mycobacterium tuberculosis in vitro, but only the longer chain analogue was therapeutic in a Galleria mellonella infection model, with the shorter chain analogue exacerbating the infection. In vivo therapy of Escherichia coli ATCC 25922 and epidemic methicillin-resistant Staphylococcus aureus 15 (EMRSA-15) infections in Galleria mellonella was also achieved with longer-chain analogues, as was therapy for an A. baumannii 17978 burn wound infection with a synergistic combination of bolaamphiphile and gentamicin. The present study shows how this class of bolalipids may be adapted further to enable a wider range of potential applications. IMPORTANCE While we face an acute threat from antibiotic resistant bacteria and a lack of new classes of antibiotic, there are many effective antimicrobials which have limited application due to concerns regarding their toxicity and which could be more useful if such risks are reduced or eliminated. We modified a bolalipid antiseptic used in throat lozenges to see if it could be made more effective against some of the highest-priority bacteria and less toxic. We found that structural modifications that rendered the lipid more toxic against human cells made it less toxic in infection models and we could effectively treat caterpillars infected with either Mycobacterium tuberculosis, methicillin resistant Staphylococcus aureus, or Acinetobacter baumannii. The study provides a rationale for further adaptation toward diversifying the range of indications in which this class of antimicrobial may be used.
Collapse
Affiliation(s)
- Simona Di Blasio
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Maria Clarke
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Charlotte K. Hind
- Technology Development Group, UK Health Security Agency, Research and Evaluation, Salisbury, United Kingdom
| | - Masanori Asai
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Louis Laurence
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Angelica Benvenuti
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Mahnoor Hassan
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Dorothy Semenya
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - DeDe Kwun-Wai Man
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Victoria Horrocks
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Giorgia Manzo
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Sarah Van Der Lith
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Carolyn Lam
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Eugenio Gentile
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Callum Annette
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Janine Bosse
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Yanwen Li
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Barry Panaretou
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Paul R. Langford
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Brian D. Robertson
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Jenny K. W. Lam
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, London, United Kingdom
| | - J. Mark Sutton
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
- Technology Development Group, UK Health Security Agency, Research and Evaluation, Salisbury, United Kingdom
| | - Michael McArthur
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - A. James Mason
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
4
|
Bailly C. Medicinal applications and molecular targets of dequalinium chloride. Biochem Pharmacol 2021; 186:114467. [PMID: 33577890 DOI: 10.1016/j.bcp.2021.114467] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/23/2022]
Abstract
For more than 60 years dequalinium chloride (DQ) has been used as anti-infective drug, mainly to treat local infections. It is a standard drug to treat bacterial vaginosis and an active ingredient of sore-throat lozenges. As a lipophilic bis-quaternary ammonium molecule, the drug displays membrane effects and selectively targets mitochondria to deplete DNA and to block energy production in cells. But beyond its mitochondriotropic property, DQ can interfere with the correct functioning of diverse proteins. A dozen of DQ protein targets have been identified and their implication in the antibacterial, antiviral, antifungal, antiparasitic and anticancer properties of the drug is discussed here. The anticancer effects of DQ combine a mitochondrial action, a selective inhibition of kinases (PKC-α/β, Cdc7/Dbf4), and a modulation of Ca2+-activated K+ channels. At the bacterial level, DQ interacts with different multidrug transporters (QacR, AcrB, EmrE) and with the transcriptional regulator RamR. Other proteins implicated in the antiviral (MPER domain of gp41 HIV-1) and antiparasitic (chitinase A from Vibrio harveyi) activities have been identified. DQ also targets α -synuclein oligomers to restrict protofibrils formation implicated in some neurodegenerative disorders. In addition, DQ is a typical bolaamphiphile molecule, well suited to form liposomes and nanoparticules useful for drug entrapment and delivery (DQAsomes and others). Altogether, the review highlights the many pharmacological properties and therapeutic benefits of this old 'multi-talented' drug, which may be exploited further. Its multiple sites of actions in cells should be kept in mind when using DQ in experimental research.
Collapse
|
5
|
Jenkins DM, Powell CD, Smart KA. Dried Yeast: Impact of Dehydration and Rehydration on Brewing Yeast DNA Integrity. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2010-0629-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- David M. Jenkins
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | | | - Katherine A. Smart
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| |
Collapse
|
6
|
Lawrence SJ, Nicholls S, Box WG, Sbuelz R, Bealin-Kelly F, Axcell B, Smart KA. The Relationship between Yeast Cell Age, Fermenter Cone Environment, and Petite Mutant Formation in Lager Fermentations. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2013-0405-01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Stephen J. Lawrence
- University of Nottingham, Division of Food Sciences, Sutton Bonington Campus, Loughborough, Leics. LE12 5RD
| | - Sarah Nicholls
- University of Nottingham, Division of Food Sciences, Sutton Bonington Campus, Loughborough, Leics. LE12 5RD
| | - Wendy G. Box
- University of Nottingham, Division of Food Sciences, Sutton Bonington Campus, Loughborough, Leics. LE12 5RD
| | | | | | - Barry Axcell
- Group Brewing Research, SABMiller plc, PO Box 782178, Sandton 2146, South Africa
| | - Katherine A. Smart
- University of Nottingham, Division of Food Sciences, Sutton Bonington Campus, Loughborough, Leics. LE12 5RD and SABMiller plc, SABMiller House, Woking, Surrey GU21 6HS, UK
| |
Collapse
|
7
|
Photo-activation of the delocalized lipophilic cation D112 potentiates cancer selective ROS production and apoptosis. Cell Death Dis 2017; 8:e2587. [PMID: 28151485 PMCID: PMC5386467 DOI: 10.1038/cddis.2017.19] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/04/2017] [Accepted: 01/09/2017] [Indexed: 01/10/2023]
Abstract
Delocalized lipophilic cations (DLCs) selectively accumulate in cancer cell mitochondria and have long been explored for therapeutic applications. Although targeted effects to cancer cells are demonstrated in vitro, non-specific toxicities in vivo have hampered clinical development. Identifying the molecular mechanisms of action and enhancing selectivity are thus necessary next steps to improve these compounds and evaluate their suitability for further drug development. D112 is one such DLC with promising properties. We previously demonstrated that D112 selectively induced intrinsic apoptosis in transformed versus non-transformed cell lines. Here we show that D112 preferentially entered transformed cells where it interacted with, and damaged mitochondrial DNA, inhibited Complex I respiration and induced reactive oxygen species (ROS). ROS production was critical for Bax activation and subsequent apoptosis. Importantly, photo-activation of D112 potentiated selective ROS production and increased the window of toxicity towards cancer cells over non-transformed cells. Thus photodynamic therapy would be an exciting adjunct to D112 studies and may be generally applicable for other DLCs that are currently under therapeutic investigation.
Collapse
|
8
|
Weissig V. From Serendipity to Mitochondria-Targeted Nanocarriers. Pharm Res 2011; 28:2657-68. [DOI: 10.1007/s11095-011-0556-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 08/02/2011] [Indexed: 12/13/2022]
|
9
|
López-Rodríguez A, Cárabez-Trejo A, Rosas-Sánchez F, Mejía C, Ruiz-Azuara L, Miledi R, Martínez-Torres A. The metal-coordinated Casiopeína IIIEa induces the petite-like phenotype in Saccharomyces cerevisiae. Biometals 2011; 24:1189-96. [PMID: 21779809 DOI: 10.1007/s10534-011-9477-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 06/23/2011] [Indexed: 10/18/2022]
Abstract
The Casiopeínas® are mixed chelate copper (II) complexes and promising antineoplastics agents against cancer cells and tumors in vitro and in vivo. However, the action mode of these compounds is poorly characterized. In this work the effect of the antineoplastic Casiopeína IIIEa on the metabolism and ultrastructure of the yeast Saccharomyces cerevisiae was investigated. Exposure of cells growing in rich or in low-iron medium to 5 μM of the compound decreased duplication time and reduced oxygen consumption. Those cells formed smaller colonies when growing in a non-fermentable carbon source and low-iron medium, and under the light microscope, multiple folds were observed along the plasma membrane accompanied with a reduction in the diameter of the yeast. These observations were confirmed under the electron microscope, which also revealed a slight reduction of the mitochondrial size. A correlation was found with smaller colonies exhibiting lower rates of oxygen consumption, and yeast labelled with fluorescent MitoTracker(TM) consistently exhibited reduced mitochondrial activity. It appears that Casiopeína IIIEa gives rise to smaller yeast and petite-like colonies by reducing the mitochondrial respiratory activity without significantly affecting the mitochondrial structure.
Collapse
Affiliation(s)
- Angélica López-Rodríguez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, UNAM-Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro, México.
| | | | | | | | | | | | | |
Collapse
|
10
|
Kitagaki H, Cowart LA, Matmati N, Montefusco D, Gandy J, de Avalos SV, Novgorodov SA, Zheng J, Obeid LM, Hannun YA. ISC1-dependent metabolic adaptation reveals an indispensable role for mitochondria in induction of nuclear genes during the diauxic shift in Saccharomyces cerevisiae. J Biol Chem 2009; 284:10818-30. [PMID: 19179331 PMCID: PMC2667769 DOI: 10.1074/jbc.m805029200] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 01/21/2009] [Indexed: 01/09/2023] Open
Abstract
Growth of Saccharomyces cerevisiae following glucose depletion (the diauxic shift) depends on a profound metabolic adaptation accompanied by a global reprogramming of gene expression. In this study, we provide evidence for a heretofore unsuspected role for Isc1p in mediating this reprogramming. Initial studies revealed that yeast cells deleted in ISC1, the gene encoding inositol sphingolipid phospholipase C, which resides in mitochondria in the post-diauxic phase, showed defective aerobic respiration in the post-diauxic phase but retained normal intrinsic mitochondrial functions, including intact mitochondrial DNA, normal oxygen consumption, and normal mitochondrial polarization. Microarray analysis revealed that the Deltaisc1 strain failed to up-regulate genes required for nonfermentable carbon source metabolism during the diauxic shift, thus suggesting a mechanism for the defective supply of respiratory substrates into mitochondria in the post-diauxic phase. This defect in regulating nuclear gene induction in response to a defect in a mitochondrial enzyme raised the possibility that mitochondria may initiate diauxic shift-associated regulation of nucleus-encoded genes. This was established by demonstrating that in respiratory-deficient petite cells these genes failed to be up-regulated across the diauxic shift in a manner similar to the Deltaisc1 strain. Isc1p- and mitochondrial function-dependent genes significantly overlapped with Adr1p-, Snf1p-, and Cat8p-dependent genes, suggesting some functional link among these factors. However, the retrograde response was not activated in Deltaisc1, suggesting that the response of Deltaisc1 cannot be simply attributed to mitochondrial dysfunction. These results suggest a novel role for Isc1p in allowing the reprogramming of gene expression during the transition from anaerobic to aerobic metabolism.
Collapse
Affiliation(s)
- Hiroshi Kitagaki
- Biochemistry and Molecular Biology and Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Fekete V, Cierna M, Poláková S, Piskur J, Sulo P. Transition of the ability to generate petites in theSaccharomyces/Kluyveromycescomplex. FEMS Yeast Res 2007; 7:1237-47. [PMID: 17662054 DOI: 10.1111/j.1567-1364.2007.00287.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Petite-positivity - the ability to tolerate the loss of mtDNA - was examined after the treatment with ethidium bromide (EB) in over hundred isolates from the Saccharomyces/Kluyveromyces complex. The identity of petite mutants was confirmed by the loss of specific mtDNA DAPI staining patterns. Besides unequivocal petite-positive and petite-negative phenotypes, a few species exhibited temperature sensitive petite positive phenotype and petiteness of a few other species could be observed only at the elevated EB concentrations. Several yeast species displayed a mixed 'moot' phenotype, where a major part of the population did not tolerate the loss of mtDNA but several cells did. The genera from postwhole-genome duplication lineages (Saccharomyces, Kazachstania, Naumovia, Nakaseomyces) were invariably petite-positive. However, petite-positive traits could also be observed among the prewhole-genome duplication species.
Collapse
Affiliation(s)
- Veronika Fekete
- Comenius University, Faculty of Natural Sciences, Department of Biochemistry, Mlynská Dolina, Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
12
|
Current awareness on yeast. Yeast 2005. [DOI: 10.1002/yea.1169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|